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We discuss three classical field theories based on the wave equation:
scalar field, electrodynamics and linearized gravity. Certain generating for-
mula on a hyperboloid and on a null surface are derived for them. The
linearized Einstein equations are analyzed around the null infinity. It is
shown how the dynamics can be reduced to gauge invariant quanitities in a
quasi-local way. The quasi-local gauge-invariant “density” of the Hamilto-
nian is derived on the hyperboloid and on the future null infinity J+. The
result gives a new interpretation of the Bondi mass loss formula. We show
also how to define the angular momentum. Starting from an affine approach
for Einstein equations we obtain variational formulae for Bondi-Sachs type
metrics related to energy and angular momentum generators. The original
van der Burg asymptotic hierarchy is revisited and the relations between
linearized and asymptotic nonlinear situations are established. We discuss
also supertranslations, Newman-Penrose charges and Janis solutions.

PACS numbers: 11.10. Ef, 04.20. Ha, 11.30. Ij

1. Introduction

In the papers [2–4], from the series “Gravitational waves in general rela-
tivity” Bondi, van der Burg, Metzner and Sachs have analyzed asymptotic
behaviour of the gravitational field at null infinity. The energy in this regime,
so called Bondi mass, was defined and the main property — loss of the en-
ergy — was proved. See also discussion on p. 127 in the last paper [10] in
this series. The energy at null infinity was also proposed by Trautman [1]
and it will be called the Trautman-Bondi energy (or TB energy).

We interprete their result from symplectic point of view and we show
that the concept of Trautman-Bondi energy arises not only in gravity but
can be also defined for other fields. In this case the TB energy can be
treated formally as a “Hamiltonian” and the loss of energy formula has a
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natural interpretation given by (2.21). We apply similar technique to define
the angular momentum.

We introduce here the language of generating functions which simplifies
enormously our calculations. This point of view on dynamics is due to
Tulczyjew (see [29]).

We start from an example of a scalar field for which we define TB en-
ergy as a “Hamiltonian” on a hyperboloid. The motivation for considering
hyperboloids in gravitation one can find in [12, 15] and [16].

In Section 3 we give an example from electrodynamics.
Next we prove analogous formulae for the linearized gravity. The result

is formulated in a nice gauge-independent way. We show how the formula
(2.21) can be related to the original Bondi-Sachs result – mass loss equation
(35) of [2] (cf. also equations (4.16) in [3], (13) in [4] and (3.8) in [10]).
Our result is an important gauge-independent generalization of this original
mass loss equation. It shows the straightforward relation between the Weyl
tensor on the scri and the flux of the radiation energy through it. We show
how to define the angular momentum from this point of view.

In Section 8 we give “spherically covariant” formulation of the asymptotic
equations from [4]. We discuss several features of the theory like supertrans-
lations, charges etc. and also the relations between linear and nonlinear
theory.

1.1. New results and propositions

We give a list of problems and results which seem to be important and
are discussed in this paper.

• Hamiltonian formula on a hyperboloid and at the future null infinity
for the scalar field

• application of the proposed method in electrodynamics

• natural outcome in linearized gravity, non-conservation laws, invari-
ants

• analysis of the symplectic structure proposed by Kijowski in Bondi-
Sachs coordinates, non-conservation law for the energy at null infinity
gives Bondi formula, symplectic structure on scri gives the result pro-
posed by Ashtekar et al.

• application of the method for angular momentum, Hamiltonian for-
mula and non-conservation law for it

• covariant formulation on a sphere of the Bondi–van der Burg–Metzner–
Sachs asymptotic hierarchy

• transformation laws with respect to the supertranslations in general
case without axial symmetry, hypothesis for the angular momentum
and static moment
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• TB Four-momentum for any (cross-)section of the future null infinity
in terms of the BvBMS asymptotics

• simple relation between asymptotics on scri in full nonlinear theory
and linearized gravity

• simple interpretation of the Newman–Penrose constant and their anal-
ogy in the linearized theory.

2. Scalar field

Consider a scalar field theory derived from the density of a Lagrangian
L = L(ϕ,ϕµ), where ϕµ := ∂µϕ. The entire information about field dynam-
ics may be encoded in the equation

δL(ϕ,ϕµ) = ∂µ(pµδϕ) = (∂µp
µ)δϕ + pµδϕµ . (2.1)

The above generating formula is equivalent to the system of equations

∂µp
µ =

∂L

∂ϕ
, (2.2)

pµ =
∂L

∂ϕµ
. (2.3)

It is obvious that the system of equations (2.2)–(2.3) is equivalent to the
Euler-Lagrange equations in the usual form

∂µ
∂L

∂ϕµ
=
∂L

∂ϕ
.

Hamiltonian description of the theory is based on a chronological anal-
ysis, i.e. on a (3+1)-foliation of space-time. Treating separately the time
derivative and the space derivatives, we rewrite (2.1) as

δL = (pδϕ)˙+ ∂k(p
kδϕ) , (2.4)

where we denoted p := p0. Integrating over a 3-dimensional space–volume
V we obtain

δ

∫

V

L =

∫

V

(ṗδϕ + pδϕ̇) +

∫

∂V

p⊥δϕ =

∫

V

(ṗδϕ− ϕ̇δp + δ(pϕ̇)) +

∫

∂V

p⊥δϕ ,

(2.5)
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where by p⊥ we denote the normal part of the momentum pk. Hence, the
Legendre transformation between p and ϕ̇ gives us

−δ
∫

V

H(ϕ, p) =

∫

V

(ṗδϕ− ϕ̇δp) +

∫

∂V

p⊥δϕ , (2.6)

where the density of the Hamiltonian is

H := pϕ̇− L (2.7)

and the Hamiltonian we denote by H :=
∫

V

H. Equation (2.6) is equivalent

to the Hamilton equations

ṗ = −δH
δϕ

; ϕ̇ =
δH
δp

, (2.8)

provided no boundary terms remain when the integration by parts is per-
formed. To get rid of these boundary terms we restrict ourselves to an
infinitely dimensional functional space of initial data (ϕ, p), which are de-
fined on V and fulfill the Dirichlet boundary conditions ϕ|∂V ≡ f on its
boundary. Imposing these conditions, we kill the boundary integral in (2.6),
because δϕ ≡ 0 within the space of fields fulfilling boundary conditions. In
this way the formula (2.6) becomes an infinitely dimensional Hamiltonian
formula. Without any boundary conditions, the field dynamics in V can not
be formulated in terms of any Hamiltonian system, because the evolution of
initial data in V may be influenced by the field outside of V .

Physically, a choice of boundary conditions corresponds to an insulation
of a physical system composed of a portion of the field contained in V . The
choice of Dirichlet conditions is not unique. Performing e.g. the Legendre
transformation between ϕ and p⊥ in the boundary term of (2.6), we obtain

∫

∂V

p⊥δϕ = δ

∫

∂V

p⊥ϕ−
∫

∂V

ϕδp⊥ . (2.9)

Hence, we have

−δH =

∫

V

(ṗδϕ − ϕ̇δp) −
∫

∂V

ϕδp⊥ . (2.10)

The new Hamiltonian

H = H +

∫

∂V

p⊥ϕ (2.11)

generates formally the same partial differential equations governing the dy-
namics, but the evolution takes place in a different phase space. Indeed, to
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derive the Hamiltonian equations (2.8) from (2.10) we have now to kill δp⊥

at the boundary. For this purpose we have to impose the Neumann bound-
ary condition p⊥|∂V = f̃ . The space of fields fulfilling this condition becomes
now our infinite dimensional phase space, different from the previous one.

The difference between the above two dynamical systems is similar to the
difference between the evolution of a thermodynamical system in two differ-
ent regimes: in an adiabatic insulation and in a thermal bath (see [22]). As
another example we may consider the dynamics of an elastic body: the
Dirichlet conditions mean controlling exactly the position of its surface,
whereas the Neumann conditions mean controlling only the forces applied to
the surface. We see that the same field dynamics may lead to different Hamil-
tonian systems according to the way we control the boundary behaviour of
the field. Without imposing boundary conditions the field dynamics can not
be formulated in terms of a Hamiltonian system.

2.1. Coordinates in Minkowski space

We shall consider the flat Minkowski metric of the following form in
spherical coordinates

ηµνdy
µdyν = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) .

The Minkowski space M has a natural structure of spherical foliation around
null infinity, more precisely, the neighbourhood of J+ looks like S2 ×M2.
We shall use several coordinates on M2: s, t, r, ρ, ω, v, u. They are defined

as follows

r = sinhω = ρ−1 ,

t = s+ coshω = s+ ρ−1
√

1 + ρ2 ,

u = t− r = s+
ρ

1 +
√

1 + ρ2
,

v = t+ r = s+ ρ−1(
√

1 + ρ2 + 1) .

The hypersurfaces s =const., u =const. and v =const. correspond to the

lines in the space M2. The two pictures below show them schematically.
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Fig. 1. A piece of M2 close to the center in usual coordinates: radial r and tempo-

ral t.

Fig. 2. A piece of M2 close to null infinity in coordinates ρ, s.
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2.2. Scalar field on a hyperboloid

We shall consider a scalar field ϕ in a flat Minkowski space M with the
metric

ηµνdxµdxν = ρ−2

(

−ρ2ds2 +
2dsdρ
√

1 + ρ2
+

dρ2

1 + ρ2
+ dθ2 + sin2 θdφ2

)

.

(2.12)
Let us fix a coordinate chart (xµ) on M such that x1 = θ, x2 = φ (spherical

angles), x3 = ρ and x0 = s, and let us denote by
◦
γ AB a metric on a unit

sphere (
◦
γ ABdxAdxB := dθ2 + sin2 θdφ2).

We shall consider an initial value problem on a hyperboloid Σ

Σs :=
{

x ∈M | x0 = s = const.
}

for our scalar field ϕ with a density of the Lagrangian (corresponding to the
wave equation)

L : = −1

2

√

− det ηµνη
µνϕµϕν = −1

2
ρ−2 sin θ

×
[

ρ2(ϕ3)
2 − (ϕ0)

2

1 + ρ2
+

2ϕ3ϕ0
√

1 + ρ2
+

◦
γABϕAϕB

]

.

We use the following convention for indices: Greek indices µ, ν, . . . run
from 0 to 3; k, l, . . . are coordinates on a hyperboloid Σs and run from
1 to 3; A,B, . . . are coordinates on S(s, ρ) and run from 1 to 2, where
S(s, ρ) :=

{

x ∈ Σs | x3 = ρ = const.
}

.
The generating formula (2.1) can be written for any V ⊂ Σ

δ

∫

V

L =

∫

V

(p0δϕ),0 +

∫

∂V

p3δϕ

and in particular the definition (2.2) of the canonical momenta pµ gives the
time and radial components of it

p0 =
∂L

∂ϕ0
= ρ−2 sin θ

(

ϕ0

1 + ρ2
− ϕ3
√

1 + ρ2

)

,

p3 = − ∂L

∂ϕ3
= ρ−2 sin θ

(

1
√

1 + ρ2
ϕ0 + ρ2ϕ3

)

.
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Let us observe that in general the integral

∫

V

L is not convergent on Σ if we

assume that ϕ = O(ρ) and ϕ3 = O (1). The same problem with “infinities”
we meet in p0 and p3. We can “renormalize” L adding a full divergence

L : = −1

2
sin θ

[

ρ2(ψ3)
2 − 1

1 + ρ2
(ψ0)

2 +
2

√

1 + ρ2
ψ3ψ0 +

◦
γABψAψB

]

= L+
1

2
∂0

(

sin θ
ρ−3

√

1 + ρ2
ϕ2

)

− 1

2
∂3

(

sin θρ−1ϕ2
)

, (2.13)

where we have introduced a new field variable ψ := ρ−1ϕ which is natural
close to the null infinity. The generating formula takes the following form
with respect to the new variable ψ

δ

∫

V

L =

∫

V

(

π0δψ
)

,0
+

∫

∂V

π3δψ

and the Euler-Lagrange equations (2.2)–(2.3) we write explicitly

π0 =
∂L

∂ψ0
= sin θ

(

ψ0

1 + ρ2
− ψ3
√

1 + ρ2

)

,

π3 =
∂L

∂ψ3
= − sin θ

(

1
√

1 + ρ2
ψ0 + ρ2ψ3

)

,

πA =
∂L

∂ψA
= − sin θ

◦
γABψB ,

∂µπ
µ =

∂L

∂ψ
= 0 .

It is easy to check that all terms are finite at null infinity, provided ψ = O(1)
and ψ3 = O(1).

From the above equations one can easily obtain the wave equation

−
2 ψ = 0 , (2.14)

where the wave operator
−
2 is defined with respect to the metric

ηµνdx
µdxν := −ρ2ds2 +

2dsdρ
√

1 + ρ2
+

dρ2

1 + ρ2
+dθ2 +sin2 θdφ2 = ρ2ηµνdxµdxν

(2.15)
which is conformally related to the original flat metric ηµν .
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Remark. Let us observe that

L = −1

2

√

− det ηµνη
µνψµψν = L+

1

2

(√

− det ηµν(ln ρ),νη
µνψ2

)

,µ

so we are not surprised that (2.14) holds. It can be easily checked that the
equation (2.14) is equivalent to the original wave equation

2ϕ = 0 (2.16)

by the usual conformal transformation for the conformally invariant operator
−
2 +1

6R because the scalar curvature R of the metric ηµν vanishes.

From the Legendre transformation between π0 and ψ0 we can define the
“Hamiltonian” density

H :=
1

2
sin θ

[

(ρψ,3)
2 +

1

1 + ρ2
(ψ0)

2 +
◦
γABψAψB

]

= π0ψ0 − L

and the following variational relation holds

−δ
∫

V

H =

∫

V

(

π̇δψ − ψ̇δπ
)

+

∫

∂V

π3δψ , (2.17)

where here π := π0.
Remark. The relation between (2.17) coming from L and (2.6) with

respect to L gives the same result for the numerical value of the Hamiltonian
H :=

∫

Σ

H and this can be easily seen from the following observations

π̇δψ − ψ̇δπ = ṗ0δϕ − ϕ̇δp0 ,

π3δψ − p3δϕ =
1

2
δ sin θρψ2 .

So the formulae give the same Hamiltonian because ρψ2 vanishes on J+.
Unfortunately, if we integrate the relation (2.17) over hyperboloid Σ, we

quickly realize that the boundary term
∫

∂Σs

π3δψ =

∫

S(s,0)

sin θψ̇δψ

does not vanish for the usual asymptotics of the field ψ. If we want to have
a closed Hamiltonian system, we have to assume that ψ̇|∂Σ = 0 and then
the energy will be conserved in time. But we would like to describe the
situation with any data ψ|J+. In this case we can define the Trautman-
Bondi energy, but it would be no longer conserved, formally we can treat
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it as a “Hamiltonian” of the opened Hamiltonian system and the formula
(2.17) is useful as a definition of the Trautman-Bondi energy together with
its changes in time. In our case the boundary condition f depends on time
(see disscussion after formula (2.8)) and an interesting case for us is to
compare the data with different boundary conditions. Although the energy
defined on a hyperboloid is not a Hamiltonian in a usual sense, it plays
an important role for the description of the radiation at null infinity. The
method is useful for the construction of the other generators of the Poincaré
group and will be applied for the angular momentum.

We should express our Hamiltonian as a functional of (π, ψ)

H :=
1

2
sin θ



(ρψ3)
2 +

(

π
√

1 + ρ2

sin θ
+ ψ3

)2

+
◦
γABψAψB



 (2.18)

and the Hamilton equations (2.8) are the following

ψ̇ =
π

sin θ
(1 + ρ2) + ψ3

√

1 + ρ2 , (2.19)

π̇ = (π
√

1 + ρ2),3 +
[

(1 + ρ2) sin θψ3

]

,3
+ (sin θ

◦
γABψB),A , (2.20)

and they correspond to the wave equation (2.14).
The variational formula (2.17) describes an open Hamiltonian system

because in our case there is no possibility to kill the boundary term. Our
“Hamiltonian” is not conserved in time

−∂0





∫

Σ

H



 =

∫

∂Σ

π3ψ̇ =

∫

S(s,0)

sin θ(ψ̇)2 (2.21)

(we remind that ∂Σ=S(s, 0) is odd oriented). Formally, the result (2.21) can
be obtained from (2.17) if we replace variation δ with ∂0 but it can be also
checked by a direct computation using equations (2.19) and (2.20) together
with the definition (2.18) of the density H.

Nevertheless this formal calculation is very useful. For example, we can
easily define the angular momentum along the z-axis as a generator for the
vector field ∂

∂φ

∫

Σ

(π,φδψ − ψ,φδπ) = −δ
∫

Σ

πψ,φ = −δJz .
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Using equations of motion, we can check that the angular momentum is not
conserved in time

−∂0Jz = −∂0





∫

Σ

πψ,φ



 =

∫

∂Σ

π3ψ,φ =

∫

S(s,0)

sin θψ̇ψ,φ . (2.22)

We will show in the sequel that the formulae (2.21) and (2.22) can be written
for the linearized gravity and have the interpretation of the TB mass loss
formula and angular momentum loss equation.

Let us formulate the following theorem:

Theorem. If the TB mass is conserved then the angular momentum is
conserved too.

This means that it is impossible to radiate away the angular momentum
without a loss of mass. The proof is a simple consequence of (2.21) and

(2.22). If the TB mass is conserved then (from (2.21)) ψ̇ has to vanish on
J and from (2.22) we get that the angular momentum is conserved.

We shall see in the sequel that this theorem also holds for Bondi-Sachs
type metrics describing asymptotically flat solutions at null infinity for the
full (nonlinear) Einstein equations.

2.3. Scalar field on a null cone

We shall consider an initial value problem on a null surface N defined as
follows

N :=
{

x ∈M | v = s+ ρ−1(1 +
√

1 + ρ2) = const.
}

, (2.23)

where we have introduced a null coordinate v := s + ρ−1(1 +
√

1 + ρ2)
which plays the role of time in our analysis. Formally, J + corresponds to
the surface ρ = 0. Let us rewrite the Minkowski metric (2.12) using new
coordinates v, u instead of s, ρ

ηµνdxµdxν = ρ−2
(

−ρ2dv2 − ρ2dvdu+ dθ2 + sin2 θdφ2
)

.

