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Compact and well defined formulae for the shadow of the virtual photon
interacting with a large nucleus at small xBj are given in the QCD dipole
picture. Two classes of contributions are considered: (a) quasi-elastic in-
teraction of the qq̄ dipole and (b) multi-pomeron coupling.
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1. Introduction

We have now at our disposal the QCD dipole picture of virtual photon
interactions [1–3] with hadrons [4,5] which is able to account for existing data
on proton structure function F2 (i.e. on total virtual photon–proton cross-
section) at small xBj. It is therefore interesting to investigate whether the
model can be also applied to nuclear targets, in particular if it can describe
the shadowing of the virtual photons. This becomes especially interesting in
view of a possible extention of the HERA experimental program to nuclear
targets [6].

In our recent paper [7] we have calculated in this model the double scat-
tering contribution to the virtual photon shadowing1. The multiple scatter-
ing corrections, which are more difficult to handle, were merely estimated,
however. As the resulting shadowing at small xBj turned out to be rather
substantial and not too far from experimental data, it seems worthwhile
to pursue the problem further and to evaluate more precisely the multiple
scattering terms. This is the purpose of the present paper.

1 The subject of photon shadowing in nuclei has a vast literature. For recent reviews,
see e.g. [6] and [8].
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As in [7] (c.f. also [9,10]) we are dealing with two types of contributions:
(a) The “quasi-elastic” interaction of the qq̄ dipole (first introduced in

the dipole picture in [10]) contributing mostly at small mass excitations of
the virtual photon.

(b) The “direct” interaction of the dipole cascade (corresponding to the
so-called multiple pomeron coupling in the Regge language) which dominates
the high-mass excitations.

The amplitudes describing these processes were derived and discussed
in [1–3,9–11]. When applied to the interaction with nuclear targets, however,
they must be modified in two important points:

(i) a phase difference related to the change in the longitudinal momentum
of system travelling through the nucleus must be taken into account. Con-
sequently, at some point it is nessesary to transform the amplitudes into the
momentum representation. This makes the calculation substantially more
complicated.

(ii) Since the transverse size of the gluon cascade is much smaller than
that of a large nucleus, we can use the standard approximation and inte-
grate over the impact-parameter dependence of the elementary amplitudes,
i.e. we need to deal with forward scattering amplitudes only. Indeed, the
convolution of the onium and the nucleus transverse profiles is approximately

∫

TA (~s)T (~b− ~s) d2s ≈ TA (b)

∫

T (b′) d2b′ = T̃ (k = 0)TA (b) , (1)

where T̃ (k = 0) is the forward scattering amplitude and TA(b) is the nucleus
profile.

This simplifies the calculation in an essential way.
Our ultimate goal is to give an explicit expression for the shadow, defined

as

C(A,xBj, Q
2) =

σtot(A)

Aσtot(n)
− 1, (2)

where σtot(A) is the total photon-nucleus cross-section and σtot(n) is the
total photon-nucleon cross-section. σtot(n) has been measured [12] and suc-
cessfully computed in the dipole picture [4]. This will be our input.

To compute σtot(A) we have to know the forward amplitudes for (a)
quasi-elastic scattering of the dipole and (b) direct scattering of the dipole
cascade from a given number, N , of nucleons. We then dress them up with
the light-cone photon wave functions [13] and with single nucleon densities
characterizing the nuclear shape. Finally we add them up for 2 ≤ N ≤ A.
This calculation is described in the next two sections.