The relation between coordinates (v, u) and (x0, x3) used in the previous
subsection is the following

v = x0 + ρ−1(1 +
√

1 + ρ2) , u = −2ρ−1 , ρ = x3 ,

∂0 = ∂v , ∂3 = 2ρ−2∂u − ρ−2

(

1 +
1

√

1 + ρ2

)

∂v ,

dx0 = dv +
1

2

(

1 +
1

√

1 + ρ2

)

du , dx3 =
1

2
ρ2du .
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The density of the Lagrangian takes the form

L := −1

2

√

− det ηµνη
µνψµψν = sin θ

[

ψuψv − ψ2
u − 1

4
ρ2 ◦
γABψAψB

]

.

The formula (2.1) on the null surface N can be written as follows

δ

∫

N

L =

∫

N

(πvδψ),v +

∫

∂N

πuδψ

and the corresponding components of the canonical momenta are

πv =
∂L

∂ψv
= sin θψu ,

πu =
∂L

∂ψu
= sin θ (ψv − 2ψu) = − sin θ

(

ρ2ψ3 +
ψ0

√

1 + ρ2

)

.

If we perform Legendre transformation, we obtain the density of the Hamil-
tonian on the cone N

H = πvψv − L = sin θ

[

(ψu)2 +
ρ2

4

◦
γABψAψB

]

.

Let us observe that on the limiting surface J + (parallel to N) we get

lim
ρ→0+

H = sin θ(ψu)2 = sin θψ̇2 (2.24)

and the Hamiltonian
∫

J+

H describes the total flux of energy through J+.

Moreover, the symplectic structure on N has also a natural limit on scri1

∫

N

πδψ =

∫

N

sin θψuδψ
ρ→0+

−→
∫

J+

sin θψ̇δψdudθdφ . (2.25)

We will show in the sequel that the above formulae exist in electrodynamics
and linearized gravity. Similarly, the equation

∫

N

πψ,φ =

∫

N

sin θψuψ,φ
ρ→0+

−→
∫

J+

sin θψ̇ψ,φdudθdφ (2.26)

describes the flux of angular momentum through J+.

1 These observations has been applied by Ashtekar et al. [31–33] for the description
of the space of radiative modes in exact relativity, see also equation (7.17) in this
article.
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2.4. ADM mass

We have tried to treat separately the hyperboloid and scri and we have
learned that there is no possibility to get a nice Hamiltonian system. Let
us denote by N (only in this subsection) a “piece” of J + between Σ and
spatial i0. If we take the surface Σ ∪N together

−δ





∫

Σ

H +

∫

N

H



=

∫

Σ

(

π̇δψ − ψ̇δπ
)

+

∫

N

(

π̇δψ−ψ̇δπ
)

+

∫

∂Σ

π3δψ+

∫

∂N

πuδψ

(2.27)
we will obtain a Hamiltonian system provided we can kill the boundary term.
This can be achieved, assuming for example that

lim
u→−∞

ψ̇ = 0

which simply means that ψ̇ is vanishing at spatial infinity. This usually
happens for initial data on Cauchy surface t =const with compact support or
vanishing sufficiently fast at spatial infinity. The following relations confirm
our theorem

π3
∣

∣

∂Σ
= − sin θψ̇ = πu ,

∂Σ = S(s, 0), ∂N = S(s, 0) ∪ S(−∞, 0) ,

−δmADM =

∫

Σ∪N

(

π̇δψ − ψ̇δπ
)

+

∫

∂(Σ∪N)

sin θψ̇δψ , (2.28)

where mADM :=
∫

Σ∪N

H. Let us note that here N = ∪
u≤s

S(u, 0) but we can

also consider N = ∪
u∈[s,s0]

S(u, 0) and then (2.28) leads to the Bondi mass on
∑

s0
as a Hamiltonian [34].

2.4.1. One-parameter family of Hamiltonian systems and their limit

Στ,ε : = {s = τ, ρ ≥ ε} ,

Nτ,ε : =

{

v = τ +
1 +

√
1 + ε2

ε
,

ε

1 +
√

1 + ε2
≤ ρ ≤ ε

}

,

Iτ,ε : =

{

t = τ, 0 < ρ ≤ ε

1 +
√

1 + ε2

}

,

lim
ε→0+

Στ,ε = Στ ,
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lim
ε→0+

Nτ,ε = Nτ ⊂ J+ ,

lim
ε→0+

Iτ,ε = i0 ,

Nτ,ε =

{

v = τ +
1 +

√
1 + ε2

ε
,
−2

√
1 + ε2

ε
+ τ ≤ u ≤ τ

}

,

Iτ,ε =

{

t = τ, r ≥ 1 +
√

1 + ε2

ε

}

.

Στ,ε∪Nτ,ε∪ Iτ,ε is an explicit example of a one-parameter family of surfaces
(with respect to τ) and the Hamiltonian related to this family is an ADM
mass. On the other hand, the Hamiltonian system (2.27) is a limit of these
systems with respect to the second parameter ε (ε → 0+). In this way we
have certain “finite” procedure for the Hamiltonian system (2.27) at infinity.

2.5. Energy–momentum tensor

Let us consider the energy–momentum tensor for the scalar field ϕ

T µ
ν =

1√−η (pµϕν − δµ
νL) ,

where η := det ηµν and by δµ
ν we have denoted Kronecker’s delta. For the

Lagrangian L desribing scalar field ϕ the canonical energy momentum is
symmetric. From the Noether theorem we have

∂µ

(√−ηT µ
νX

ν
)

= 0

for a Killing vector field Xµ and integrating the above formula we obtain

∂0

∫

Σ

√−ηT 0
νX

ν = −
∫

∂Σ

√−ηT 3
νX

ν . (2.29)

Usually, when Σ is a spacelike surface with the end at spatial infinity, the
boundary term on the right-hand side vanishes and the equation (2.29) ex-
presses conservation law for the appriopriate generator related to the vector
field X. On the contrary, for the hyperboloid the right-hand side does not
vanish and (2.29) expresses non-conservation law. It can be easily verified
that for the energy and angular momentum we have respectively

∫

Σ

√
−ηT 0

0 =

∫

Σ

H ,
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∫

Σ

√−ηT 0
φ =

∫

Σ

πψ,φ .

The boundary terms arising in (2.29) for the energy can be expressed in
terms of energy–momentum tensor

−
∫

∂Σ

T 3
0ρ

−4 sin θdθdφ = −1

2

∫

∂Σ

T u
vρ

−2 sin θdθdφ






=

∫

∂Σ⊂J+

ψ̇2 sin θdθdφ






,

∫

N

T v
vρ

−4dρ sin θdθdφ =

∫

N

du

(

1

2
T v

vρ
−2 sin θdθdφ

)

and
1

2
ρ−2T v

v

∣

∣

∣

∣

J+

= ψ̇2 .

Similarly for angular momentum

−
∫

∂Σ

T 3
φρ

−4 sin θdθdφ = −1

2

∫

∂Σ

T u
φρ

−2 sin θdθdφ






=

∫

∂Σ⊂J+

ψ̇ψ,φ sin θdθdφ






,

∫

N

T v
φρ

−4dρ sin θdθdφ =

∫

N

du

(

1

2
T v

φρ
−2 sin θdθdφ

)

and
1

2
ρ−2T v

φ

∣

∣

∣

∣

J+

= ψ̇ψ,φ .

It is easy to verify that the result is compatible with (2.21)–(2.22) and (2.24)–
(2.26).

This calculation shows that quasi-local density
∫

S2

ψ̇2 sin θdθdφ of the en-

ergy on J + has two different interpretations. It is a boundary term which
describes non-conservation of the “Hamiltonian” on a hyperboloid Σ or a
density of a “Hamiltonian” on J +. More precisely, it is a density with re-
spect to the parameter u but integrated over a sphere. This is an example
of an object which is local on M2 but non-local on S2. We call such objects
quasi-local. It will be shown in the sequel that this concept of quasi-locality
is useful in electrodynamics and gravitation.

The equations (2.21) and (2.22) are examples of the general formula
which has the following form for any Killing vector field X = Xµ∂µ

∂0





∫

Σ

√−ηT 0
νX

ν



 = −
∫

∂Σ

π3XAψA + π3X0ψ̇ . (2.30)
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Equation (2.21) corresponds to the vector field XH := ∂0 and (2.22) to the
XJ := ∂φ.

Remark. One can check by a direct computation that X3|J+=0, which
simply means that the (Poincaré group related) Killing field X is tangent to
the J+.

The vector field corresponding to the linear momentum in z direction

XP := − cos θ
√

1 + ρ2
∂0 − ρ2 cos θ∂3 − ρ sin θ∂θ , XP |J+ = − cos θ∂0

gives the loss formula

−∂0Pz =

∫

∂Σ

π3X0
P ψ̇ = −

∫

S(s,0)

sin θ cos θ(ψ̇)2 , (2.31)

where Pz :=

∫

Σ

√−ηT 0
µX

µ
P .

Similarly, we can take a boost generator along z-axis

XK := −ρ
√

1 + ρ2 cos θ∂3−
√

1 + ρ2 sin θ∂θ+sXP , XK |J+ = sXP |J++∂̂φ,

where ∂̂A := εA
B∂B , and the formula (2.30) takes the form

−∂0Kz =

∫

∂Σ

π3X0
K ψ̇ + π3XA

KψA = −s∂0Pz −
∫

S(s,0)

sin2 θψ̇ψθ (2.32)

for Kz :=

∫

Σ

T 0
µX

µ
K or

−∂0Kz + s∂0Pz =

∫

S(s,0)

sin θψ̇∂̂φψ .

Equations (2.21), (2.22), (2.32) and (2.31) express the non-conservation
law of the Poincaré group generators defined at null infinity.

3. Electrodynamics

This section should convince the reader that the TB mass and angular
momentum at null infinity can be described in classical electrodynamics in
a similar way as for the scalar field in previous section.
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The field equations for linear electrodynamics may be written as follows

δL = ∂µ(FνµδAν) = ∂µ(Fνµ)δAν + FνµδAνµ , (3.1)

where Aνµ := ∂µAν and L is the Lagrangian density of the theory. The
above formula (see [25]) is a convenient way to write the Euler-Lagrange
equations

∂µFνµ =
δL

δAν
(3.2)

together with the relation between the electromagnetic field fµν = Aνµ −
Aµν and the electromagnetic induction density Fνµ describing the momenta
canonically conjugate to the potential

Fνµ =
δL

δAνµ
. (3.3)

For the linear Maxwell theory the Lagrangian density is given by the stan-
dard formula

L = −1

4

√−ηfµνfµν (3.4)

and relation (3.3) reduces in this case to Fµν :=
√−ηηµαηνβfαβ.

Integrating (3.1) over V we obtain

δ

∫

V

L =

∫

V

∂0(Fk0δAk) +

∫

∂V

Fν3δAν =

=

∫

V

∂0(FB0δAB + F30δA3) +

∫

∂V

(FB3δAB + F03δA0) . (3.5)

We assume that the charge e defined by the surface integral

e :=

∫

S(s,ρ)

F03 (3.6)

vanishes. The situation with e 6= 0 can be described Similarly as in [24] but
we are interested in “wave” degrees of freedom and we are going to show, how
the volume part of (3.5) can be reduced to the gauge-invariant quantities.

Let
◦
∆ := ρ−2△S(s,ρ), where △S(s,ρ) denotes the 2-dimensional Laplace-

Beltrami operator on a sphere S(s, ρ). One can easily check that the operator
◦
∆ does not depend on ρ and is equal to the Laplace-Beltrami operator on

the unit sphere S(1). Operator
◦
∆ is invertible on the space of monopole–

free functions (functions with a vanishing mean value on each S(s, ρ)).
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Let us denote by εAB the Levi–Civita antisymmetric tensor on a sphere
S(s, ρ). We can rewrite (3.5), provided that the electric charge e vanishes,
in the following way

δ

∫

V

L =

∫

V

∂0

[

F0B,B
◦

∆
−1δρ−2AB

||B + F30δA3 + F0B,C ε
C

B

◦

∆
−1δρ−2(εABAA||B)

]

+

∫

∂V

(F3B,B
◦

∆
−1δρ−2AB

||B + F03δA0 + F3B,C ε
C

B

◦

∆
−1δρ−2(εABAA||B)) .

(3.7)

Here, by “ ||” we denote the 2-dimensional covariant derivative on each sphere
S(s, ρ). Using identities ∂BFB0+∂3F30 = 0 and ∂BFB3+∂0F03 = 0 implied
by the Maxwell equations and integrating again by parts we finally obtain

δ

∫

V

L =

∫

V

∂0

[

F30
◦

∆
−1δ(

◦

∆A3 − (ρ−2AB
||B),3) + (F0B||CεBC)

◦

∆
−1δρ−2(εABAA||B)

]

+

∫

∂V

[

F03
◦

∆
−1δ(

◦

∆A0 − ρ−2AB
||B,0 ) + (F3B||CεBC)

◦

∆
−1δρ−2(εABAA||B)

]

.

(3.8)

The quantities
◦
∆A0 − ρ−2AB

||B,0 and (
◦
∆A3 − (ρ−2AB

||B),3) are gauge
invariant and it may be easily checked that

sin θ
( ◦

∆A0 − ρ−2AB
||B,0

)

= ρ2FA
0||A (= π3)

and

sin θ
[ ◦

∆A3 − (ρ−2AB
||B),3

]

= ρ2FA
3||A (= π) .

Let us introduce the following gauge invariants

ψ : = F30/ sin θ

∗ψ : = ρ−2εABAB||A = − ∗ F30/ sin θ

π : = −ρ2F3
A
||A

∗π : = F0B||CεBC = ρ2 ∗ F3
A
||A ,



Bondi Mass in Classical Field Theory 685

where
∗Fµν = 1

2ε
µνλσFλσ .

Now we will show how the vacuum Maxwell equations

∂µFµν = 0 , ∂µ ∗ Fµν = 0

allow to introduce equations for gauge-invariants. The result is analogous
to (2.19) and (2.20) describing scalar field

ψ̇ =
π

sin θ
(1 + ρ2) + ψ3

√

1 + ρ2 , (3.9)

π̇ = (π
√

1 + ρ2),3 +
[

(1 + ρ2) sin θψ3

]

,3
+ sin θ

◦
∆ψ , (3.10)

∗ψ̇ =
∗π

sin θ
(1 + ρ2) + ∗ψ3

√

1 + ρ2 , (3.11)

∗π̇ = (∗π
√

1 + ρ2),3 +
[

(1 + ρ2) sin θ ∗ψ3

]

,3
+ sin θ

◦
∆ ∗ψ . (3.12)

The proof of (3.9) is based on the observations that

sin θψ,0 = F30
,0 = −F3A

,A =
π

sin θ
(1 + ρ2) + ψ3

√

1 + ρ2 ,

−π = ρ2F3
A
||A =

F3A
||A

1 + ρ2
+

F0A
||A

√

1 + ρ2

and
sin θψ3 = F30

,3 = F0A
||A .

Similarly for (3.10) we have the following relations

−
(

∗F0A
||BεA

B
)

,0
−
(

∗F3A
||BεA

B
)

,3
+ (∗FAB

||BCεA
C),0 = 0 ,

∗F0A = −ρ2εABF3B ,

∗F3A = ρ2εABF0B ,

∗FAB = ρ2εABF03 ,

F03 = −ρ−4F03 ,

which allow to get the equation
(

F3A
||A

1 + ρ2
+

F0A
||A

√

1 + ρ2

)

,0

+

(

ρ2F0A
||A −

F3A
||A

√

1 + ρ2

)

,3

+
◦
∆F30 = 0 ,

which is equivalent to (3.10). For (∗ψ, ∗π) the proof is the same, provided
we apply the Hodge dual ∗ for the variables and equations:

(π, ψ)
−∗−→ (∗π, ∗ψ)

∗−→ (π, ψ) .
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Now we will show, how our variables appear in formula (3.8). Let us
perform the Legendre transformation in the volume V

−F03δ
[

A3 −
◦
∆−1(ρ−2AB

||B),3

]

= −δ
[

F03
(

A3 −
◦
∆−1(ρ−2AB

||B),3

)]

+
[

A3 −
◦
∆

−1(ρ−2AB
||B),3

]

δF03

and on the boundary ∂V

F03δ
(

A0 −
◦
∆

−1ρ−2AB
||B,0

)

= δ
[

F03
(

A0 −
◦
∆

−1ρ−2AB
||B,0

)]

−
(

A0 −
◦
∆−1ρ−2AB

||B,0

)

δF03 .

This way the formula (3.8) may be written as

δ

∫

V

[

L− ∂0(ψ
◦
∆−1π) − ∂3(ψ

◦
∆−1ρ2FA

0||A)
]

= −
∫

V

∂0

[

π
◦
∆−1δψ + ∗π

◦
∆−1δ ∗ ψ

]

+

∫

∂V

[

ρ2FA
0||A

◦
∆−1δψ −F3A||BεABδ ∗ψ

]

. (3.13)

Finally we obtain the following variational principle

δ

∫

V

L = −
∫

V

∂0(π
◦
∆−1δψ + ∗π

◦
∆−1δ ∗ψ) +

∫

∂V

π3
◦
∆−1δψ + ∗π3

◦
∆−1δ∗ψ ,

(3.14)
where the Lagrangian L is defined by

L = L− ∂0

(

ψ
◦
∆

−1π
)

− ∂3

(

ψ
◦
∆

−1ρ2FA
0||A

)

(3.15)

and boundary momenta are

π3 := −ρ2F0
A
||A = ρ2F0A

||A −
F3A

||A
√

1 + ρ2
= sin θ

(

ψ̇
√

1 + ρ2
+ ρ2ψ3

)

,

∗π3 := −F3A||BεAB = ρ2 ∗F0
A
||A = sin θ

(

∗ψ̇
√

1 + ρ2
+ ρ2 ∗ψ3

)

.
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From Lagrangian relation (3.14) we immediately obtain the Hamiltonian
one, performing the Legendre transformation

−δ
∫

V

H = −
∫

V

π̇
◦
∆−1δψ − ψ̇

◦
∆−1δπ + ∗π̇

◦
∆−1δ ∗ψ − ∗ψ̇

◦
∆−1δ ∗π

+

∫

∂V

π3
◦
∆−1δψ + ∗π3

◦
∆−1δ ∗ψ , (3.16)

where

H := −π
◦
∆

−1ψ̇ − ∗π
◦
∆

−1 ∗ψ̇ − L (3.17)

is the density of the Hamiltonian of the electromagnetic field on the hyper-
boloid.