In Sec. 4 we discuss the obtained results and formulate our conclusions.
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2. Forward γ
∗-nucleus amplitude from the direct interaction

of the dipole cascade

We start by giving the final result for the forward amplitude for scattering
on N nucleons of the dipole cascade emerging from an onium. It reads

F dir
N (r, r0;Y, y) = (2N − 3)!!πα2(α3Nc)

N−1r2N
0 nN

effei(z1−zN )mxP

×
N
∏

k=1





ck+i∞
∫

ck−i∞

dλk

2πi
h(λk)e

∆(λk)yG(λk)



 e∆(γ)(Y −y)

(

r

r0

)γ 1

G(γ)
, (3)

where

∆(λ) =
αNc

π
χ(λ), χ(λ) = 2ψ(1) − ψ

(

1 − λ
2

)

− ψ(λ
2 ) , (4)

α is the strong coupling constant, Nc is the number of colours, r0 is a
parameter of the order of the effective size of the nucleon, r is the transverse
size of the incident onium. The remaining symbols denote:

h(λ) =
4

λ2(2 − λ)2
, G(λ) =

Γ (λ
2 )

Γ (1 − λ
2 )
, γ =

N
∑

k=1

λk ,

Y = − log
xBj

c , y = − log xP

c , xP =
xBj

β , β = Q2

Q2+M2 , (5)

and M is the mass of the dipole cascade; c is a constant giving the energy
scale, neff is an effective number of onia in one nucleon (estimated in [4],
c.f. also [7]).

The origin of the phase factor ei(z1−zN )mxP = ei(z1−zN )Q2+M2

2ν where
z1 and zN are the longitunal positions of the first and the last scattering
(m is nucleon mass and ν is the energy of the photon ) was discussed in
detail already by Gottfried and Yennie [14]2.

The starting point in the derivation of Eq. (3) is the generalization of
the Mueller–Patel formula [2] for triple-pomeron coupling. In the case of N
nucleons it reads

F dir
N (r, r1, . . . rN ;Y, y)

= ei(z1−zN )mxP

∫

(

N
∏

k=1

dxk

xk

dx′k
x′k

τ(xk, x
′
k)n1(rk, xk, y

∗)

)

×nN(r, x′1, . . . , x
′
N ;Y −y∗, y−y∗). (6)

2 When only one mass is excited, as it is in the present case, the phase factor depends
only on the first and last points of the interaction.
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Here

n1(rk, xk, y
∗) =

c+i∞
∫

c−i∞

dλ

2πi
e∆(λ)y∗

(

rk
xk

)λ

(7)

are the densities of the dipoles of the transverse size xk integrated over the
trasverse positions of the dipoles within an onium of size rk moving with
rapidity y∗. nN (r, x1, . . . , xn;Y − y∗, y − y∗) is the density of N dipoles of
the transverse sizes x1, . . . xN again integrated over the transverse positions
of the dipoles within the cascade of the transverse size r evolved from the
incident onium. τ(x, x′) is the forward scattering amplitude of two dipoles
of transverse sizes x and x′ (in the two-gluon exchange approximation it is
energy independent [2]). The arguments r1, . . . , rN are the transverse sizes of
the onia representing the target nucleons. Y, y are defined above in Eq. (5).
In the terminology employing the pomeron concept, y is the rapidity which
divides the process into the region of one pomeron (rapidities between Y
and y) and N pomerons (rapidities smaller than y) in the N + 1 pomeron
coupling.

To obtain a formula for nN (r, x1, . . . , xn;Y − y∗, y− y∗) one has to solve
an integro-diferential equation which one obtains by N -fold differentiation of
the generating functional given in [3]. We do this by the method described
in [10] for double-dipole scattering. An extension of this procedure to arbi-
trary N is described in Appendix A. At this point it should be emphasized
that a solution in compact form, necessary to derive the result of Eq. (3),
can be obtained only for distributions integrated over the transverse position
of the dipoles with respect to the original onium. The solution for arbitrary
dipole position is much more involved. Fortunately, as already mentioned in
the Introduction, for large nuclei the transverse size of the incident onium
is much smaller than the nuclear diameter and thus we only need the distri-
butions integrated over the transverse positions inside the onium.