The value of
∫

V

H is equal to the amount of electromagnetic energy con-

tained in a volume V and defined by the energy–momentum tensor

T µ
ν = fµλfλν +

1

4
δµ
ν f

κλfκλ .

We are not surprised that the quantity H is related to T 0
0 by

∫

S(s,ρ)

Hdθdφ =

∫

S(s,ρ)

√−ηT 0
0dθdφ

and to prove it we can use the following identity

ρ−4 sin θ
[

∗π
◦
∆−1 ∗ψ̇ − π̇

◦
∆−1ψ − ∂3

(

ψ
◦
∆−1ρ2FA

0||A

)]

= F03F03 −F0A
||A

◦
∆−1ρ−2F0

A
||A −F0A||BεAB

◦
∆−1F0A||Bε

AB .

The non-conservation law for the energy we can write as follows

−∂0

∫

Σ

H =

∫

∂Σ

sin θ
(

ψ̇
◦
∆−1ψ̇ + ∗ψ̇

◦
∆−1∗ψ̇

)

= −
∫

S(s,0)

(

ψ̇
◦
∆

−1ψ̇ + ∗ψ̇
◦
∆

−1∗ψ̇
)

sin θdθdφ . (3.18)

For angular momentum defined by

Jz := −
∫

Σ

π
◦
∆

−1ψ,φ + ∗π
◦
∆

−1∗ψ,φ
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we have a similar formula

−∂0Jz = ∂0

∫

Σ

π
◦
∆−1ψ,φ + ∗π

◦
∆−1∗ψ,φ

= −
∫

S(s,0)

sin θ
(

ψ̇
◦
∆−1ψ,φ + ∗ψ̇

◦
∆−1∗ψ,φ

)

dθdφ , (3.19)

but the relation with symmetric energy-momentum tensor is not so obvious.

J̃z :=

∫

Σ

√−ηT 0
φ =

∫

Σ

F03f3φ + ∗F03 ∗ f3φ .

Using the relations

π = −ρ−2 sin θf3
A
||A , ψ,3 = −ρ−2εABf3A||B ,

∗π = ρ−2 sin θ ∗f3
A
||A , ∗ψ,3 = −ρ−2εAB ∗f3A||B ,

we can express J̃z in terms of (π, ψ, ∗π, ∗ψ) as

J̃z =

∫

Σ

ψ
( ◦

∆
−1π,φ + sin θ∂̂φ

◦

∆
−1∗ψ,3

)

+

∫

Σ

∗ψ
( ◦

∆
−1∗π,φ − sin θ∂̂φ

◦

∆
−1∗ψ,3

)

= −
∫

Σ

π
◦

∆
−1ψ,φ + ∗π

◦

∆
−1∗ψ,φ +

∫

∂Σ

sin θψ∂̂φ

◦

∆
−1∗ψ ,

where ∂̂A := εA
B∂B and we have used the identity

∫

S2

sin θψ,3∂̂φ

◦
∆−1 ∗ψ = −

∫

S2

sin θ∗ψ∂̂φ

◦
∆−1ψ,3 .

The boundary term
∫

∂Σ

sin θψ∂̂φ

◦
∆−1∗ψ usually has to vanish, if we want

to interprete the integral
∫

Σ

√−ηT 0
φ as an angular momentum generator,

but in our case ψ, ∗ψ do not vanish on J + and we obtain in general two
different definitions of the angular momenta Jz and J̃z.

Let us observe that

Aφ =
(

ρ−2
◦
∆

−1AB
||B

)

,φ
− ∂̂φ(

◦
∆

−1 ∗ ψ)

and
∫

V

(

Fλ0Aφ

)

,λ
=

∫

∂V

sin θψ
◦
∆

−1ρ−2
(

AB
||B

)

,φ
−
∫

∂V

sin θψ∂̂φ

◦
∆

−1 ∗ψ
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so the angular momentum Jz is related rather to the canonical energy-
momentum tensor with gauge AB

||B = 0 than to the symmetric one. More
precisely, the canonical energy-momentum density T µ

ν is related to the sym-
metric one as follows

T µ
ν = FλµAλ,ν − 1

4
δµ

νL =
√−ηT µ

ν +
(

FλµAν

)

,λ
.

For the angular momentum we obtain

∫

Σ

T 0
φ = −

∫

Σ

π
◦
∆−1ψ,φ + ∗π

◦
∆−1∗ψ,φ −

∫

∂Σ

sin θψ,φ

◦
∆−1ρ−2AB

||B

= Jz +

∫

S(s,0)

ψ,φ

◦
∆

−1ρ−2AB
||B sin θdθdφ .

Let us observe that if ψ,φ and ∗ψ,φ are vanishing on J+ then Jz is well
defined in terms of the canonical energy-momentum tensor density T 0

φ and
is conserved.

3.1. Electrodynamics on a null surface

Now we will show, how the formula (2.25) can be obtained in the classical
electrodynamics. Let us consider a volume V ⊂ N , where N has been
already defined by (2.23). Let us integrate infinitesimal symplectic relation

∫

V

FvνδAνdρdθdφ =

∫

∂V

Fvρ
◦
∆

−1δρ−2AB
||Bdθdφ

+

∫

V

Fvρδ
[

Aρ −
◦
∆

−1(ρ−2AB
||B),ρ

]

dρdθdφ

−
∫

V

FvA||BεAB

◦
∆−1δρ−2AA||Bε

ABdρdθdφ

and Similarly to the considerations on Σ we have

◦
∆Aρ − (ρ−2AB

||B),ρ =
1

sin θ
FvA

||A = ψ,ρ = 2ρ−2ψ,u ,

where u = −2
ρ

and ∂ρ = 2ρ−2∂u. For dual degree of freedom holds the

analogical relation

FvA||BεAB = ∗FvA
||A = 2 sin θρ−2 ∗ψ,u
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and finally we obtain gauge–independent part + boundary term + full vari-
ation
∫

V

FvνδAνdρdθdφ =

∫

∂V

Fvρ
◦
∆

−1δρ−2AB
||Bdθdφ

−δ
∫

V

sin θψ
◦
∆−1ψ,ududθdφ

+

∫

V

sin θ
(

ψ,u

◦
∆−1δψ + ∗ψ,u

◦
∆−1δ ∗ψ

)

dudθdφ .

(3.20)

This equality means that, modulo the boundary term and full variation, we
can reduce our symplectic form on J+ to the invariants. The final form is
similar to (2.25) and posseses a quasi-local character. Let us notice that on
the surface v =const. we can use the coordinate u as well as u or in other
words ∂u|N = ∂u|N , du|N = du|N and this observation refers obviously to
the objects on N but not on M .

Now we will show, how the flux of energy through J+ is related to the
energy-momentum tensor, similarly as in Subsection 2.5.

T v
v =

1

2
ρ−4(f vρ)2 +

1

2
ρ−4(∗f vρ)2 +

1

2
ηABf

vAf vB ,

∫

V

T v
vρ

−4 sin θdρdθdφ = −
∫

V

sin θdudθdφ
(

ψ,u

◦
∆−1ψ,u + ∗ψ,u

◦
∆−1 ∗ψ,u

)

+
1

4

∫

V

ρ2 sin θdudθdφ
(

ψ2 + ∗ψ2
)

.

The last term vanishes on the scri

ρ2
(

ψ2 + ∗ψ2
) ρ→0+

−→ 0

so that
∫

J+

√−ηT v
v = −

∫

J+

du
[

sin θdθdφ
(

ψ,u

◦
∆−1ψ,u + ∗ψ,u

◦
∆−1 ∗ψ,u

)]

.

(3.21)
The integral on a sphere in quadratic brackets represents the quasi-local
density of the flux of the energy through J+. The main difference with a
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scalar field is that here there is no possibility to work with the local density

because of the operator
◦
∆ −1 and only a quasi-local object assigned to a

sphere can be well defined. However, if we introduce “quasi-local vector”

ΨA := ∂A(
◦
∆

−1ψ) + εA
B∂B(

◦
∆

−1 ∗ψ) ,

then the flux of energy through J + can be described by a “local density”

−
∫

S2

sin θdθdφ
(

ψ,u

◦
∆−1ψ,u + ∗ψ,u

◦
∆−1 ∗ψ,u

)

=

∫

S2

sin θdθdφ
◦
γ ABΨ̇AΨ̇B ,

where
◦
γ AB is the inverse metric to the standard metric on a unit sphere

(
◦
γABdxAdxB = dθ2 +sin2 θdφ2). Similarly, the symplectic structure (3.20)

takes the form
∫

V

FvνδAνdρdθdφ ∼
∫

V

sin θdudθdφΨ̇AδΨA ,

where ΨA :=
◦
γABΨB and symbol “∼” denotes equality modulo full variation

and boundary term.

4. Linearized gravity on a hyperboloid

We start from the ADM formulation of the initial value problem for Ein-
stein equations [5]. In Subsection 4.1 we introduce the hyperboloidal slicing
and in Subsection 4.2 we consider an initial value problem for the linearized
Einstein equations on it. In Subsection 4.3 we discuss “charges” on the hy-
perboloid and in the next two subsections we introduce invariants, which
describe reduced dynamics. In Subsection 4.6 we derive the “Hamiltonian”
in terms of gauge invariant quantities.

4.1. Hyperboloidal conventions

The flat Minkowski metric of the following form in spherical coordinates

ηµνdyµdyν = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (4.1)

with r = sinhω, t = s+coshω already defined in Section 2, can be expressed
in the coordinates s, ω well adopted to a “hyperboloidal” slicing of Minkowski
spacetime M

ηµνdy
µdyν = −ds2 − 2 sinhω ds dω+ dω2 + sinh2 ω(dθ2 + sin2 θdφ2). (4.2)
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In this section we use the different coordinate ω instead of ρ used pre-
viously, but at the end we will return to ρ to compare the results for the
scalar field and linearized gravity. Let us fix a coordinate chart (yµ) on M ,
such that y1 = θ, y2 = φ (spherical angles), y3 = ω and y0 = s. So we have

Σs := {y ∈M : y0 = s} =
⋃

ω∈[0,∞[

Ss(ω) where Ss(ω) := {y ∈ Σs : y3 = ω}

(4.3)
and Σs is a three–dimensional hyperboloid, Ss(ω) = S(s, 1

sinh ω
) and ∂Σs =

Ss(∞) = S(s, 0).
We use the similar convention for indices (as for coordinates (xµ)),

namely: greek indices µ, ν, . . . run from 0 to 3; k, l, . . . are coordinates on Σ
and run from 1 to 3; A,B, . . . are coordinates on S(r) and run from 1 to 2.

The hyperboloidΣ has a very simple geometry. The induced Riemannian
metric ηkl on Σ in our coordinates takes the form

ηkldy
kdyl = dω2 + sinh2 ω(dθ2 + sin2 θdφ2) . (4.4)

The hypersurface Σ is a constant curvature space and the three–dimensional
curvature tensor of Σ can be expressed by the metric

3Rijkl = ηjkηil − ηikηjl . (4.5)

4.2. ADM formulation for linearized gravity on a hyperboloid

Let (gkl, P
kl) be the Cauchy data for Einstein equations on a three–

dimensional hyperboloid Σ. This means that gkl is a Riemannian metric on
Σ and P kl is a symmetric tensor density, which we identify with the ADM
momentum [5], i.e.

P kl =
√

det gmn(gklTrK −Kkl) ,

where Kkl is the second fundamental form (external curvature) of the imbed-
ding of Σ into a spacetime M , which is now curved.
The 12 functions (gkl, P

kl) must fulfill 4 Gauss–Codazzi constraints

Pi
l
|l = 8π

√

det gmn Tiµn
µ , (4.6)

(det gmn)R− P klPkl +
1

2
(P klgkl)

2 = 16π(det gmn)Tµνn
µnν , (4.7)

where Tµν is an energy momentum tensor of the matter, by R we denote
the (three–dimensional) scalar curvature of gkl, n

µ is a future timelike four–
vector normal to the hypersurface Σ and the calculations have been made
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with respect to the three–metric gkl ("|" denotes the covariant derivative,
indices are raised and lowered etc.).

The Einstein equations and the definition of the metric connection imply
the first order (in time) differential equations for gkl and P kl (see [5] or [6] p.
525) and contain the lapse function N and the shift vector Nk as parameters

ġkl =
2N√
g

(

Pkl −
1

2
gklP

)

+Nk|l +Nl|k , (4.8)

where g := det gmn and P := P klgkl

Ṗ kl = −N√
g

(

Rkl − 1

2
gklR

)

− 2N√
g

(

P kmPm
l − 1

2
PP kl

)

+
(

P klNm
)

|m

+
N

2
√
g
gkl

(

P klPkl −
1

2
P 2

)

−Nk
|mP

ml −N l
|mP

mk

+
√
g
(

N |kl − gklN |m
|m

)

+ 8πN
√
gTmng

kmgln . (4.9)

We want to consider an initial value problem for the linearized Einstein
equations on the hyperboloidal slicing, introduced in the previous section.
For this purpose let us first check that on this slicing the ADM momentum
P kl for the background flat Minkowski spacetime on each hyperboloid Σs is
no longer trivial

P kl = −2
√
ggkl (4.10)

and

gkldy
kdyl = ηkldy

kdyl = dω2 + sinh2 ω(dθ2 + sin2 θdφ2) , (4.11)

where gkl is the three–dimensional inverse of gkl.
Let us define the linearized variations (hkl,Pkl) of the full nonlinear

Cauchy data (gkl, P
kl) around background data (4.10), (4.11)

hkl := gkl − ηkl , Pkl := P kl + 2Ληkl , (4.12)

where Λ :=
√

det ηkl (= sinh2 ω sin θ).
We should now rewrite equations (4.6)–(4.9) in a linearized form in terms

of (hkl,Pkl). Let us denote P := ηklPkl and h := ηklhkl. The vector
constraint (4.6) can be linearized as follows

Pi
l
|l ≈ Pi

l
|l − 2Λhi

k
|k + Λh|i . (4.13)

Let us stress that the symbol “ |” has different meanings on the left-hand side
and on the right-hand side of the above formula. It denotes the covariant
derivative with respect to the full nonlinear metric gkl when applied to the
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P kl, but on the right-hand side it means the covariant derivative with respect
to the background metric ηkl. The scalar constraint (4.7) after linearization
takes the form

√
gR− 1√

g

(

P klPkl −
1

2
(P klgkl)

2

)

≈ Λ
(

hkl
|l − h|k

)

|k
− 2P . (4.14)

The linearized constraints for vacuum (Tµν = 0) have the following form

Pl
k
|k − 2Λhl

k
|k + Λh|l = 0(= 8πΛTlµn

µ) , (4.15)

Λ
(

hkl
|l − h|k

)

|k
− 2P = 0(= 16πΛTµνn

µnν) . (4.16)

The linearization of (4.8) leads to the equation

ḣkl =
2N

Λ

(

Pkl −
1

2
ηklP

)

+ h0k|l + h0l|k + 2Nηkl

(

n+
1

2
h

)

− 2Nhkl

−Nm(hmk|l + hml|k − hkl|m) , (4.17)

where N := 1√
−η00

= coshω, N3 = η03 = − sinhω, NA = η0A = 0 are

the lapse and shift for the background and n := h00

2η00 is the linearized lapse.

Finally the linearization of (4.9) takes the form

Ṗkl = −NΛhkl +NPkl +NmPkl
|m + 2Λ

(

h0
k|l + h0

l|k − ηklh0
m
|m

)

+Λ
[

(Nn)|kl − ηkl(Nn)|m|m

]

− Λ

2
N
(

hmk|l
m + hml|k

m − hkl|m
m − h|kl

)

−Λ
2
Nm

[

hkl|m + 3hml|k + 3hmk|l − ηkl(h|m + 2hmn
|n)
]

. (4.18)

It is well known (see for example [8]) that linearized Einstein equations are
invariant with respect to the “gauge” transformation:

hµν → hµν + ξµ;ν + ξν;µ , (4.19)

where ξµ is a covector field, pseudoriemannian metric gµν = ηµν + hµν and
“ ;” denotes four–dimensional covariant derivative with respect to the flat
Minkowski metric ηµν . There is no (3+1)-splitting of the gauge for hy-
perboloidal slicing, similar to the situation described in [8]. The (3+1)-
decomposition of the gauge acts on Cauchy data in the following way

Λ−1Pkl → Λ−1Pkl +Nξ0|kl −Nηklξ0|mm − 2Nξ0ηkl −Nkξ0|l −N lξ0|k

+2ηklNmξ
0|m + 2ξk|l + 2ξl|k − 2ηklξm

|m , (4.20)

hkl → hkl + ξl|k + ξk|l + 2Nηklξ
0 . (4.21)
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It can be easily checked that the scalar constraint (4.16) and the vector
constraint (4.15) are invariant with respect to the gauge transformations

(4.20) and (4.21). The Cauchy data (hkl, Pkl) and (hkl, Pkl
) on Σ are

equivalent to each other if they can be related by the gauge transformation
ξµ. The evolution of canonical variables Pkl and hkl given by equations
(4.17), (4.18) is not unique unless the lapse function n and the shift vector
h0

k are specified.
Let us define the “new momentum” pkl as

pkl := Pkl − Λ
(

2hkl − ηklh
)

(p := P + Λh)

and notice that this object can be also introduced in full nonlinear theory
as P kl + 2

√
ggkl and after linearization gives pkl, i.e.

P kl + 2
√
ggkl ≈ pkl .

Let us also observe that the new momentum is trivial for flat Minkowski
data. Moreover, the symplectic structure is preserved

dP kl ∧ dgkl − d
(

P kl + 2
√
ggkl

)

∧ dgkl = −4d2√g = 0

and the gauge transformation for pkl is simpler than for Pkl

Λ−1pkl → Λ−1pkl +Nξ0|kl −Nηklξ0|mm −Nkξ0|l −N lξ0|k + 2ηklNmξ
0|m .

(4.22)

The vector constraint has a familiar form

pk
l
|l = 0(= 8πΛTlµn

µ) . (4.23)

We can also rewrite the dynamical equation (4.18) in terms of the new
momentum

ṗkl = Nmpkl
|m +N

(

ηklp− 3pkl
)

+ Λ
[

(Nn)|kl − ηkl(Nn)|m|m + 2Nnηkl
]

+NΛ
(

ηklh− 3hkl
)

− Λ

2
N
(

hmk|l
m + hml|k

m − hkl|m
m − h|kl

)

+
Λ

2
Nm

[

hml|k + hmk|l − hkl|m + ηkl(h|m − 2hmn
|n)
]

. (4.24)

We will show in the sequel that it is possible to define a reduced dynamics
in terms of invariants, which is no longer sensitive on gauge conditions. The
construction is analogous to the analysis given in [7].
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4.3. “Charges” on a hyperboloid

The vector constraint (4.23) allows to introduce “charges” related to the
symmetries of the hyperboloid. There are six generators of the Lorentz
group, which are simultaneously Killing vectors on the hyperboloid Σ. Let
us denote this Killing field by Xk. It is defined by the equation

Xk|l +Xl|k = 0 . (4.25)

Let V ⊂ Σ be a compact region in Σ. For example V :=
⋃

r∈[r0,r1]

Ss(r) and

∂V = Ss(r0) ∪ Ss(r1). From (4.23) and (4.25) we get

(8π

∫

V

ΛTlµn
µ) = 0 =

∫

V

pkl
|lXk =

∫

V

(pklXk)|l =

∫

∂V

p3kXk . (4.26)

The equation (4.26) expresses the “Gauss” law for the charge “measured” by
the flux integral.

In particular for angular momentum, when X = ∂/∂φ, we can show
the relation of this charge to the dipole part of invariant y, which we will
introduce in the sequel (Subsection 4.4).

16πsz : = 16πjxy = −2

∫

∂V

p3
φ = −2

∫

∂V

p3
A(r2εAB cos θ)||B

= 2

∫

∂V

r2p3
A||Bε

AB cos θ =

∫

∂V

Λy cos θ . (4.27)

The time translation defines a mass charge as follows

(16π

∫

V

ΛT0µn
µ) = 0 =

∫

V

N

[

Λ
(

hkl
|l − h|k

)

|k
− 2π

]

+ 2Nkp
kl
|l

=

∫

V

[

2Nkp
kl +NΛ

(

hlk
|k − h|l

)

+ Λ
(

Nkh
kl −N lh

)]

|l

=

∫

∂V

2Nkp
k3 + Λ

(

Nh3k
|k −Nh|3 +Nkh

k3 −N3h
)

(4.28)

and it can be related to the monopole part of an invariant x (Subsection 4.4).
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16πp0 =

∫

∂V

2Nkp
k3 + Λ

(

Nh3k
|k −Nh|3 +Nkh

k3 −N3h
)

=

∫

∂V

Λ

sinhω

(

2 cosh2 ωh33 − coshω sinhωH, 3 −H − 2 sinh2 ω

Λ
p33

)

=

∫

∂V

Λ

r
x . (4.29)

Remark. The traceless part of hkl and pkl have nice properties with
respect to the gauge transformation (4.19), which splits into 0-component
(transversal to Σ) which acts on pkl and space components (tangent to Σ)
which act on hkl − 1

3ηklh. The traces h and P remain nontrivial unless we
impose gauge conditions. The most popular gauge condition, which allows
to obtain the scalar constraint (4.16) as a full divergence (see (4.30) below),
is to assume that P = 0. Assuming such gauge we can define another “mass”
charge as a surface integral coming from the scalar constraint (4.16) (but we
obtain totally nonlocal object). More precisely, one can analyze the scalar
constraint (4.16) (in the same way as (4.26) for the vector one)

2

∫

V

P =

∫

V

Λ
(

hkl
|l − h|k

)

|k
=

∫

∂V

Λ
(

h3l
|l − h|3

)

(4.30)

but there is no “Gauss” law for the “mass” defined by the surface integral on
the right-hand side of (4.30), unless we impose gauge condition P = 0. This
means that such definition of the mass charge, measured by the flux integral
at null infinity, is not gauge invariant like the ADM mass at spatial infinity.
This consideration should convince the reader that the definition (4.29) is
better than (4.30) together with vanishing P.

4.4. The (2+1)-decomposition and reduction

Now we introduce reduced gauge invariant data on Σ for the gravita-
tional field, similar to the invariants introduced in [7]. For this purpose we
use a spherical foliation of Σ (see equations (4.3) and (4.4)).

In this section we present mainly results without detailed proofs as in the
section about electrodynamics. See also Appendix A where we give explicit
formulae used in this section.

Let κ := cothω. The gauge (4.21) splits in the following way

h33 → h33 + 2ξ3,3 + 2Nξ0 , (4.31)



698 J. Jezierski

h3A → h3A + ξ3,A + ξA,3 − 2κξA , (4.32)

hAB → hAB + ξA||B + ξB||A + 2κηABξ3 + 2NηABξ
0 , (4.33)

where by “ ||” we denote the covariant derivative with respect to the two–
metric ηAB on S(r). Similarly, the gauge (4.22) can be splitted as follows

Λ−1p33 → Λ−1p33 +Nξ0|33 −Nξ0|mm = Λ−1p33 −Nξ0||AA − 2Nκξ0,3 ,

(4.34)

Λ−1p3A → Λ−1p3A +Nξ0|3A −N3ξ0|A = Λ−1p3A +Nξ0,3A − 1

sinhω
ξ0,A ,

(4.35)

Λ−1pAB → Λ−1pAB +Nξ0|AB −NηABξ0|mm + 2ηABNmξ
0|m = Λ−1pAB

+Nξ0||AB −NηAB

(

ξ0,3
3 + ξ0||CC + (κ− 2N3)ξ0, 3

)

. (4.36)

It is also quite easy to rewrite the (2+1)-decomposition of (4.17)

ḣ33 =
2N

Λ

(

p33 −
1

2
p

)

+ 2h03|3 + 2N(n+ h33) −N3h33|3

=
2N

Λ

(

p33 −
1

2
p

)

+ 2h03,3 + 2Nn+ 2Nh33 −N3h33,3 , (4.37)

ḣ3A =
2N

Λ
p3A + h03|A + h0A|3 + 2Nh3A −N3h33|A

=
2N

Λ
p3A + h03,A + h0A,3 − 2κh0A −N3h33,A , (4.38)

ḣAB =
2N

Λ

(

pAB − 1

2
ηABp

)

+ h0A|B + h0B|A + 2NηABn+ 2NhAB

−N3(h3A|B + h3B|A − hAB|3) =
2N

Λ

(

pAB − 1

2
ηABp

)

+ h0A||B

+h0B||A + 2κηABh03 + 2NηAB(n+ h33) + 2NhAB

−N3(h3A||B + h3B||A − hAB,3) . (4.39)

The vector constraint (4.23) can be splitted in the similar way

p3
k
|k = p3

3, 3 + p3
A
||A − κpABηAB = 0 , (4.40)

pA
k
|k = pA

3, 3 + pA
B
||B = p3A,3 + SA

B
||B +

1

2
S||A = 0 , (4.41)

where S := pABηAB and SAB := pAB − 1
2η

ABS. Similarly, let us denote

H := hABη
AB and χAB := hAB − 1

2ηABH. The invariants are defined as
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follows

x : = 2 cosh2 ωh33 + 2coshω sinhωh3C
||C + sinh2 ωχAB

||AB

− coshω sinhωH, 3 −
1

2
(

◦
∆ + 2)H − 2 sinh2 ω

Λ
p33 , (4.42)

X : = 2 sinh2 ωSAB
||AB + 2coshω sinhωp3A

||A +
◦
∆p33 , (4.43)

y : = 2Λ−1 sinh2 ωp3A||BεAB , (4.44)

Y : = Λ(
◦
∆ + 2)h3A||BεAB − sinh2 ω(ΛχC

A||CBε
AB), 3 . (4.45)

The (2+1)-decomposition of the scalar constraint (4.16) can be written in
the form

Λ
(

h|ll − hkl
|lk

)

+ 2P

=
[

Λ(H, 3 − 2h3A
||A − 2κh33 + κH)

]

, 3 − 2Λ(h33 +H)

+2(p33 + S) − Λ(χAB
||BA + 2κh3A

||A) + Λ

(

h33||A
A +

1

2
H ||C

C

)

= 0 .

(4.46)

The dynamical equations (4.24) take the following (2+1)-form:

Λ−1ṗ33 = Λ−1N3(p
33, 3 − κS) − (Nn)||AA − 2κNn, 3

+
N

2

[

h33||A
A +H, 33 + 2κH, 3 − 2κ(2h3A

||A + h33, 3) − (2h3A
||A), 3

]

+
1

2
N3

[

H, 3 − 2h3A
||A

]

, (4.47)

Λ−1ṗ3A = Λ−1N3(p3A, 3 + 2κp3A) + [(Nn), 3 − κNn]||A

+
N

2

[

H, 3
||A − κh33||A +

2

sinh2 ω
h3A − hAB

||B, 3

−2κhAB
||B − h3B||A

||B + h3A
||B

||B
]

+
1

2
N3h

33||A , (4.48)

Λ−1ṗAB = Λ−1N3pAB, 3 + Λ−1N
[

ηAB(p33 + S) + pAB

]

+N(n||AB − ηABn
||C

C) −NηAB(n, 33 + κn, 3) + 2ηABN
3n, 3 +

N3

2

[

h3
A||B

+h3
B||A − ηABh

3C
||C + ηAB

(

1

2
H, 3 − h3A

||A − h33, 3

)

− χA
C , 3ηCB

]

+
N

2

[

(χC
B, 3ηCA), 3 + χAB

||C
||C − χC

A||BC − χC
B||AC + h33

||AB +
1

2
ηABH||C

C

+ηAB

1

sinh2 ω
(h33 +H) + ηAB(κH, 3 − 2κh3A

||A − 2κ2h33) +
2

sinh2 ω
χAB

−
(

ηAB(κh33 − 1

2
H, 3) + h3

A||B + h3
B||A

)

, 3

]

. (4.49)
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We can check the reduced field equations for our invariants

ẋ =
N

Λ
X + (N3x), 3 , (4.50)

Ẋ = N3X, 3 + ΛN△Σx− ΛN3(x, 3 + 2κx) , (4.51)

ẏ =
N

Λ
Y +

N3

Λ
(Λy), 3 , (4.52)

Ẏ = Λ(N3Λ−1Y), 3 + ΛN△Σy − ΛN3(y, 3 + 2κy) , (4.53)

where △Σ is a Laplacian on a hyperboloid Σ.
It can be easily verified that the invariants x and y fulfill the usual

d’Alembert equation (as a consequence of the above dynamical equations)

−
2 x = 0 ,
−
2 y = 0 .

Let us notice that x and y are scalars on each sphere Ss(r) with respect
to the coordinates yA.
For the scalar f on a sphere we can define a “monopole” part mon(f) and a
“dipole” part dip(f) as a corresponding component with respect to spherical
harmonics on S2. Similarly, the “dipole” part of a vector vA corresponds to
the dipole harmonics for the scalars vA

||A and εABvA||B. Let us denote by
f “mono–dipole–free” part of f . According to this decomposition we have

x = mon(x) + dip(x) + x ,

y = mon(y) + dip(y) + y .

Then the mono-dipole part of each scalar can be solved explicitly from the
equations (4.50)–(4.53) and the solution has the form

x− x =
4m

sinhω
+

12k

sinh2 ω
,

y − y =
12s

sinh2 ω
.

Let p := k̇. We obtain
ṁ = ṗ = ṡ = 0

and
k = p(s+ coshω) + k0 .

Moreover,
◦
∆m = 0, (

◦
∆ +2)p = (

◦
∆ +2)k0 = (

◦
∆ +2)s = 0, which simply

means that m is a monopole and k0, p, s are dipoles and they are constant
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on M2. They correspond to the charges introduced in [8]. Let us rewrite the
solution in coordinates u, r, which will be more useful in the sequel

x = x +
4m + 12p

r
+

12(k0 + pu)

r2
, (4.54)

y = y +
12s

r2
. (4.55)

Let us also remind the relation between spatial constant three-vectors in
cartesian coordinates and dipole harmonics

k0 =
jl0zl
r

, p =
plzl
r
, s =

slzl
r
,

where zl are cartesian coordinates and jl0, pl, sl are corresponding three-
vectors representing our charges (see [8]).

4.5. Reduction of the symplectic form on a hyperboloid

We want to show the relation between the symplectic structure and the
invariants introduced in the previous subsection. Let (pkl, hkl) be the Cauchy
data on a hyperboloid.

The quadratic form
∫

V

pklδhkl can be decomposed into monopole part,

dipole part and the remainder in a natural way.
From the considerations given in the Appendix B we can easily see that

∫

V

pklδhkl ∼
∫

V

X
◦
∆

−1(
◦
∆ + 2)−1δx + Y

◦
∆

−1(
◦
∆ + 2)−1δy ,

where symbol “∼” denotes equality modulo full variation and boundary term.
Moreover, the “mono-dipole” part has the form

mon

(

∫

V

pklδhkl

)

∼
∫

V

1

2 cosh2 ω
p33δmon(x) ,

dip





∫

V

pklqkl



 ∼
∫

V

1

2 cosh2 ω
p33δdip(x) +

∫

V

Λ(h3A||Bε
AB)

◦
∆

−1δdip(y)

+

∫

V

(

tanhω
◦
∆

−1h3A
||A − H

4 cosh2 ω

)

δdip(X) . (4.56)

The mono-dipole part of invariants: mon(x),dip(x),dip(X),dip(y) repre-
sents 10 charges which are supposed to be fixed, they are analogous to the
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electric charge in electrodynamics. If we assume that there is no matter in-
side volume V then all of them are vanishing (this is included in (4.54) and
(4.55) as the regularity conditions at r = 0). In particular on hyperboloid
Σ we obtain that mono-dipole part vanishes for linearized vaccum Einstein
equations and the symplectic structure can be reduced to the invariants

∫

Σ

pklδhkl ∼
∫

Σ

X
◦
∆

−1(
◦
∆ + 2)−1δx + Y

◦
∆

−1(
◦
∆ + 2)−1δy . (4.57)

4.6. Non-conservation laws on a hyperboloid with the end at J+

Let us return to the coordinate ρ := 1
sinhω

. The metric on M takes
the starting form (2.12). It is convenient to introduce new canonical field
variables similar to the variables for the scalar field and electrodynamics

Ψx : = ρ−1x , Ψy := ρ−1y ,

Πx : =
X

√

1 + ρ2
, Πy :=

Y − Λy
√

1 + ρ2
.

Equations of motion are the same for both degrees of freedom

1
√

1 + ρ2
Ψ̇ι − Ψι,ρ =

Πι

√

1 + ρ2

sin θ
, ι = x, y ,

Π̇ι − (Πι

√

1 + ρ2),ρ = sin θ
[ ◦

∆Ψι + ((1 + ρ2)Ψι,ρ ), ρ

]

,

and they are similar to (2.19), (2.20) for the scalar field and (3.9), (3.10) for
electrodynamics.

The reduction of the symplectic form (from the previous section) allows
to formulate the Hamiltonian relation in terms of the new canonical variables

∑

ι=x,y

∫

V

Ψ̇ι

◦
∆−1(

◦
∆ + 2)−1δΠι − Π̇ι

◦
∆−1(

◦
∆ + 2)−1δΨι = 16πδH

−
∑

ι=x,y

∫

∂V

[

Πι

√

1 + ρ2 + sin θ(1 + ρ2)Ψι,ρ

] ◦
∆−1(

◦
∆ + 2)−1δΨι ,

(4.58)

where

16πH :=
1

2

∑

ι=x,y

∫

V

(

Πι

√

1 + ρ2

sin θ
+ Ψι,ρ

)

◦

∆
−1(

◦

∆ +2)−1

(

Πι

√

1 + ρ2

sin θ
+ Ψι,ρ

)
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+
1

2

∑

ι=x,y

∫

V

ρ2 sin θΨι,ρ
◦

∆
−1(

◦

∆ + 2)−1Ψι,ρ − sin θΨι(
◦

∆ + 2)−1Ψι .

(4.59)

Similarly for angular momentum we propose the following expression

16πJz =
∑

ι=x,y

∫

Σ

Πι

◦
∆

−1(
◦
∆ + 2)−1Ψι,φ . (4.60)

The non-conservation laws for the energy and angular momentum

−16π∂0H =
∑

ι=x,y

∫

S(0)

sin θΨ̇ι

◦
∆

−1(
◦
∆ + 2)−1Ψ̇ι ,

−16π∂0Jz =
∑

ι=x,y

∫

S(0)

sin θΨ̇ι

◦
∆

−1(
◦
∆ + 2)−1Ψι,φ ,

are similar to (2.21), (2.22) and (3.18), (3.19). It should be also possible to
formulate linear momentum Pz in a similar way as (2.31)

−16π∂0Pz =
∑

ι=x,y

∫

S(0)

sin θ cos θ
[

Ψ̇ι

◦
∆−1(

◦
∆ + 2)−1Ψ̇ι

]

,

but this will be analyzed in a separate paper2. It is obvious that all these
formulae are quasi-local.

5. Linearized gravity in null coordinates

We are going to follow the idea from Subsection 2.2 and apply it to
linearized gravity.

5.1. Minkowski metric in null coordinates

Let us define the null coordinates: u := t − r, v := r + t together with
the index a corresponding to the coordinates (u, v). The spherical foliation
is the same as previously and the coordinates on a sphere (xA), (A = 1, 2),
(x1 = θ, x2 = φ) are the same.

2 The meaning of the expression in quadratic brackets is not obvious and it should
be rather ψ̇ABψ̇AB where ψAB are introduced in Section 7. Also in electrodynamics
the definition of Pz is not obvious, however in electromagnetic case we have energy-
momentum tensor.
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For convenience we need also some more denotations: ρ := r−1 = 2
v−u

,

ρ,a = ρ2εa , where εu := 1
2 , εv := −1

2 , ηabεaεb = 1. We will also need

εa := ηabεb and we can check that εu = 1, εv = −1, ηabε
aεb = 1.

The explicit formulae for the components of Minkowski metric can be
denoted as follows

ηAB = ρ−2 ◦
γAB , ηab = −1

2
|Eab| , ηaA = 0 ,

where Euu = 0 = Evv and Euv = 1 = −Evu. Similarly, the inverse metric
has the following components

ηAB = ρ2 ◦
γAB , ηab = −2|Eab| , ηaA = 0 ,

where Euu = 0 = Evv and Euv = 1 = −Evu. We shall also need the
derivatives

ηAB
,a = 2ρεaη

AB , ηAB,a = −2ρεaηAB

and finally the nonvanishing Christoffel symbols except ΓA
BC are the fol-

lowing
Γa

AB = ρεaηAB , ΓA
aB = −ρεaδA

B .