In order to obtain the contribution to the shadow (Eq. (2)) one has
to add the contributions from N = 2, 3, . . . A nucleons and average them
over the positions of the nucleon inside the nucleus and over the virtual
photon wave functions. Finally we have to integrate over the excited massM
(i.e. the rapidity y). Using (2) and

σtot = 2ReF (8)
one obtains

Cdir(A,xBj, Q
2) =

−2

Aσtot(n)

×Re





Y
∫

0

dy <

A
∑

N=2

(−1)N
A!

(A−N)!
nN

eff〈〈ψQ | F dir
N | ψQ〉〉



 . (9)
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The average 〈ψQ | F dir
N | ψQ〉 is the integral of F dir

N multiplied by light-cone
photon densities [13] given by

| ΨQ(r, η) |2 =
Ncαeme

2
f

π2
W (r, η,Q), (10)

WT(r, η,Q) = 1
2 [η2 + (1 − η)2]Q̂2K2

1 (Q̂r), (11)

WL(r, η,Q) = 2η(1 − η)Q̂2K2
0 (Q̂r), (12)

where Q̂ = [η(1−η)]
1
2Q,αem = 1

137 , e
2
f is the sum of the squares of the quark

charges. η is the light-cone momentum fraction of one of the quarks in the
photon.

The relevant integrals
∫

d2rdη . . . can be found in [16] and they result in
the following prescription: rγ in (3) should be replaced by the expressions

rγ →
Ncαeme

2
f

π

Γ 2(2 − γ
2 )Γ 4(1 + γ

2 )

Γ (4 − γ)Γ (2 + γ)

(

Q

2

)−γ

IT,L(γ), (13)

where

IT(γ) =
(2 − γ

2 )(1 + γ
2 )

(γ
2 )(1 − γ

2 )
, (14)

IL(γ) = 2 . (15)

Averaging over the nucleon positions reduces to multiplying 〈ψQ | F dir
N | ψQ〉

by N single particle nucleon densities ρ(b, zk) and integrating over zk’s kept
ordered:

〈〈ψQ | F dir
N | ψQ〉〉 = 〈ψQ | F dir

N | ψQ〉

×

∫

d2b

+∞
∫

−∞

dz1

+∞
∫

z1

dzNei(z1−zN )mxP ρ(b, z1)ρ(b, zN )

×

zN
∫

z1

dz2ρ(b, z2) . . .

zN
∫

zN−2

dzN−1ρ(b, zN−1)

= 〈ψQ | F dir
N | ψQ〉

∫

d2b

+∞
∫

−∞

dz1

+∞
∫

z1

dzNei(z1−zN )mxP ρ(b, z1)ρ(b, zN )

×
1

(N − 2)!





zN
∫

z1

dzρ(b, z)





N−2

. (16)

Inserting (16) into (9) we obtain the required formula for the shadow.
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For the sake of completeness let us also give the explicit formula for
σtot(n):

σtot(n) = σ(r0, Y ) = 2πα2r20neff

∫

dγ

2πi

(

r

r0

)γ

e∆(γ)yh(γ) , (17)

where rγ is given by Eq. (13).

3. Forward γ
∗-nucleus amplitude from the quasi-elastic scattering

of a QCD dipole in the nucleus

As is well-known since the seminal paper of Stodolsky [15] and of Got-
tfried and Yennie [14], the multiple elastic scattering of a photon fluctuation
inside a nucleus contributes in an essential way to the nuclear shadowing.
In the QCD dipole picture this corresponds to quasi-elastic scattering of an
onium whose transverse size is distributed according to the light-cone wave
functions of the photon given in [13]. In the present section we derive the
formula for this contribution to the shadow.

The N -fold scattering contribution to the forward γ∗-nucleus amplitude
is built as a product of N onium-nucleon amplitudes (including the eikonal
phases) sandwiched between the initial and final state of the virtual photon
and summed over all intermediate states of the onium as follows

〈ψQ | F qel
N | ψQ〉 = nN

eff〈Q | T (zN ) | kN−1〉

×
d2kN−1

4π2
〈kN−1 | T (zN−1) | kN−2 >

d2kN−2

4π2

×〈kN−2 | T (zN−2 | kN−3〉 . . .
d2k3

4π2
〈k3 | T (z3) | k2〉

d2k2

4π2

×〈k2 | T (z2) | k1〉
d2k1

4π2
〈k1 | T (z1) | Q〉. (18)

Here k1, . . . kN−1 are the relative transverse momenta of the quark and an-
tiquark forming the onium. To shorten the expression, we skip the integral
symbols (and we shall continue to so doing).

At this point it is important to realize that the amplitudes entering (18)
depend on the longitudinal position, acquiring the eikonal phase. So we can
write

〈k′ | T (z) | k〉 = eizk′

L〈k′ | T | k〉e−izkL , (19)

where kL and k′L are the longitudinal momenta of the onium before and after
scattering.
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The first step is to transform the transverse momentum amplitudes
〈k′ | T | k〉 into transverse position amplitudes, so that we can use the
explicit expression for the onium-onium forward elastic amplitude, T (r),
derived in [2, 3]. We shall use here the path integral representation, given
by:

T (r, r0, Y ) = πα2rr0

c+i∞
∫

c−i∞

dλ

2πi

(

r

r0

)λ−1

e∆(λ)Y h(λ), (20)

where r and r0 are the transverse sizes of the colliding onia. In terms of
T (r, r0, Y ) ≡ T (r) we thus obtain

〈k′ | T (z) | k〉 = eiz(k2−k′2)ξd2ρei(k′−k)ρT (ρ) (21)

with

ξ =
1

2νη(1 − η)
. (22)

In arriving at (22) we have used the high energy approximation for kL, viz.

kL = ν −
M2

2ν
= ν −

k2

2νη(1 − η)
. (23)

Similarly we obtain

〈k | T (z) | Q〉 = eiz(xBjm−ξk2)d2ρeikρ〈ρ | T | Q〉, (24)

where 〈ρ | T | Q〉 includes the photon wave function:

〈ρ | T | Q〉 = T (ρ)ΨQ(ρ). (25)

Putting this in (18) and rescaling the variables

k = Qκ, ρ =
r

Q
, ζ =

mz

η(1 − η)
(26)

we obtain

〈ψQ | F qel
N | ψQ〉 = 1

Q2 ei(z1−zN )mxBj)nN
eff〈Q | T | rN 〉d2rN

×Φ[rN−1 − rN , xBj(ζN − ζN−1)]T (rN−1)d
2rN−1

×Φ[rN−2 − rN−1, xBj(ζN−1 − ζN−2)]T (rN−2) . . . Φ[r2 − r3, xBj(ζ3 − ζ2)]

×T (r2)d
2r2Φ[r1 − r2, xBj(ζ2 − ζ1)]T (r1)d

2r1〈r1 | T | Q〉, (27)

with

Φ(∆,a) ≡

∫

d2κ

(2π)2
eiκ∆eiaκ2

=
i

4πa
e−i ∆2

4a , (28)
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where we have assumed that a = Re(a) + iε to give a definite meaning to
the integral.

Further calculations are continued in the limit xBj ≪ 1. In this limit the
following formula can be derived by the saddle point method for a, a′ ≪ 1

∫

d2rΦ(s− r, a)F (r)Φ(r − s′, a′)

= Φ(s− s′, a+ a′)F (s̄) exp

[

iā

(

∇F (s̄)

F (s̄)

)2
]

, (29)

where

s̄ =
a′s+ as′

a+ a′
, (30)

and

ā =
aa′

a+ a′
. (31)

By repeated application of this formula we finally arrive at the following
result

〈ψQ | F qel
N | ψQ〉 =

1
∫

0

dη

∫

d2ρ | ΨQ(ρ, η) |2 [neffT (ρ, r0, xBj)]
N

×e−
i

2ν

PN
j=1 zj(M2

j −M2
j+1) , (32)

where T is given by (20) and

M2
1 =M2

N+1 =−Q2, M2
j =

(

N − j + 1

(η(1 − η))1/2

~ρ

ρ2
+ ~∇ log[Ψ(ρ)]

)2

, j=2, . . . ,N.