5.2. Riemann tensor in null coordinates

We need to derive the linearized Riemann tensor in null coordinates

2Rabcd = had,bc − hbd,ac + hbc,ad − hac,bd ,

2RabcD = haD,bc − hbD,ac + hbc,aD − hac,bD

+ρεb (haD,c + hcD,a − hac,D) − ρεa (hbD,c + hcD,b − hbc,D) ,

2RAbCd = hdA||C,b + hbC||A,d − hbd||AC − hAC,bd

+ρεb
(

hdA||C − hdC||A − hAC,d

)

− ρεd
(

hbC||A − hbA||C − hAC,b

)

+ρηACε
a (hbd,a − had,b − hab,d) − 2ρ2εbεdhAC ,

2RABCd = hdA||BC + hBC||A,d − hBd||AC − hAC||B,d

+2ρεd
(

hbC||A − hAC||B

)

+ρηBCε
a (haA,d − hdA,a + had,A + 2ρεdhaA)

−ρηACε
a (haB,d − hdB,a + had,B + 2ρεdhaB) ,

2RabCD = haD||C,b − hbD||C,a + hbC||D,a − haC||D,b

+2ρεb
(

haD||C − haC||D

)

+ 2ρεa
(

hbC||D − hbD||C

)

,

2RABCD = hAD||BC + hBC||AD − hBD||AC − hAC||BD
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+ρηACε
a
(

hBD,a − haB||D − haD||B

)

+ρηBDε
a
(

hAC,a − haC||A − haA||C

)

−ρηBCε
a
(

hAD,a − haA||D − haD||A

)

−ρηADε
a
(

hBC,a − haB||C − haC||B

)

+ρ2 (hBDηAC + hACηBD − hADηBC − hBCηAD)

+2ρ2εaεbhab (ηACηBD − ηBCηAD) .

5.3. Ricci tensor in null coordinates

The Ricci tensor takes the following form

2Rab = hc
b,ac + ha

c
,cb − hab

,c
c − hc

c,ab

+haA,b
||A + hbA,a

||A − hab
||A

A −H,ab

+ρεaH,b + ρεbH,a + 2ρεc (hab,c − hac,b − hbc,a) ,

2RaB = hb
B,ab − haB

,c
c + ha

c
,cB − hc

c,aB

+ha
A
||BA − haB

||A
A + χB

A
||A,a − 1

2H||B,a

+ρεa

(

2hb
B,b − hb

b,B

)

− 2ρεbhbB,a − 2ρ2εaε
bhbB ,

2RAB =
(

ha
A||B + ha

B||A

)

,a
− ha

a||AB − χAB
,a

a

−2ρεaχAB,a + χA
C
||CB + χB

C
||CA − χAB

||C
C

+ηAB

[

−1
2(H ||C

C +H ,a
a) + 2ρεa (H,a − ha

A
||A)

+ρ2(2εaεbhab −H)
]

.

5.4. Gauge in null coordinates

The gauge transformation ξµ

hµν → hµν + ξ(µ;ν)

splits in the following way

hab −→ hab + ξa,b + ξb,a ,

haA −→ haA + ξa,A + ξA,a + 2ρεaξA ,

hAB −→ hAB + ξA||B + ξB||A − 2ρηABε
aξa .
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The following formulae will also be useful.

χAB −→ χAB + ξA||B + ξB||A − ηABξ
C
||C ,

1

2
H −→ 1

2
H + ξA

||A − 2ρεaξa ,

ha
A −→ ha

A + ξa
||A + ξA

,a .

They are straightforward consequences of the previous ones.

5.5. Invariants

Let us introduce the following gauge invariant quantities

ya : = (
◦
∆ + 2)haA||Bε

AB − (ρ−2χA
C
||CBε

AB),a , (5.1)

y : = 2ρ−2(hbB||Aε
AB),aE

ab , (5.2)

x : = ρ−2χAB
||BA − 1

2

◦
∆H + ρ−1εaH,a −H + 2εaεbhab − 2ρ−1εaha

A
||A ,

(5.3)

xab : =
◦
∆(

◦
∆ + 2)hab − (

◦
∆ + 2)

[

(ρ−2ha
A
||A),b + (ρ−2hb

A
||A),a

]

+
[

ρ−2(ρ−2χAB
||AB),a

]

,b
+
[

ρ−2(ρ−2χAB
||AB),b

]

,a
. (5.4)

They fullfill the following equations

(ρ−2ya),a = 0 , 2ρ−2yb,aE
ab = (a+ 2)y ,

2Eab(ρ−2y),b + ρ−2ya = 0 ,

[ρ−4(ya,b − yb,a)]
,b + ρ−2(a+ 2)ya = 0 ,

(ρ−1y),aa + ρ−1ay = 0 ,

(ρ−1x),aa = −ρ−1ax ,

ρ−2xab
,ab =

◦
∆(

◦
∆ + 2)x ,

ηabxab = 0 ,

xab = 2(ρ−2x),ab − ηab(ρ
−2x),cc , (5.5)

if we assume vacuum equations Rµν = 0.

5.6. Reduction of symplectic form on J +

Now we will show how the linearized symplectic form on the null sur-
face N can be reduced to the invariants in “wave” part Similarly to the
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“hyperboloidal” case. In the full nonlinear theory it was introduced by Ki-
jowski [27] (however he was interested only in spacelike surfaces), see also
short reminder in the Section 6.

We shall calculate this form in a convenient gauge but the final result
will be gauge-invariant. This way we shall prove that, modulo boundary
terms depending on the gauge, the invariant part of the symplectic form can
be obtained in the demanded shape in “wave” part.

5.6.1. Gauge conditions

Let us assume the following gauge conditions

χAB = 0 , ha
A
||A = 0 .

It is easy to verify that they are compatible for the “wave” part

ρ−2χAB
||AB −→ ρ−2χAB

||AB + (
◦
∆ + 2)ξA

||A ,

ρ−2χA
C
||CBε

AB −→ ρ−2χA
C
||CBε

AB + (
◦
∆ + 2)ξA||Bε

AB ,

ha
A
||A −→ ha

A
||A + ρ−2

◦
∆ξa + (ξA

||A),a .

More precisely, mono-dipole-free parts of ξa and ξA are uniquely defined
under these gauge conditions.

5.6.2. Partial reduction to extract gauge invariant part

The linearized πµν has the form

πµν = −Λhµν +
1

2
ηµν(ha

a +H)Λ

and it can be simplified in our gauge. Let us observe that invariants (5.1)
and (5.4) have simple form in this gauge in terms of hµν . From (5.4) and
(5.5) we obtain ha

a = −4huv = 0. Moreover, πAB = 1
2Λη

ABha
a − ΛχAB

vanishes. Similarly πAb
||A = 0 because πAb = −ΛhAb. Finally from the

above considerations we obtain
∫

S(s,ρ)

πµνδAa
µν =

∫

S(s,ρ)

πcdδAa
cd − 2πbA||BεABρ

−2
◦
∆

−1δAa
bA||Bε

AB .

One can show the following relation
∫

V

πcdδAv
cd ∼

∫

V

Λρ2(ρ−1xab),u
◦
∆

−2(
◦
∆ + 2)−2δ(ρ−1xab) , (5.6)

where ∼ denotes equality modulo boundary terms and full variation.
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Similarly one can prove

∫

V

πbA||BεABρ
−2

◦
∆

−1δAv
bA||Bε

AB

∼
∫

V

Λρ2yb
◦
∆

−1(
◦
∆ + 2)−2δ

[

(ρ−4yv),b − (ρ−2yb)
,v
]

. (5.7)

5.6.3. Full reduction to x,y

We would like to obtain a similar formula to (2.25). The “curl” part (5.7)
reduces easily to the demanded form

∫

V

Λρ2yb
◦
∆−1(

◦
∆ + 2)−2δ

[

(ρ−4yv),b − (ρ−2yb)
,v
]

∼
∫

V

2Λρ2(ρ−1y),u
◦
∆−1(

◦
∆ + 2)−1δ(ρ−1y) .

On the other hand, the second part of (5.6) can be rewritten in the following
way

∫

V

Λρ2(ρ−1xab),u
◦
∆

−2(
◦
∆ + 2)−2δ(ρ−1xab)

∼
∫

V

2Λρ2(ρ−1x),u
◦
∆−1(

◦
∆ + 2)−1δ(ρ−1x)

+

∫

V

16Λρ2

[

ρ−1(ρ−1x),vv +
1

2

◦
∆(ρ−1x),v

]

◦
∆−2(

◦
∆ + 2)−2δ(ρ−1x) .

Let us observe that the last term vanishes on J+, more precisely (ρ−1x),v =
O(ρ2). The presented calculations should convince the reader that the fol-
lowing formula holds

∫

N

πµνδAv
µν ∼

∫

N

2Λρ2
[

(Ψx),u
◦
∆

−1(
◦
∆ + 2)−1δ(Ψx)

+ (Ψy),u
◦
∆−1(

◦
∆ + 2)−1δ(Ψy)

]

and this is a quasi-local form which is similar to (2.25) and (3.20).
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6. Generating formula for Einstein equations

Let us remind some results from [27] which will be useful for the sequel.
The variation of the Hilbert Lagrangian

L =
1

16π

√

|g| R (6.1)

may be calculated as follows

δL = δ

(

1

16π

√

|g| gµν Rµν

)

= − 1

16π
Gµνδgµν +

1

16π

√

|g| gµνδRµν , (6.2)

where

Gµν :=
√

|g| (Rµν − 1

2
gµνR) . (6.3)

It was proved in [27] that the last term in (6.2) is a boundary term
(a complete divergence). For this purpose we denote

πµν :=
1

16π

√

|g| gµν (6.4)

and
Aλ

µν := Γλ
µν − δλ

(µΓκ
ν)κ . (6.5)

We have

∂λA
λ
µν = ∂λΓλ

µν − ∂(µΓλ
ν)λ = Rµν − Γλ

σλΓσ
µν + Γλ

µσΓσ
νλ

= Rµν +Aλ
µσA

σ
νλ − 1

3
Aλ

µλA
σ
νσ . (6.6)

Hence, we obtain an identity

∂λ

(

πµνδAλ
µν

)

= πµνδRµν + πµνδ

(

Aλ
µσA

σ
νλ − 1

3
Aλ

µλA
σ
νσ

)

+ (∂λπ
µν) δAλ

µν

= πµνδRµν + (∇λπ
µν) δAλ

µν . (6.7)

Due to the metricity of Γ we have ∇λπ
µν = 0. This way we obtain

πµνδRµν = ∂λ

(

πµνδAλ
µν

)

= ∂κ

(

π µνκ
λ δΓλ

µν

)

, (6.8)

where we denote
π µνκ

λ := πµνδκ
λ − πκ(νδ

µ)
λ . (6.9)

Inserting (6.8) into (6.2) we have

δL = − 1

16π
Gµνδgµν + ∂λ

(

πµνδAλ
µν

)

. (6.10)
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We conclude that Euler-Lagrange equations Gµν = 0 are equivalent to the
following generating formula, analogous to (2.1) in field theory

δL = ∂λ

(

πµνδAλ
µν

)

(6.11)

or, equivalently,

δL = ∂κ

(

π µνκ
λ δΓλ

µν

)

. (6.12)

This formula is a starting point for the derivation of canonical gravity. Let
us observe, that it is valid not only in the present, purely metric, context but
also in any variational formulation of General Relativity. For this purpose let
us rewrite (6.10) without using a priori the metricity condition ∇λπ

µν = 0.
This way we obtain the following, universal formula

δL = − 1

16π
Gµνδgµν −

(

∇κπ
µνκ

λ

)

δΓλ
µν + ∂κ

(

π µνκ
λ δΓλ

µν

)

. (6.13)

It may be proved that, in this form, the formula remains valid also in the
metric-affine approach and in the purely-affine one. In metric–affine formula-
tion, the vanishing of ∇λπ

µν is not automatic: it is a part of field equations.
We see that, again, the entire field dynamics is equivalent to (6.12). Finally,
in the purely affine formulation of General Relativity the Einstein equations
are satisfied “from the very beginning” whereas the metricity condition for
the connection becomes the dynamical equation. We conclude that also in
this case the entire information about the field dynamics is contained in the
generating formula (6.12).

This formula, compared with (2.1), suggests that the role of field po-
tentials in General Relativity should be rather played by the connection Γ,
whereas the metric g should rather remain on the side of canonical momenta.
This observation was the origin of the purely affine formulation of the the-
ory. Also in the multisymplectic formulation (i.e. formulation in terms of
Poincaré-Cartan form – see [26]) the connection appears on the side of field
configurations. We stress, however, that the results do not depend upon the
choice of a variational formulation.

7. Metrics of Bondi–Sachs type

In this section we shall consider the initial value problem for the curved
space-time M with a metric of the form

gµνdxµdxν = −V
r

e2βdu2 − 2e2βdudr + r2γAB(dxA − UAdu)(dxB − UBdu)

(7.1)
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on the null cone C =
{

x ∈M | x0 = u = const.
}

(see [10], [2], [4]) with the
boundary ∂C at the future null infinity. We have the following non-vanishing
components of the inverse metric gµν

g33 =
V

r
e−2β ,

g03 = −e−2β ,

g3A = −e−2βUA ,

gAB =
1

r2
γAB ,

where γAB is the inverse metric to γAB.
Let us define the “covector” UB as

UB := gBAU
A = r2γBAU

A .

We have in our coordinate system the following non-vanishing components
of the metric gµν

g00 = −V
r

e2β + UAU
A ,

g03 = −e2β ,

g0A = −UA ,

gAB = r2γAB .

We also assume that
√

det γAB = sin θ .

The metric (7.1) implies the following expressions for 16ππµν =
√−ggµν

and Aλ
µν = Γλ

µν − δλ
(µΓσ

ν)σ defined by (6.4) and (6.5)

√−g = e2βr2 sin θ ,

16ππ03 = −r2 sin θ ,

16ππAB = e2β sin θγAB ,

16ππ33 = rV sin θ ,

16ππ3A = −r2 sin θUA ,

16ππ03 = −r2 sin θ ,

16ππAB = e2β sin θγAB ,

A0
33 = A0

3A = 0 ,

A0
03 = −β,3 −

1

r
,
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A0
AB =

1

2
e−2β

(

r2γAB

)

,3
,

A3
33 = −2

r
,

A3
3A =

1

2
e−2βUB

,3gBA − 1

2
(ln sin θ),A ,

A3
03 =

V

r
β,3 +

(

V

2r

)

,3

− UBβ,B − β̇ − 1

2
e−2βUAU

A
,3 ,

A3
AB =

1

2
e−2β

(

ġAB − V

r
gAB,3 + UA||B + UB||A

)

.

The following expression below was proposed by Trautman and Bondi
and will be called the TB mass:

mTB :=
1

8π

∫

∂C

r − V . (7.2)

Choose a (3+1)-foliation of space-time and integrate (6.11) over a 3-
dimensional null-volume V ⊂ C = {x0 = const.}

δ

∫

V

L =

∫

V

(

πµνδA0
µν

)

˙+

∫

∂V

πµνδA3
µν . (7.3)

Similarly as in the case of electrodynamics, we use here adapted coordinates;
this means that the coordinate x3 is constant on the boundary ∂V . Adapted
coordinates simplify considerably derivation of the final formula. We stress,
however, that all our results have an independent, geometric meaning. To
rewrite them in a coordinate-independent form it is sufficient to replace
“dots” by Lie derivatives LX , where X is the vector field generating our one-
parameter group of transformations, which we are describing. In adapted
coordinates X := ∂

∂x0 . Moreover, the upper index “3” has to be replaced
everywhere by the sign “⊥”, denoting the transversal component with respect
to the world tube. This way our results have a coordinate-independent
meaning as relations between well defined geometric objects and not just
their specific components.

Because the translation between these two notations is so simple, we have
decided to use much simpler language, based on adapted coordinates. The
volume part of the formula (7.3) can be simplified (or reduced) as follows

16ππµνδA0
µν = 16ππklδA0

kl + 32ππ0kδA0
0k + 16ππ00δA0

00

= 32ππ03δA0
03 + 16ππABδA0

AB

= −1

2
sin θ (rγAB),3 δ

(

rγAB
)

+ δ

[

2r4 sin θ

(

β

r2

)

,3

]

. (7.4)
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The last term in the above formula is a full variation of the quantity,
which logarithmically diverges when we try to integrate it, β = O(r−2)

and 2r4 sin θ
(

β
r2

)

,3
= O(r−1). Removing of this term (we can call such

procedure: the renormalization of the symplectic form) corresponds to the
renormalization of the Lagrangian for scalar field (2.13).

On the other hand, the boundary part in (7.3) can be rewritten as

16ππµνδA3
µν =16ππ33δA3

33+32ππ03δA3
03+32ππ3AδA3

3A+16ππABδA3
AB

=2 sin θ
(

2V − r2UB
||B

)

δβ+sin θγABδUA||B− 1

2
sin θ

(

ġAB − V

r
gAB,3

)

δγAB

+r2 sin θe−2βUB
,3gBAδU

A−δ
[

2r2 sin θ

(

V

r2
+

(

V

2r

)

,3

+
V

r
β,3−β̇−UBβ,B

)]

,

(7.5)

where by “ ||” we have denoted a covariant derivative with respect to the
two-metric gAB on ∂V .