(33)
Some details of these calculations are given in the Appendix B.

The shadow for the quasi-elastic process is now

Cqel(A,xBj, Q
2) =

−2

Aσt(n)
Re

(

A
∑

N=2

(−1)N
A!

(A−N)!
〈〈ψQ | F qel

N | ψQ〉〉

)

(34)
with the following averaging over the nuclear densities

〈〈ψQ | F qel
N | ψQ〉〉 =

1
∫

0

∫

dηd2ρ | ΨQ(ρ, η) |2 [neffT (ρ, r0, xBj)]
N

×

∫

d2b

∫

zN≥zN−1≥...≥z1

dzNdzN−1....dz1ρ(b, zN )e−
i

2ν
zN (M2

N
−M2

N+1
)
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× ρ(b, zN−1)e
− i

2ν
zN−1(M2

N−1−M2
N ) . . .

× . . . ρ(b, z2)e
− i

2ν
z2(M2

2−M2
3 )ρ(b, z1)e

− i
2ν

z1(M2
1−M2

2 ). (35)

4. Conclusions and outlook

We have shown that the QCD dipole picture can provide a well defined
and compact formulae for nuclear shadowing of the virtual photons. The
formulae are well suited for numerical evaluation. They contain the following
parameters:

(i) The pomeron intercept ∆P ;

(ii) The nucleon size parameter r0;

(iii) The effective number of dipoles in the proton neff ;

(iv) The effective number of flavours (reflecting on e2f );

(v) The scales in the elastic and in the diffractive γ∗-proton scattering.

All these parameters can, in principle, be determined from the fit of
the dipole picture to the proton data. Such a fit has been completed for the
total γ∗-proton cross-section [4]. That gave∆P = .285, Q0 ≡ 2

r0
= .622 GeV;

neffe
2
f = 3.8; Y = log 1.65

xBj
. So, as long as the fits to the diffractive production

are not available, we are left with two not fully determined parameters: the
effective number of flavours and the scale in the diffractive dissociation.

It is important to remember that the nuclear shadowing effects are de-
termined by the forward diffractive amplitudes. Our formulae can thus be
employed to obtain the cross section for the forward diffractive dissociation
of the virtual photon on one nucleon. Indeed, such cross sections on one
nucleon can be obtained from the formulae of Sections 2 and 3 for F dir

N=2 and

F qel
N=2:

dσdir

dyd2pt
|pt=0 =

1

(2π)2
〈ΨQ|F

dir
N=2(z1 = z2)|ΨQ〉 , (36)

and
dσqel

d2pt
|pt=0 =

1

(2π)2
〈ΨQ|F

qel
N=2(z1 = z2)|ΨQ〉 , (37)

where pt is the transverse momentum of the final proton, and y defined
in Eq. (5) contains M , the diffractively produced mass. Therefore (36) is,
in fact, a differential cross section for production from the incident virtual
photon of an object of massM . On the other hand (37) is the total diffractive
dissociation cross section integrated over diffractively excited masses. One
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can resolve (37) into the differential cross sections dσqel

dM2d2
pt

|pt=0 applying a

straightforward procedure. This will be discussed elsewhere [19].
Our formulae, given in Sections 2 and 3 refer to two mechanisms de-

scribed in the Introduction: (a) the quasi-elastic interaction of the qq̄ dipole
and (b) the multiple-pomeron coupling. One must remember, however, that
these two mechanisms are not mutually exclusive: they mix in the multiple
scattering terms, i.e. there are collisions in which they both take place. Such
mixed amplitudes are also readily calculable by the methods developped in
the present paper.

Any further discussion strongly depends on the outcome of the numerical
estimates. Before this is available let us simply list the problems which, in
our opinion, seem interesting.

(a) The relative importance of the multi-pomeron and the quasi-elastic
interactions. Apart from its primary interest, it is essential for an estimation
of the importance of the mixing terms.

(b) An extrapolation for very small xBj where the unitarity is expected
to break down. It is likely that for nuclear targets this effect will occur much
earlier (i.e. for larger xBj) than estimated in [3, 17].

(c) The dependence of the kind x−∆P

Bj which appear in BFKL forward
amplitudes imply the existence of a large ratio of the real to imaginary part
of the forward amplitudes. We have shown already [7,18] that this influences
significantly the predicted amount of shadowing. It will thus be interesting
to discuss this problem again with the present, more precise, formulation.

We thank A. Capella, A. Kaidalov, A. Krzywicki and R. Peschanski for
helpful discussions. Part of this work was done when the authors visited
LPTHE Orsay and CE Saclay. We thank D. Schiff and J. Zinn–Justin for
the kind hospitality. This work was supported in part by the KBN Grant
No 2 PO3B 083 08 and by PECO grant from the EEC Programme “Human
Capital Mobility”, Network “Physics at High Energy Colliders” , Contract
No ERBICIPDCT 940613.

Appendix A

In this Appendix we indicate some details of the derivation of the formula
for nN , Eq. (6).

We start with n2.
Using the generating function given in [3] and assuming that evolution of

the two exchanged pomerons goes until the rapidity y is reached, we obtain
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the following equation for n2 (c.f. also Eq. (52) of [2]):

dn2(x01, Y, y, x, x
′)

dY

=
αNc

π2

∫

R

x2
01d

2x2

x2
02x

2
12

n1(x12, y, x)n1(x02, y, x
′)δ(Y − y)

+
2αNc

π

∫

dx12K(x01, x12)n2(x12, Y, y, x, x
′) , (38)

where n1 is the single dipole density and

K(x01, x12) =
1

2π

∫

R

x2
01d

2x2

x2
02x

2
12

− δ(x01 − x12) log(x01/ρ) (39)

is the Lipatov kernel (c.f. [1]) which satisfies the eigenvalue equation:
∫

K(x01, x12)x
λ
12dx12 = xλ

01χ(λ) (40)

with χ(λ) given by (4). We now introduce Mellin transforms to take advan-
tage of (40):

n2(x01, Y, y, x, x
′) =

c+i∞
∫

c−i∞

dγ

2πi
ñ2(γ, Y, y, x, x

′)xγ
01 (41)

ñ2(γ, Y, y, x, x
′) =

∞
∫

0

dx01x
−1−γ
01 n2(x01, Y, y, x, x

′) . (42)

Substituting (41) into (38) and using (40) we obtain a differential equation
for ñ2 which can be easily solved giving

ñ2(γ, Y, y, x, x
′) = e∆(γ)(Y −y)g2(γ, y, x, x

′) , (43)

where ∆(γ) is given by (4) and

g2(γ, y, x, x
′) =

αNc

π2

∞
∫

0

dx01x
−1−γ
01

∫

R

x2
01d

2x2

x2
02x

2
12

n1(x12, y, x)n1(x02, y, x
′).