Inserting these results into (7.3) we obtain

16πδ

∫

V

L=−
∫

V

1
2 sin θ

[

(rγAB),3 δ
(

rγAB
)

]

,0
+

∫

∂V

r2 sin θe−2βUB
,3gBAδU

A

+

∫

∂V

2 sin θ
(

2V −r2UB
||B

)

δβ+ 1
2 sin θ

(

rV γAB,3 − r2γ̇AB − 2UA||B

)

δγAB

+δ

∫

V

4r2 sin θβ̇,3−δ
∫

∂V

r2 sin θ

[

2V

r2
+

(

V

r

)

,3

+2
V

r
β,3−2UBβ,B

]

(7.6)

because 2-dimensional divergencies “∂Af
A” vanish when integrated over the

boundary ∂V .
From (7.4) we get the relation

16ππµν Ȧ0
µν = −1

2
sin θ (rγAB),3

(

rγ̇AB
)

+ 2r4 sin θ

(

β̇

r2

)

,3

. (7.7)

On the other hand, from [25] we know that

16π

∫

V

πµνLXA
0
µν =

∫

∂V

√−g
(

∇3X0 −∇0X3
)

=

∫

∂V

r2 sin θ

[

(

V

r

)

,3

+ 2
V

r
β,3 − 2UBβ,B − 2β̇ − e−2βUAU

A
,3

]

(= 2r2 sin θA3
03) , (7.8)
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where the last equality can be checked directly for the metric (7.1) and
Xµ = δµ

0 . From (7.7) and (7.8) we obtain the final formula

16πδ

∫

V

L=

∫

V

1
2 sin θ

[

(

rγ̇AB
)

δ (rγAB),3−(rγ̇AB),3 δ
(

rγAB
)

]

−δ
∫

∂V

2V sin θ

+
1

2

∫

∂V

sin θ
(

rV γAB,3 − r2γ̇AB − 2UA||B + r2e−2βUC
,3γCAUB

)

δγAB

+

∫

∂V

2r2 sin θ

(

2V

r2
− UB

||B + UAU
A
,3

)

δβ − r2 sin θe−2βUAδU
A
,3 . (7.9)

Remark. It seems to me that a more natural “control mode” in the above
formula corresponds rather to the control of the term (r2UA),3 than UA

,3 and
it can be achieved by the following manipulation

−r2 sin θe−2βUAδU
A
,3 = − sin θe−2βUAδ(r

2UA),3 + δ
(

r sin θe−2βUAU
A
)

+2r sin θe−2βUAU
Aδβ +

1

r
sin θe−2βUAU

AδγAB .

It is convenient to introduce the following asymptotic variables (ΠAB , ψ
AB)

related to asymptotic degrees of freedom

ψAB : = rγAB − r
◦
γAB , ψAB := rγAB − r

◦
γAB ,

ΠAB : = −1

2
sin θ (rγAB),3 +

1

2
sin θ

(

r
◦
γAB

)

,3
.

If we pass to the limit, the formula (7.9) takes the form

−16πδmTB = −δ
∫

∂C

4M sin θ

=

∫

C

Π̇ABδψ
AB − ψ̇ABδΠAB − 1

2

∫

∂C

sin θψ̇ABδψ
AB ,

(7.10)

where V = r − 2M + O(r−1) and the asymptotic conditions are given in
[4] and will be summarized in the next section. We can denote the non-
conservation law for the TB mass

−16π∂0mTB = −1

2

∫

∂C

sin θψ̇ABψ̇
AB



=
1

2

∫

∂C

sin θ
◦
χAB,u

◦
χAB

,u



 , (7.11)
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where the last form in the brackets becomes clear when we learn about

asymptotics presented in the next section. In particular ψAB|J+ =
◦
χ AB

and ψAB |J+ = −
◦
χAB .

Similarly, for angular momentum we get the answer from the superpotential
proposed by Komar [20]

16π

∫

V

πµνLXA
0
µν =

∫

∂V

√−g
(

∇3X0 −∇0X3
)

,

where now X = ∂/∂φ.

The right-hand side can be expressed in terms of the Bondi-Sachs type
metric

∫

∂V

√−g
(

∇3X0 −∇0X3
)

=

∫

∂V

r4 sin θe−2βγφAU
A
,3 −→ 16πJz .

The limit is taken on J+ and according to the asymptotics presented in the
next section we obtain

16πJz = −
∫

∂C

(6Nφ +
1

2

◦
χφB

◦
χBC

||C) sin θdθdφ . (7.12)

But on the other hand

16π

∫

V

πµνLXA
0
µν =

∫

V

πµνA0
µν,φ =

∫

V

ΠABψ
AB

,φ

and

16π∂0

∫

C

πµνA0
µν,φ =

∫

C

Π̇ABψ
AB

,φ −ΠAB,φψ̇
AB =

1

2

∫

∂C

sin θψ̇ABψ
AB

,φ .

We will show in the next section that the non-conservation law for angular
momentum agrees in terms of the asymptotics

16πJ̇z = −
∫

∂C

1

2

◦
χAB,u

◦
χAB

,φ sin θdθdφ . (7.13)
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7.1. Symplectic structure on scri

Let us observe that we can use the previous results (7.4) and (7.5) to
reduce the form

πµνδAv
µν = πµνδ(A0

µν + 2A3
µν) . (7.14)

Let us also remind the coordinate system which should be used to describe
the situation in a similar way as in Section 2.3 for scalar field and 3.1 for
electrodynamics. (u, r) → (v, u), u = −2r v = u+2r, ∂u = ∂v , ∂r = −2∂u +
∂v, du ∧ dr = 1

2du ∧ dv and finally πµνδAv
µνdrdθdφ = 1

2π
µνδAv

µνdudθdφ.
If we put

16ππµνδA0
µν = −1

2
sin θ (rγAB),3 δ

(

rγAB
)

+ δ

[

2r4 sin θ

(

β

r2

)

,3

]

(7.15)

and

16ππµνδA3
µν = 2 sin θ

(

2V − r2UB
||B

)

δβ + sin θγABδUA||B

−1

2
sin θ

(

ġAB − V

r
gAB,3

)

δγAB + r2 sin θe−2βUB
,3gBAδU

A

−δ
[

2r2 sin θ

(

V

r2
+

(

V

2r

)

,3

+
V

r
β,3 − β̇ − UBβ,B

)]

(7.16)

into (7.14), assuming asymptotic behaviour on J +, we obtain the following
formula at the future null infinity

16ππµνδAv
µν |J+ = − sin θψ̇ABδψ

AB + 4δ(sin θM) . (7.17)

Remark. The symplectic form
∫

J+

dudθdφ sin θδψAB ∧ δψ̇AB

has been considered by Ashtekar et al., see [31, 32] and [33]. Their re-
formulation in a conformally geometric way (in the spirit of the “universal
structure” of Penrose’s null infinity) has given the symplectic structure on
the space of radiative modes of the non-linear gravitational field in exact
general relativity.

Let N = [ui, uf ]× S2 ⊂ J + be here a “finite piece” of J+. The relation
for the TB mass is based on the following observations. First of all from
(7.17) we obtain

16π

∫

N

1

2
πµνAv

µν,0dudθdφ = −1

2

∫

N

sin θψ̇ABψ̇
ABdudθdφ+2

∫

∂N

M sin θdθdφ
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and secondly

16π

∫

N

πµνLXA
v
µν =

∫

∂N

√−g(∇uXv −∇vXu) = −
∫

∂N

2M sin θdθdφ ,

where X = ∂0, so finally

−4

∫

∂N

M sin θdθdφ = −1

2

∫

N

sin θψ̇ABψ̇
ABdudθdφ .

The left-hand side of the above formula represents the change of Bondi mass
from initial state ui to final state uf (∂N = {uf} × S2 ∪ {ui} × S2) but the
right-hand side is a flux of the energy through N which is a piece of J +

between initial and final state, compare with (8.13) and (8.14).
Similarly, for angular momentum we have

16π

∫

N

πµνLXA
v
µν = 16π

∫

N

1

2
πµνAv

µν,φdudθdφ

= −1

2

∫

N

sin θψ̇ABψ
AB
,φ dudθdφ ,

where now X = ∂φ.

8. Multipole structure of Bondi–van der Burg–Metzner–Sachs

equations

The metric (7.1) depends on the six functions: V , β, γAB , UA and the
asymptotic behaviour of them is described in [3] and [4]. We shall rewrite
formulae from van der Burg paper [4] in a “spherically covariant” way. More
precisely, we denote:
0. M i V are scalars
1. Pairs of functions U,W and N,P can be combined in two vectors UA and
NA, respectively

Uθ = U θ = U ,

Uφ = sin2 θUφ = W sin θ ,

Nθ = N θ = N ,

Nφ = sin2 θNφ = P sin θ .

2. Pairs of functions c, d, C,H and D,K correspond to the symmetric

traceless tensors
◦
χAB , CAB and DAB:

◦
χ θ

θ = −
◦
χφ

φ = 2c ,
◦
χ θ

φ = sin2 θ
◦
χ θ

φ = 2d sin θ .
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Similarly Cθ
θ = C, Dθ

θ = D etc. The reason for this notation arises in a
natural way, if we change the parameterization of the 2-dimensional metric
γAB . Let us remind that van der Burg in [4] (p. 112) proposed the following
parameterization

γABdxAdxB =e2γ cosh(2δ)dθ2+2 sinh(2δ) sin θdθdφ+e−2γ cosh(2δ) sin2 θdφ2,
(8.1)

which differs from original Sachs formulation by a linear transformation of
the functions γ and δ (see [3] p. 107). Next the used functions γ and δ are
expanded in the form

γ = c/r +

(

C − 1

6
c3 − 3

2
cd2

)

r−3 +Dr−4 +O(r−5) ,

δ = d/r +

(

H − 1

6
d3 +

1

2
c2d

)

r−3 +Kr−4 +O(r−5) .

Let us notice that there is no r−2 term, which was analyzed in [10], and
vanishing of this term is called “outgoing radiation condition”.

We propose to change this parameterization in such a way that for the
original Bondi axi-reflection-symmetric metric both formulations are the
same. The main advantage of our change is that the expansion terms take
a nice geometric form (mainly the term of order r−3 takes a nice form).

Let us fix the frame dθ, sin θdφ which is orthonormal with respect to the

background metric
◦
γAB . The symmetric matrix (close to unity)
(

e2γ cosh(2δ) sinh(2δ)
sinh(2δ) e−2γ cosh(2δ)

)

(8.2)

with the determinant equal 1 can be also parameterized in a natural way by
the exponential mapping

exp(aσx + bσz) ,

where σx and σz are Pauli matrices

σx =

(

1 0
0 −1

)

, σz =

(

0 1
1 0

)

.

The solution of the matrix equation
(

e2γ cosh(2δ) sinh(2δ)
sinh(2δ) e−2γ cosh(2δ)

)

= exp(aσx + bσz) (8.3)

leads to the nonlinear relation between a, b and γ, δ in the form

a = sinh(2γ) cosh(2δ)
arccosh(cosh(2δ) cosh(2γ))

√

sinh2(2δ) + cosh2(2δ) sinh2(2γ)
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b = sinh(2δ)
arccosh(cosh(2δ) cosh(2γ))

√

sinh2(2δ) + cosh2(2δ) sinh2(2γ)

but the asymptotic relation for small γ, δ is simpler, namely

a = 2γ +
8

3
γδ2 +O(γ, δ)5 ,

b = 2δ +
4

3
γ2δ +O(γ, δ)5 ,

and it gives only a correction in r−3 for our expansion. More precisely,

1

2
a = c/r +

(

C − 1

6
(c2 + d2)c

)

r−3 +Dr−4 +O(r−5) ,

1

2
b = d/r +

(

H − 1

6
(d2 + c2)d

)

r−3 +Kr−4 +O(r−5) ,

and now we can write the expansion in the matrix form

log γAB =
◦
χAB/r+

(

2CAB − 1

48

◦
χCD

◦
χCD

◦
χAB

)

r−3+2DABr
−4+O(r−5) ,

(8.4)
where each term of the expansion is a traceless symmetric tensor on a sphere.

The indices are raised with respect to the inverse
◦
γ AB of the background

metric (which is a standard metric on a unit sphere). It is diagonal in our

coordinates,
◦
γ θθ = 1 and

◦
γ φφ = sin2 θ. The metric connection of the

◦
γAB

has the following non-vanishing components

Γθ
φφ = − sin θ cos θ , Γφ

φθ = cot θ .

We are ready to show the asymptotic expansions for the rest of the quan-
tities, which appear in Bondi–Sachs type metric (7.1). They were introduced
in [4] (p.114) but now we can rewrite them in a covariant way on S2

UA = − 1

2r2
◦
χAB

||B+
2NA

r3
+

1

r3

[

1

2

◦
χA

B

◦
χBC

||C +
1

16

( ◦
χCD

◦
χCD

)||A
]

,

UA : = r2γABU
B = −1

2

◦
χB

A||B +
2NA

r
+

1

16r

( ◦
χCD

◦
χCD

)

||A
,

1 − V

r
=

2M

r
+
NA

||A

r2
− 1

r2

[

1

4

◦
χAB

||B

◦
χA

C

||C +
1

16

◦
χCD

◦
χCD

]

,

β = − 1

32
· 1

r2
◦
χAB

◦
χAB .
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Basic equations (Eq. (13)–(15) in [4]) can be expressed as follows

M,u = −1

8

◦
χAB,u

◦
χAB

,u +
1

4

◦
χAB

||AB,u , (8.5)

3NA
,u = −M ||A − 1

4

◦
εAB

(

◦
χC

D

||DE

◦
εEC

)

||B

−3

4

◦
χA

B

◦
χBC

||C,u − 1

4

◦
χCD

,u

◦
χA

C||D . (8.6)

The “dynamics” of the further asymptotic hierarchy (Eq. (8)–(9) and (11)–
(12) in [4]) takes the form

−4ĊAB − 1

8

◦
χCD

◦
χCD

◦
χAB,u +

1

4

◦
χAB

◦
χCD

◦
χCD,u

= NA||B +NB||A −
◦
γABN

C
||C

−M
◦
χAB − 1

4

◦
εAC

◦
χC

B

◦
χE

F
||FG

◦
εEG , (8.7)

−4ḊAB = (
◦
∆ + 4)CAB − (

◦
χA

CNB)||C

−(
◦
χB

CNA)||C +
◦
γ AB(

◦
χCDND)||C . (8.8)

Let us observe that mono-dipole but also quadrupole part of the right-hand
side of (8.8) vanishes. More precisely, let us rewrite this equation in the
following way

−4ḊAB = (
◦
∆ + 4)CAB − SA

C
B||C , (8.9)

where

SABC :=
◦
χACNB +

◦
χBCNA −

◦
γAB

◦
χCDN

D .

It is easy to check that SABC is a traceless symmetric tensor (in each pair of

indices) and the same holds for ŜABC := εADS
D

BC . One can prove (see [30])

that SABC
||CAB and ŜABC

||CAB are orthogonal to the first three eigenvalue
spherical harmonics (with l = 0, 1, 2).

On the other hand, from the relation

CAB||C
CAB = CAB

||ABC
C + 2CAB

||AB

we obtain that
[

(
◦
∆ + 4)CAB

]

||AB
= (

◦
∆ + 6)

(

CAB
||AB

)

and Similarly for ĈAB := εADC
D

B .



Bondi Mass in Classical Field Theory 721

This way we get 10-dimensional space of quadrupole Newman–Penrose
charges in DAB which are conserved ( [14], [4]). More precisely, quadrupole

(and also mono-dipole) parts of ∂uD
AB

||AB and ∂uD̂
AB

||AB have to vanish.
However, for the polyhomogeneous asymptotics they may be not conserved
(see [10]).

Let v = u+ 2r, than the metric (7.1) takes the following form

gµνdxµdxν =

(

−V
r

+ r2γABU
AUB + e2β

)

du2 − e2βdudv

−2r2γABU
BdudxA + r2γABdxAdxB (8.10)

and its linearization can be expressed as follows

H ∼= 1

2
· 1

r2
·

◦
χAB

◦
χAB ∼= 0 ,

huu
∼= 1 − V

r
+ 2β + r2

◦
γABU

AUB ∼= 2M

r
+
NA

||A

r2
,

huv
∼= −β ∼= 0 ,

huA
∼= −r2

◦
γABU

B − r
◦
χABU

B ∼= −1

2

◦
χB

A||B +
2NA

r
,

χAB
∼= r

◦
χAB, hAB

∼= r
◦
χAB +

1

2
r2

◦
γABH ∼= r

◦
χAB .

The linearized asymptotics of invariants

x ∼= 4M

r
+

6NA
||A

r2
,

y ∼= −1

r

◦
χA

C

||CB

◦
εAB +

6

r2
NA||B

◦
εAB ,

Ψx = rx ∼= 4M , Ψ̇x = rx,u
∼=

◦
χAB

||AB,u ,

Ψy = ry ∼= −
◦
χA

C

||CB

◦
εAB , Ψ̇y = ry,u

∼= −
(

◦
χA

C

||CB

◦
εAB

)

,u

,

give an indication, how to relate linearized theory to the van der Burg asymp-
totics. This observation will be used in the sequel.

8.1. Supertranslations

Let us consider J+ as the cartesian product S2 × R
1 or rather trivial

affine bundle over S2 with typical fiber R
1; in some more general situations

R
1 may be replaced by an interval I. The supertranslation corresponds to
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the zero section of this affine bundle. On the other hand the boost trans-
formation leads to the nontrivial scaling factor in a fiber and a conformal
transformation on a base manifold S2 (see [3] p. 111).

A prolongation of the supertranslation from scri “to the interior” in Bondi
coordinates (metric (7.1)) leads to the following asymptotic relations (see
also [3] p. 119)

xA = xA +
1

r
α||A − 1

2r2

(

◦
χ

AB

α||B − 2α||ABα||B + ΓA
BCα

||Bα||C

)

+ . . . ,

u = u− α− 1

2r
α||Aα||A +

1

4r2

[

◦
χ

AB

α||Aα||B − α||A
(

α||Bα
||B
)

||A

]

+ . . . ,

r = r − 1

2

◦
∆α+

1

2r

[

◦
χ

AB

||B α||A +
1

2

◦
χ

AB

α||AB +
1

2

◦
χ

AB

,uα||Aα||B

−1

2
α||ABα||AB − α||Aα

||A +
1

4
(

◦
∆α)2 −

( ◦
∆α

)||A

α||A

]

+ . . . .

Now we can check the transformation law for
◦
χ and M

M = M +
1

2

◦
χ

AB

||B,uα||A +
1

4

◦
χAB

,u α||AB +
1

4

◦
χ

AB

,uuα||Aα||B ,

◦
χ

AB =
◦
χ

AB − 2α||AB +
◦
γ

AB

◦
∆α ,

∂A = ∂A + α,A∂0

and finally we obtain that certain combination

4M −
◦
χ

AB

||AB = 4M −
◦
χAB

||AB +
◦
∆(

◦
∆ + 2)α (8.11)

has a simple transformation law with respect to the supertranslations. More-

over, mono-dipole part of 4M −
◦
χAB

||AB is invariant with respect to the
supertranslations. It corresponds to the mass and linear momentum at
null infinity. We would like to stress that in general the definition (7.2)
is correct only on a {u = const.} cross-section of J+. Let us consider any
(cross-)section s : S2 −→ J + of the affine bundle J+.

Definition

16πmTB : =

∫

S2

(

4M −
◦
χAB

||AB

)

(s(θ, φ)) sin θdθdφ , (8.12)

16πpk : =

∫

S2

(

4M −
◦
χAB

||AB

)

(s(θ, φ))
zk

r
sin θdθdφ . (8.13)
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The above definition together with (8.11) gives the following:
Theorem 1. The energy-momentum 4-vector at null infinity is invariant

with respect to the supertranslations.

On the other hand, the angular momentum defined by (7.12) is not invariant
with respect to the supertranslations but obeys the following transformation
law

16πJz = 16πJz +

∫

S2

4Mα,φ .

The definition (8.13) allows us to define the flux of the energy through
the piece of J + between any two cross-sections of the null infinity in a
supertranslation-invariant way. More precisely, let

si : S2 −→ J+

for i = 1, 2 be two different cross-sections of J+ such that there exists
N ⊂ J+ with ∂N = s2(S

2) ∪ s1(S2). Then one can easily check from the
definition (8.13) and the relation (8.5) that

mTB(s2) −mTB(s1) =
1

16π

∫

∂N

(

4M −
◦
χAB

||AB

)

sin θdθdφ

= − 1

32π

∫

N

◦
χAB,u

◦
χAB

,u sin θdudθdφ

= (flux of energy through N) .

(8.14)

Similar formula holds for linear momentum pk defined by (8.13)

pk(s2) − pk(s1) =
1

16π

∫

∂N

(

4M −
◦
χAB

||AB

) zk

r
sin θdθdφ

= − 1

32π

∫

N

◦
χAB,u

◦
χAB

,u

zk

r
sin θdudθdφ

= (flux of linear momentum through N) . (8.15)

Remark. The supertranslation gauge freedom exists also in the linearized
theory. The linearized part of the supertranslation corresponds to the gauge
condition which preserves five components of the linearized metric: hur, H,
hrr, hrA. More precisely, it is a solution of the gauge conditions

ξu
,r = 0 , ξu||A

A = (ξA
||A),r , (ξA||Bε

AB),r = 0 ,

ξA
||A +

2

r
ξr = 0 , ξr

,r + ξu
,u = 0 ,
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where we use here the Minkowski background metric in the form

ηµνdx
µdxν = −du2 − 2dudr + r2

◦
γABdxAdxB .

The solution of the above gauge equations is quite simple

ξA =
1

r

◦
γABα||B , ξu = −α , ξr = −1

2

◦
∆α ,

where α is any real mapping α : S2 7→ R and mono-dipole part of α corre-
sponds to the usual translations in Minkowski space. The gauge transfor-
mation for traceless symmmetric tensor χAB

χAB −→ χAB − 2rα||AB + r
◦
γ

AB

◦
∆α

is similar to the nonlinear case.
Proposition. How to remove the supertranslation gauge freedom?

Assume at time u0 that 4M−
◦
χAB

||AB = 0, then for example the stationary
solution becomes a simple stationary solution (the definition is given in

Subsection 8.4). This procedure allows to treat
◦
χ AB as the invariant

asymptotic degree of freedom and will be considered in Subsection 8.4.

Remark. The Kerr-Newman metric in certain Bondi-Sachs coordinates

can be asymptotically represented in such a way that M = 0 =
◦
χAB .

8.2. Hierarchy of asymptotic solution on scri for scalar wave equation

Let us rewrite the wave equation in null coordinates (u, v)

ρ−1(ρ−1ϕ),aa +
◦
∆ϕ = 0 (8.16)

and suppose we are looking for a solution of the wave equation (8.16) as a
series

ϕ = ϕ1ρ+ ϕ2ρ
2 + ϕ3ρ

3 + . . . , (8.17)

where each ϕn is a function on scri, ∂vϕn = 0.
If we put the series (8.17) into the wave equation (8.16), we obtain the

following recursion

∂uϕn+1 = − 1

2n
[

◦
∆ + (n− 1)n]ϕn . (8.18)

Compare with equations 2, 3, 4 in [2].

Remark. The kernel of the operator [
◦
∆ + l(l + 1)] corresponds to the
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l-th spherical harmonics. The right-hand side of (8.18) vanishes on the n−1
spherical harmonics subspace. This means that the corresponding multipole
in ϕn+1 does not depend on u. In particular, for n = 3 we have quadrupole
charge in the fourth order. The nonlinear counterpart of this object is called
Newman-Penrose constant or NP charge. We discuss some features related
to NP charges in Section 8.5.

8.3. Linear theory, asymptotic hierarchy, “charges”

Let us first check that the linearized theory can be obtained, if we remove
nonlinear terms in the asymptotic hierarchy (8.6)–(8.8)

4Ṁ =
◦
χAB

||AB,u ,

3ṄA
||A = −

◦

∆M 3ṄA||B
◦
ε

AB

= −1

4

◦

∆ χ̂AB
||AB ,

−4ĊAB
||AB = (

◦

∆ + 2)NA
||A − 4ĈAB

||AB,u = (
◦

∆ + 2)NA||B
◦
ε

AB

,

−4ḊAB
||AB = (

◦

∆ + 6)CAB
||AB − 4D̂AB

||AB,u = (
◦

∆ + 6)ĈAB
||AB ,

x = 4Mρ+ 6NA
||Aρ

2 + 6CAB
||ABρ

3 + 4DAB
||ABρ

4 +O(ρ5) ,

y = χ̂AB
||ABρ+ 6NA||B

◦
ε

AB

ρ2 + 6ĈAB
||ABρ

3 + 4D̂AB
||ABρ

4 +O(ρ5) .

It is easy to verify full agreement with (8.18) up to the 4-th order for the
invariants x, y. Moreover, let us define m := mon(M), p := dip(M). Then
we get

M = m+ 3p+M , 4Ṁ =
◦
χAB

||AB,u , ṁ = ṗ = 0

and Similarly for NA we obtain

NA = −p||Au− k
||A
0 − ◦

ε
AB
s||B +NA ,

where p, k0 and s are dipoles. This way we have reconstructed “charges”.
Let us notice that the mono-dipole parts of invariants

x = 4mρ+ 12jl0xl · ρ3 + 12plxl · ρ3 ·
(

u+
1

ρ

)

,

y = 12slxl · ρ3

or

x = 4(m+ 3p) · ρ+ 12(k0 + p · u) · ρ2 , y = 12s · ρ2

are the same as in (4.54) and (4.55).
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8.3.1. Nonradiating solutions

Suppose
∫

S2

Ṁ = 0, then from asymptotic equation (8.5) we know that

0 =

∫

S2

Ṁ = −1

8

∫

S2

◦
χAB,u

◦
χAB

,u

so we get
◦
χ AB,u = 0, and finally also Ṁ = 0. Moreover, equation (8.6)

gives the relation

3ṄA||B
◦
εAB =

1

4
χ̂CD

||CD

so the dipole part dip(ṄA||B
◦
εAB) vanishes and this means that the angular

momentum is conserved. This way we have proved the theorem formulated
at the end of the Subsection 2.2, namely:

Theorem 2. If the TB mass is conserved than angular momentum is
conserved too.

The general solution of this type (namely Ṁ = 0 =
◦
χAB,u) will be called

nonradiating solution and it has the form

M = m+ 3p+M ,

NA = −p||Au− k
||A
0 − ◦

εABs||B + ÑA +
u

3

(

1

4

◦
εABχ̂CD

||CDB −M ||A

)

,

where Ñ
A

= ÑA and ÑA
,u = 0. The integration of the equations

4ĊAB = −NA||B −NB||A +
◦
γABN

C
||C

+(m+ 3p +M )
◦
χAB +

1

4
χ̂ABχ̂

CD
||CD ,

4ḊAB = −(
◦
∆ + 4)CAB + SA

C
B||C ,

with

SABC =
◦
χACNB +

◦
χBCNA −

◦
γAB

◦
χCDN

D

gives polynomial (with respect to the variable u) solutions of degree 2 for
CAB and degree 3 for DAB .

8.4. How to relate linearized theory with van der Burg equations

The “first order” asymptotics of the Bondi-Sachs type metric on J+ is

described by three functions M,
◦
χAB . We shall try now to relate these data
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with the boundary value on J+ of our invariants Ψι in the linearized theory
in such a way that the non-conservation laws for the mass and angular mo-

mentum are similar in both cases. Suppose we know M,
◦
χAB at the moment

u = u0 and
◦
χAB,u on J + (actually we need only in the neighbourhood of

u0). We propose to perform a supertranslation which is related to the data
at u0 in such a way that

(4M −
◦
χAB

||AB)(u0) = 0 . (8.19)

Remark. The condition (8.19) for flat Minkowski space corresponds
to the appriopriate choice of the surface {u = u0 = const.} which is a
true cone with a point-like vertex. Let us call the condition (8.19) the
supertranslation gauge at the moment u0. This way we have removed
quasi-locally the supertranslation ambiguity at the moment u0. We stress

that the relation 4M −
◦
χ AB

||AB
= 0 holds only at u0 because in general

QF(
◦
χAB,u) := 4M ,u −

◦
χAB

||AB,u
is not vanishing, however for the nonradi-

ating solutions the condition (8.19) may be fullfilled globally for all u. This
is the main difference between the linearized theory, where the condition

4M −
◦
χAB

||AB
= 0 can be fullfilled globally, and nonlinear data, where we can

only demand this condition to be fullfilled at one moment u0
3. Neverthe-

less, these procedure allows us to relate nonlinear data at u0 with linearized
theory, namely

4M =
◦
χAB

||AB → Ψx ,
◦
χAB

||AB,u → Ψ̇x ,

χ̂AB
||AB → Ψy , χ̂AB

||AB,u → Ψ̇y ,

and also
◦
χ AB = limρ→0+

(

ψAB − ρ−1
◦
γ AB

)

. Now it is easy to verify

the analogy. The calculations from the previous sections devoted to the
linearized gravity should convince the reader that in linear theory we can
believe in the following equations

3 The choice of the supertranslation corresponds to the choice of the “better” local
Bondi-Sachs coordinate system. More precisely, the cross-section u = u0 of J+

g

for the Einstein metric gµν in the Bondi-Sachs coordinate system (u, xA) should be
compared rather with the cross-section u = u0 −α of J+

f in the flat Minkowski space

with coordinates (u, xA) on the future null infinity, where u is the usual flat coordinate
corresponding to the usual null cone. The mono-dipole freedom in the choice of the
supertranslation α (and in the choice of coordinates (u, xA)) corresponds to the usual
translation freedom in the flat Minkowski space.
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−16π∂0mTB =

∫

S(s,0)

sin θdθdφ
[

Ψ̇x

◦
∆−1(

◦
∆ + 2)−1Ψ̇x + Ψ̇y

◦
∆−1(

◦
∆ + 2)−1Ψ̇y

]

,

(8.20)

−16π∂0Jz =

∫

S(s,0)

sin θdθdφ
[

Ψ̇x

◦
∆−1(

◦
∆ +2)−1Ψx,φ+Ψ̇y

◦
∆−1(

◦
∆ +2)−1Ψy,φ

]

.

(8.21)

On the other hand, the energy defined in terms of the asymptotics on J + by
(8.13) together with (8.5) gives the non-conservation law for the TB mass

−16π∂0mTB = −
∫

S2

4Ṁ sin θdθdφ =
1

2

∫

S2

◦
χAB,u

◦
χAB

,u sin θdθdφ

=

∫

S2

sin θdθdφ
[

(
◦
χAB

||AB),u
◦
∆

−1(
◦
∆ + 2)−1(

◦
χAB

||AB),u

+ (χ̂AB
||AB),u

◦
∆

−1(
◦
∆ + 2)−1(χ̂AB

||AB),u

]

. (8.22)

Similarity between (8.20) and (8.22) is obvious, provided
◦
χ AB

||AB,u
→ Ψ̇x,

χ̂AB
||AB,u

→ Ψ̇y.

We propose the following definition of the angular momentum (around
z-axis) in terms of the asymptotics:

Jz :=
3

8π

∫

S2

N̆A||B
◦
εAB cos θ sin θdθdφ ,

where
N̆A := NA +

1

12

◦
χAB

◦
χ

BC

||C .

It is compatible with the earlier proposition given by (7.12). We have
promised at the end of the previous section to show the relation (7.13) for
angular momentum. The following sequence of equalities holds

16πJ̇z = −
∫

S2

6Ṅφ +
1

2
∂u(

◦
χφB

◦
χBC

||C)

=

∫

S2

◦
χφB

◦
χBC

||C,u +
1

2

◦
χAB

,u

◦
χ

φA||B − 1

2

◦
χφB,u

◦
χBC

||C

= −1

2

∫

S2

◦
χAB

,u

◦
χAB,φ ,
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where in the middle we have used equation (8.6). The last equality (in the
above sequence) is a nontrivial identity and can be denoted more geometri-
cally

∫

S2

XAχABχ̇
BC

||C +
1

2
χ̇BCχAB||CX

A − 1

2
XAχ̇ABχ

BC
||C

= −1

2

∫

S2

χ̇AB(XCχAB||C +XC
||BχCA +XC

||AχCB) , (8.23)

where now χAB and χ̇AB are any symmetric traceless tensors on a unit
sphere, XA∂A := ∂φ and

χAB,φ = XCχAB||C +XC
||BχCA +XC

||AχCB .

Another form of (8.23) can be transformed in the following way.

1

2

∫

S2

χ̇BC
(

XAχAB||C +XCχB
A
||A −XAχBC||A

)

= 0

is equivalent to
∫

S2

χ̇BCXA
(

χBC||A − χBA||C

)

=

∫

S2

χ̇BCXCχB
A
||A

and the last equality holds for integrands

χ̇BCXA
(

χBC||A − χBA||C

)

= χ̇BCXAεAC χ̂B
D
||D

= XAχ̇BCεACεBFχ
FD

||D = XAχ̇AFχ
FD

||D .

This way we have proved (8.23) and finally also (7.13). Let us rewrite the
final result in the form

−16πJ̇z =
1

2

∫

S2

◦
χAB

,u

◦
χAB,φ

=

∫

S2

sin θdθdφ
[

(
◦
χAB

||AB),u
◦
∆

−1(
◦
∆ + 2)−1(

◦
χAB

||AB),φ

+ (χ̂AB
||AB),u

◦
∆

−1(
◦
∆ + 2)−1(χ̂AB

||AB),φ

]

.

The similarity with (8.21) is obvious, provided that the supertranslation
ambiguity is removed.
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8.4.1. Stationary solutions

Let us introduce in the full nonlinear asymptotics the following objects

4M = Q+BAB
||AB ,

◦
χAB = BAB − 2q||AB +

◦
γAB

◦
∆q ,

where Q and BAB are invariant with respect to the supertranslations, q
represents supertranslation ambiguity

q = q + α , q̇ = 0 ,

and equation (8.5) is equivalent to

Q̇ = −1

2
ḂABḂ

AB := QF(ḂAB) ,

where quadratic term corresponding to the flux of energy we denote by QF.

The supertranslation gauge Q(u0) =
◦
∆ (

◦
∆ + 2)q allows to relate Ψι at

J + with BAB . The decomposition is chosen in a convenient manner for the
situation of the so-called “sandwich-wave”.

Suppose BAB has compact support on J+ (suppBAB ⊂ [ui, uf ] × S2 ⊂
J +). Let us also suppose that below ui and upper uf our gravitating system
is stationary. These two assumptions define a “sandwich-wave”.

In Subsection 8.3.1 we have defined the nonradiating solution. Now let
us answer the question: When a nonradiating solution becomes stationary?
From ṄA = 0 we obtain p = M = χ̂AB

||AB = 0; m,k0, s are not re-

stricted but also
◦
χAB

||AB does not vanish. From ḊAB = 0 we get CAB =

(
◦
∆ + 4)−1SA

C
B||C . Similarly, ĊAB = 0 gives m

◦
χ AB = ÑA||B + ÑB||A

−
◦
γABÑ

C
||C or ÑA||B

◦
εAB = 0 and

◦
χAB

||AB = (
◦
∆ + 2)ÑA

||A.

Let us call a simple stationary solution the situation when
◦
χAB = 0 and

M = m = const., described by van der Burg in static case (sec.5 in [4]).

Remark The equations related to the Newman-Penrose charge in static
situation presented in [4] at the end of page 119 can be denoted in our
notation as

(
◦
∆ + 10)DAB = 15

(

MCAB −NANB +
1

2

◦
γABN

CNC

)

.
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We have defined three categories of special solutions:

simple stationary solutions ⊂ stationary solutions ⊂ nonradiating solutions

and let us observe that the supertranslation gauge leads to the conclusion
that every stationary solution in supertranslation gauge (8.19) is simple.

(nonradiating solutions in supertranslation gauge) ∩ (stationary solutions)

= simple stationary solutions

On the other hand, in the case of the “sandwich wave” the supertranslation
gauge at ui and at uf in general is not the same. The difference depends on

uf
∫

ui

Q̇du =

uf
∫

ui

QFdu

so in general the initial and final states cannot be simple in the same Bondi
coordinates.

8.5. Special solutions of asymptotic hierarchy, Newman–Penrose charges

The equations (8.5)–(8.8) represent a nonlinear analogue (up to the
fourth order) of the hierarchy (8.18) for the usual wave equation.

We could define, as a generalized NP charge, any solution which starts
in the n + 1-th order from “multipole constant”. More precisely, if ϕ ∈
ker[

◦
∆ + (n − 1)n] then from (8.18) ϕn+1,u = 0. Let us observe that if this

charge vanishes we can derive “finite” Janis solution [13], which is obtained
by “cutting the series” and derive hierarchy “upward”. More precisely,

ϕ = ϕ1ρ+ ϕ2ρ
2 + . . .+ ϕnρ

n ,

ϕn ∈ ker[
◦
∆ + n(n− 1)] =⇒ ϕ̇n+1 = 0 , ϕn = C(u)Yn−1(θ, φ) ,

ϕk−1 =
2k − 2

n(n− 1) − (k − 1)(k − 2)
ϕ̇k , k ≤ n ,

and Yl is a spherical harmonics ([
◦
∆ + l(l + 1)]Yl = 0). In particular, when

ϕ̇1 = 0, then C(u) is a polynomial of degree n− 1.
On the other hand, if NP charge is not vanishing, the solution ϕ can not

be stationary. Moreover, monopole and dipole examples show that these
solutions are singular (but on J −). The monopole example is the following

ϕ = 2ϕ2ρv
−1 = ϕ2

2ρ2

2 + ρu
,

◦
∆ϕ2 = 0 , ∂uϕ2 = 0 .
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Similarly the dipole one

ϕ =
4

3
ϕ3ρ

3v − u

v2(v − u)
= −ϕ3

4

3

ρ3

(2 + ρu)2
, (

◦
∆ + 2)ϕ3 = 0, ∂uϕ3 = 0,

and generally

ϕn+1 ∈ ker[
◦
∆ + n(n− 1)] =⇒ ϕ̇n+1 = 0 , ϕn+1 = CYn−1(θ, φ) ,

but now Ċ = 0 and ϕ̇n+2 = − n
n+1ϕn+1 6= 0.