(44)
Substituting (44) and (43) into (41) we finally have

n2(r, Y, y, x, x
′) =

αNc

π2

c+i∞
∫

c−i∞

dγ

2πi
rγe∆(γ)(Y −y)

×

∞
∫

0

dx01x
−1−γ
01

∫

R

x2
01d

2x2

x2
02x

2
12

n1(x12, y, x)n1(x02, y, x
′). (45)
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We now turn to n3.
Using the generating function given in [3] and assuming that evolution

of the three exchanged pomerons goes until the rapidity y is reached, we
obtain the following equation for n3:

dn3(x01, Y, y, x, x
′, x′′)

dY

=
αNc

π2

∫

R

x2
01d

2x2

x2
02x

2
12

[n1(x12, y, x)n2(x02, Y, y, x
′, x′′)]symδ(Y − y)

+
2αNc

π

∫

dx12K(x01, x12)n3(x12, Y, y, x, x
′, x′′), (46)

where n2(x02, Y, y, x
′, x′′) is given by (45). The symbol sym denotes a sum

of three terms, symmetrized with respect to x, x′, x′′.
Introducing Mellin transforms, as in (41), (42), substituting them into

(38) and using (40) we obtain a differential equation for ñ3. The solution is
found again in the form

ñ3(γ, Y, y, x, x
′, x′′) = e∆(γ)(Y −y)g3(γ, y, x, x

′, x′′), (47)

where

g3(γ, y, x, x
′, x′′) =

αNc

π2

∞
∫

0

dx01x
−1−γ
01

×

∫

R

x2
01d

2x2

x2
02x

2
12

[n1(x12, y, x)n2(x02, y, y, x
′, x′′)]sym, (48)

and n2(x02, y, y, x
′, x′′) is given by (45).

The formulae for n4, n5, . . . are derived in a similar way.
The integrals over x1, . . . xN ;x′1, . . . , x

′
N in (6) are performed using the

formula for the forward onium-onium amplitude T (r, r′, y)

T (r, r′, y) =

∫

dx

x

dx′

x′
τ(x, x′)n1(r, y∗, x)n1(r

′, y − y∗, x′)

= πα2rr′
c+i∞
∫

c−i∞

dγ

2πi
e∆(γ)y

( r

r′

)1−γ
h(γ) (49)

which was first derived in [2] and [4, 5] in a sligthly more simplified form.
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Using (49) and (45), (6) gives

F dir
2 (r, r1, r2;Y, y) = ei (z1−z2 )mxp

αNc

π2
r1r2

c+i∞
∫

c−i∞

dγ

2πi
rγe∆(γ)(Y −y)

×

c+i∞
∫

c−i∞

dλ1

2πi
rλ1−1
1 e∆(λ1)yh(λ1)

×

c+i∞
∫

c−i∞

dλ2

2πi
rλ2−1
2 e∆(λ2)yh(λ2)Ω(γ, λ1, λ2) , (50)

where

Ω(γ, λ1, λ2) =

∞
∫

0

dx01x
−1−γ
01

∫

R

x2
01d

2x2

x2
02x

2
12

x2−λ1

02 x2−λ2

12 , (51)

Ω(γ, λ1, λ2) can be calculated using [1]

x2
01d

2x2

x2
02x

2
12

= 2πx2
01

dx02

x02

dx12

x12

∞
∫

0

kdkJ0(kx01)J0(kx02)J0(kx12), (52)

from which the following useful identity can be obtained:

∞
∫

0

dx01x
−1−γ
01

∫

R

x2
01d

2x2

x2
02x

2
12

xλ
02x

λ′

12 = π
G(λ)G(λ′)

G(γ)
2πiδ(γ − λ− λ′). (53)

Using (53) in (50) and setting r1 = r2 = r0 we obtain the formula (3)
for F dir

2 . With the same technique one can obtain (3) for more than two
collisions. We indicate below the derivation for three collisions.

Substituting (45) into (48) and using (47) we obtain

n3(x01, Y, y, x, x
′, x′′) =

(

αNc

π2

)2
c+i∞
∫

c−i∞

dγ

2πi
xγ

01e
∆(γ)(Y −y)

∞
∫

0

dx01x
−1−γ
01

×

∫

R

x2
01d

2x2

x2
02x

2
12

[n1(x12, y, x)

c+i∞
∫

c−i∞

dγ′

2πi
xγ′

02

×

∞
∫

0

dx′01(x
′
01)

−1−γ′

∫

R

(x′01)
2d2x′2

(x′02)
2(x′12)

2
n1(x

′
12, y, x

′)n1(x
′
02, y, x

′′)]sym. (54)
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When (54) is substituted into (6) with r1 = r2 = r3 = r0 we obtain

F dir
3 (r, r0;Y, y) = ei(z1−zN )mxP

×3

(

αNc

π2

)2
c+i∞
∫

c−i∞

dγ

2πi
xγ

01e
∆(γ)(Y −y)

∞
∫

0

dx01x
−1−γ
01

×

∫

R

x2
01d

2x2

x2
02x

2
12

T (x12, r0, y)

c+i∞
∫

c−i∞

dγ′

2πi
xγ′

02

×

∞
∫

0

dx′01(x
′
01)

−1−γ′

∫

R

(x′01)
2d2x′2

(x′02)
2(x′12)

2
T (x′12, r0, y)T (x′02, r0, y) , (55)

where T (r, r′, y) is the dipole–dipole forward scattering amplitude given
by (49).

The integrals over dx01,d
2x2 and dx′01 d

2x′2 can be performed using again
the identity (53) and taking into account the fact that the dependence of
T (r, r′, y) on r and r′ is in the form of a power law. The result of these
operations is the Eq. (3) for N = 3.

Appendix B

In this Appendix we give a few intermediate steps of the calculations of
Section 3 which lead to Eq. (32).

First, by repeated application of (29) we obtain

〈ψQ | F qel
N | ψQ〉 = nN

effQ
−2ei(z1−zN )mxBj)〈Q | T | rN 〉d2rN

×Φ(r1 − rN , xBj(ζN − ζN−1))S(rN , r1; ζN , . . . , ζ1)d
2r1〈r1 | T | Q〉, (56)

where

S(rN , r1; ζN , . . . , ζ1) =

N−1
∏

j=2

dλj

2πi
Λ(λj , r0, Y )r

λj

j

× exp



i
ajλj

r2j
+ i2

N−1
∑

j,k=2

λjλk
~rj~rk
r2j r

2
k

ajk



 (57)

with

~rj =
(zN − zj)~r1 + (zj − z1)~rN

zn − z1
, (58)
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aj =
(zN − zj)(zj − z1)

zn − z1
, (59)

ajk =
(zN − zj)(zk − z1)

zn − z1
. (60)

Λ(λ, r0, Y ) = neffπα
2r2−λ

0 e∆(λ)Y h(λ) (61)

is taken from the integrand of Eq. (20) and neff added for the reasons ex-
plained in the main text.

We finally perform the integral over d2rN , again in the saddle point
approximation which is valid for small xBj. Then Φ(r1 − rN , xBj(ζN − ζ1)) is
very strongly peaked around rn ≈ r1, so that in leading order all rj’s become
r1. This approximation puts a new kind of factor, ∇ψQ/ψQ, into the over
all phase of the expression and we obtain (returning to zj ’s and ρj’s)

〈ψQ | F qel
N | ψQ〉 = nN

effeixBj(z1−zN )

1
∫

0

dη

∫

d2ρ | ψQ(ρ, η) |2

× exp

[

i

2ν

[

1

η(1 − η)ρ2

N
∑

j=2

[2(N − j) + 1](zj − z1)

+2

N
∑

j=2

(zj − z1)
~ρ · ~∇ψQ(ρ)

[(η(1 − η)]1/2ρ2ψQ(ρ)
+ (zn − z1)

[~∇ψQ(ρ)]2

ψQ(ρ)2

]]

×
N
∏

j=1

∫

dλj

2πi
Λ(λj , r0, Y )ρλj . (62)

One can check by a direct substitution of M2
j given by (33) into (32) that it

reduces to (62). The version of 〈ψQ | F qel
N | ψQ〉 given in (33) has, however,

a clearer physical interpretation.
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