For gravity we have:
1. DAB = 0 =⇒ Janis solution
2. DAB – pure quadrupole =⇒ NP charge solution.

In the Janis paper there are only linearized solutions. We shall try
now to construct an asymptotic quadrupole solution of nonlinear hierarchy
(8.5)–(8.8). Let us assume that M and χ̂CD

||CD are given quadrupoles

(0 = (
◦
∆ + 6)M = (

◦
∆ + 6)χ̂CD

||CD).

M,u =
◦
χAB,u = 0 ,

4M = x̃(θ, φ) ,
◦
χC

D

||DE

◦
εCE = ỹ(θ, φ) ,

DAB = 0 ,

SABC =
◦
χACNB +

◦
χBCNA −

◦
γAB

◦
χCDN

D ,

CAB = (
◦
∆ + 4)−1(SA

C
B||C) − 1

24
u2
(

nA||B + nB||A −
◦
γABn

C
||C

)

,

NA = −p||Au− k
||A
0 − ◦

εABs||B + ÑA +
u

3
nA ,

M = m+ 3p +M ,

nA : =
1

4

◦
εABχ̂CD

||CDB −M ||A ,

ÑA||B + ÑB||A −
◦
γABÑ

C
||C := (m+ 3p+M)

◦
χAB

+
1

4
χ̂ABχ̂

CD
||CD − 4(

◦
∆ + 4)−1(SA

C
B||C,u) .

This is a special example of the nonradiating asymptotic solution, which was
defined by the condition that the TB mass is conserved.
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9. Closing remarks
We have shown how to define energy at null infinity and its flux through

the J+ for linear hyperbolic theories like scalar field, electrodynamics and
linearized gravity. For a given surface (hyperboloid) which ends on J+ we
have assigned generators like energy and angular momentum. They fulfill
non-conservation law which comes in a natural way from the variational
formula. The boundary term describing flux through J + has been obtained
in three ways:
a) from the variational formula on a hyperboloid
b) from the variational formula on the future null infinity surface J+

c) from the energy-momentum tensor.
In all cases we get the same answer for the scalar field and electrodynam-

ics. For gravity, where there is no energy-momentum tensor, the symplectic
method has been successfully applied and it gives the correct answer for the
energy at J+ and the non-conservation law for it. The method is useful for
the definition of the angular momentum.

We have explained the relation between linearized theory and Bondi-
Sachs asymptotics and discussed the role of the supertranslations.

Appendix A
Explicit formulae on a hyperboloid

We give explicit formulae for the relations which have been used exten-
sively in the Section 4.

Λ = sinh2 ω sin θ, N|m =−Nm, N|kl =−Nk|l =Nηkl, N |k
k =−Nk

|k =3N ,

N = coshω, N3 = N3 = − sinhω, NA = 0, ηAB,3 = 2κηAB ,

ηAB , 3 = −2κηAB , εAB,3 = 2κεAB , εAB, 3 = −2κεAB , κ = cothω ,

Λ, 3 = 2κΛ, κN, 3 = −κN3 = N, κ, 3 = − 1

sinh2 ω
,

Γ3
AB = −κηAB , ΓA

B3 = κδA
B , ΓA

BC , 3 = 0 ,

2RABCD =
1

sinh2 ω
(ηACηBD − ηADηBC) , 2RAB =

1

sinh2 ω
ηAB ,

ξ|33 = ξ,33, ξ|3A = ξ,3A − κξ,A, ξ|AB = ξ||AB + κηABξ,3 ,

ξ3|3 = ξ3,3, ξ3|A = ξ3||A − κξA, ξA|3 = ξA,3 − κξA ,

ξA|B = ξA||B + κηABξ3 ,

h33|3 = h33,3, h33|A = h33,A − 2κh3A ,

hAB
|3 = hAB , 3 + 2κhAB , hAB|3 = hAB , 3 − 2κhAB , hA

B|3 = hA
B , 3 ,

h3A
|3 = h3A, 3 + κh3A, h3A|3 = h3A, 3 − κh3A ,

h3A|B = h3A||B − κhAB + κηABh33 ,

hAB|C = hAB||C + κηACh3B + κηBCh3A .
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Appendix B

Reduction of the symplectic form on a hyperboloid

Let (pkl, hkl) and (skl, qkl)denote two pairs of Cauchy data on a hyperboloid.
The (2+1)-splitting of the tensor qkl gives the following components on a sphere:
2
q:= ηABqAB, q33 – scalars on S2, q3A – vector and

◦
qAB := qAB − 1

2ηAB

2
q –

symmetric traceless tensor on S2. Similarly, we can decompose the tensor
density pkl. The quadratic form

∫

V

pklqkl can be decomposed into monopole

part, dipole part and the remainder in a natural way.
The “mono-dipole” part we write separately

mon





∫

V

pklqkl



 =

∫

V

1

2 cosh2 ω
p33mon(ξ) +

∫

V

tanh2 ω

Λ
p33mon(s33)

+
1

2

∫

∂V

tanhωp33mon(
2
q) , (B.1)

dip





∫

V

pklqkl



 =

∫

V

1

2 cosh2 ω
p33dip(ξ)

−2

∫

V

dip(sinh2 ωp3A||BεAB)
◦
∆

−1(q3A||Bε
AB)

+

∫

V

tanh2 ω

Λ
p33dip(s33) +

1

2

∫

∂V

tanhωp33dip(
2
q)

+

∫

V

dip

(

p33

2 cosh2 ω
+ tanhω

◦
∆−1p3A

||A

)

×
(

1

2

◦
∆

2
q −2 sinhω coshωq3A

||A

)

, (B.2)

where invariant ξ is defined as follows

ξ : = 2 cosh2 ωq33 + 2coshω sinhωq3A
||A + sinh2 ω

◦
qAB

||AB

− coshω sinhω
2
q, 3 −

1

2
(

◦
∆ + 2)

2
q −2

sinh2 ω

Λ
s33 .

From the vector constraints
sinhωp33, 3 + sinhωp3A

||A − coshω
2
p= 0 , (B.3)

(sinh2 ωp3A
||A), 3 + (sinh2 ω

◦
pAB

||AB) +
1

2

◦
∆

2
p= 0 , (B.4)

(sinh2 ωp3A||BεAB), 3 + (sinh2 ωεAC
◦
pA

B
||BC) = 0 , (B.5)
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we can partially reduce our form

∫

V

pklqkl =

∫

V

p33q33 + 2p3Aq3A +
1

2

2
p

2
q +

◦
pAB

◦
qAB

=

∫

V

p33q33 − 2(sinhωp3A
||A)

◦

∆
−1(sinhωq3A

||A)

−2(sinhωp3A||BεAB)
◦

∆
−1(sinhωq3A||Bε

AB)

+

∫

V

1

2

2
p

2
q +2(sinh2 ωεAC

◦
pA

B
||BC)

◦

∆
−1(

◦

∆ + 2)−1(sinh2 ωεAC
◦
qA

B
||BC)

+2

∫

V

(sinh2 ω
◦
pAB

||AB)
◦

∆
−1(

◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB)

=

∫

V

p33q33 − 2(sinhωp3A
||A)

◦

∆
−1(sinhωq3A

||A)

−2

∫

V

(sinhωp3A||BεAB)
◦

∆
−1(sinhωq3A||Bε

AB)

+

∫

V

1

2
(tanhωp33, 3 + tanhωp3A

||A)
2
q

−2

∫

V

(sinh2 ωp3A||BεAB), 3
◦

∆
−1(

◦

∆ + 2)−1(sinh2 ωεAC
◦
qA

B
||BC)

−2

∫

V

[

(sinh2 ωp3A
||A), 3 +

1

2

◦

∆(tanhωp33, 3 + tanhωp3A
||A)

]

◦

∆
−1

×(
◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB)

=

∫

∂V

tanhωp33

[

1

2

2
q −(

◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB)

]

−2

∫

∂V

(sinh2 ωp3A
||A)

◦

∆
−1(

◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB)

−2

∫

∂V

(sinh2 ωp3A||BεAB)
◦

∆
−1(

◦

∆ + 2)−1(sinh2 ωεAC
◦
qA

B
||BC)

−2

∫

V

(sinh2 ωp3A||BεAB)
◦

∆
−1

[

q3A||Bε
AB − (

◦

∆ + 2)−1(sinh2 ωεAC
◦
qA

B
||BC), 3

]

+

∫

V

p33

[

q33 + (
◦

∆ + 2)−1

(

sinh3 ω

coshω

◦
qAB

||AB

)

, 3 −
1

2
(tanhω

2
q), 3

]
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+

∫

V

tanhωp3A
||A

[

1

2

2
q +2 sinhω coshω

◦

∆
−1(

◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB), 3

−(
◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB) − 2
◦

∆
−1(sinhω coshωq3A

||A)

]

.

The volume term in the framebox is mono-dipole-free and corresponds to
the invariants y, Y. The last two terms we can proceed further, but first let
us write a scalar constraint in two equivalent forms
(

sinh3 ω

coshω

◦
qAB

||AB

)

, 3 + (
◦
∆ + 2)

[

q33 −
1

2
(tanh r

2
q), 3

]

= (tanhωξ), 3 + ξ

+
2

Λ

(

tanh2 ωs33 − tanhω sinh2 ωs3A
||A

)

, (B.6)

1

2

◦
∆(

◦
∆ + 2)

2
q +2 sinhω coshω(sinh2 ω

◦
qAB

||AB), 3 −
◦
∆ sinh2 ω

◦
qAB

||AB

−2(
◦
∆ + 2)(coshω sinhωq3A

||A)

= 2 coshω(sinhωξ), 3 −
◦
∆ξ − 2 sinh2 ω

Λ

( ◦
∆s33 + 2 sinhω coshωs3A

||A

)

.

(B.7)

For the “radiation” part we get the following result:
∫

V

p33

[

q33 + (
◦

∆ + 2)−1(
sinh3 ω

coshω

◦
qAB

||AB), 3 −
1

2
(tanhω

2
q), 3

]

+

∫

V

tanhωp3A
||A

[

1

2

2
q +2 sinhω coshω

◦

∆
−1(

◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB), 3

−(
◦

∆ + 2)−1(sinh2 ω
◦
qAB

||AB) − 2
◦

∆
−1(sinhω coshωq3A

||A)
]

=

∫

V

p33(
◦

∆ + 2)−1

[

(tanhωξ), 3 + ξ +
2

Λ
(tanh2 ωs33 − tanhω sinh2 ωs3A

||A)

]

+

∫

V

tanhωp3A
||A

◦

∆
−1(

◦

∆ + 2)−1

[

2 coshω(sinhωξ), 3 −
◦

∆ξ

−2 sinh2 ω

Λ
(

◦

∆s33 + 2 sinhω coshωs3A
||A)

]

=

∫

∂V

[

tanhωp33 + 2 sinh2 ω
◦

∆
−1p3A

||A

]

(
◦

∆ + 2)−1ξ

+

∫

V

[ ◦

∆p33 −
◦

∆ tanhωp33, 3 − 2 sinhω(sinhωp3A
||A), 3

−
◦

∆ tanhωp3A
||A

] ◦

∆
−1(

◦

∆ + 2)−1ξ
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+

∫

V

2

Λ

[

tanhωp33(
◦

∆ + 2)−1(tanhωs33 − sinh2 ωs3A
||A)

− sinh2 ωp3A
||A

◦

∆
−1(

◦

∆ + 2)−1(tanhω
◦

∆s33 + 2 sinh2 ωs3A
||A)
]

=

∫

∂V

[

tanhω
◦

∆p33 + 2 sinh2 ωp3A
||A

]

◦

∆
−1(

◦

∆ + 2)−1ξ

+

∫

V

[ ◦

∆p33 + 2 sinh2 ω
◦
pAB

||AB + 2 sinhω coshωp3A
||A

] ◦

∆
−1(

◦

∆ + 2)−1ξ

+

∫

V

2

Λ

[

tanh2 ωp33(
◦

∆ + 2)−1s33 − 2 sinh4 ωp3A
||A

◦

∆
−1(

◦

∆ + 2)−1s3A
||A

]

−
∫

V

2

Λ
tanhω sinh2 ω

(

p33(
◦

∆ + 2)−1s3A
||A + p3A

||A(
◦

∆ + 2)−1s33
)

, (B.8)

and again the framebox corresponds to the invariants (here x and X).
Finally we get in volume integrand the gauge invariant part

∫

V

pklqkl = monodipole part in V + “radiation” part in V

+

∫

∂V

[tanhω
◦
∆p33 + 2 sinh2 ωp3A

||A]
◦
∆

−1(
◦
∆ + 2)−1ξ

−2

∫

∂V

(sinh2 ωp3A||BεAB)
◦
∆−1(

◦
∆ + 2)−1(sinh2 ωεAC

◦
qA

B
||BC)

+

∫

∂V

tanhωp33

[

1

2

2
q −(

◦
∆ + 2)−1(sinh2 ω

◦
qAB

||AB)

]

−2

∫

∂V

(sinh2 ωp3A
||A)

◦
∆−1(

◦
∆ + 2)−1(sinh2 ω

◦
qAB

||AB) ,

where

monodipole part in V =

∫

V

1

2 cosh2 ω
p33mon(ξ) +

∫

V

tanh2 ω

Λ
p33mon(s33)

+

∫

V

1

2 cosh2 ω
p33dip(ξ) − 2

∫

V

dip(sinh2 ωp3A||BεAB)
◦
∆−1(q3A||Bε

AB)

+

∫

V

tanh2 ω

Λ
p33dip(s33) +

∫

V

dip

(

p33

2 cosh2 ω
+ tanhω

◦
∆

−1p3A
||A

)
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×
(

1

2

◦
∆

2
q −2 sinhω coshωq3A

||A

)

,

“radiation” part in V =

∫

V

[

◦
∆p33 + 2 sinh2 ω

◦
pAB

||AB

+2 sinhω coshωp3A
||A

]

◦
∆

−1(
◦
∆ + 2)−1ξ

−2

∫

V

(sinh2 ωp3A||BεAB)
◦
∆−1

[

q3A||Bε
AB

−(
◦
∆ + 2)−1(sinh2 ωεAC

◦
qA

B
||BC), 3

]

.

Appendix C

List of symbols

V – three-dimensional volume or function in Bondi-Sachs type metric

L – Lagrangian density

Σ – hyperboloid

ϕ – scalar field

ψ – rescaled scalar field

δ – “variational” derivative

∂µ – partial derivative

Tµ
ν – symmetric energy-momentum tensor

ηµν – flat Minkowski metric

η – det ηµν

T µ
ν – canonical energy-momentum density

δµ
ν – Kronecker’s delta

pµ – canonical field momenta

π – canonical momenta

H – Hamiltonian, energy generator

H – density of a Hamiltonian or two-dim. trace of hAB

xµ, yν – coordinates on M

t – time coordinate on M2

r – radial coordinate on M2

ω – related radial coordinate on M2, r = sinhω

ρ – “inverse” radial coordinate on M2, r = ρ−1

s – “hyperboloidal time” coordinate on M2, s = t−
√

1 + r2

u, v – null coordinates on M2, u = t− r, v = t+ r
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u – coordinate on M2, u = −2r

θ, φ – spherical coordinates on S2

d – exterior derivative

µ, ν, . . . – four-dimensional indices running 0, . . . , 3

k, l, . . . – three-dimensional indices running 1, . . . , 3

A,B, . . . – two-dimensional indices on a sphere

a, b, . . . – two-dimensional “null” indices on M2

2 – d’Alambertian, wave operator

−

2 – conformally related wave operator

ηµν – conformally related metric

R – scalar curvature

X – vector field

i0 – spatial infinity

J – null infinity

J+ – future null infinity

J− – past null infinity

N – null surface “parallel” to J+ or a piece of J+

mADM – ADM mass

S2 – sphere parameterized by θ, φ

S(s, ρ) – sphere in M corresponding to coordinates s, ρ

Ss(ω) – sphere in M corresponding to coordinates s, ω

S(s, 0) – sphere on J+

S(1) – unit sphere
◦

γAB – metric on a unit sphere
◦

∆ – two-dimensional laplacian on a unit sphere
◦

εAB – skew-symmetric tensor on a unit sphere, sin θ
◦

εθφ = 1

εAB – two-dimensional skew-symmetric tensor, r2 sin θεθφ = 1

|| – two-dimensional covariant derivative on a sphere

∂̂A – dual of ∂A, ∂̂A = εA
B∂B

Fµν – electromagnetic induction density

fµν – electromagnetic field

Aµ – electromagnetic potential

ψ,∗ψ – gauge-invariant positions for electromagnetism

π,∗π – gauge-invariant momenta for electromagnetism

J̃z – angular momentum
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gkl – three-dimensional riemannian metric

P kl – ADM momentum

Kkl – extrinsic curvature

Rµ
νλσ – curvature tensor

Rµν – Ricci tensor

Γλ
µν – Christoffel symbol

nµ – normal unit future directed vector

R – three-dimensional scalar curvature

hkl – linearized metric

Pkl – linearized momentum

pkl – “new” linearized momentum

g – det gkl

Λ – volume element, Λ = r2 sin θ

ξµ – gauge in linearized gravity

κ – cothω

x,X,y,Y – invariants

χAB – traceless part of hAB

SAB – traceless part of pAB

S – trace of pAB

△Σ – laplacian on a hyperboloid

Jz – angular momentum generator

Pz – linear momentum generator

Ψx, Ψy – “asymptotic position” on a hyperboloid

Πx,Πy – “asymptotic momenta” on a hyperboloid

ι – abstract index, ι = x, y

Eab – 1

2
Eabdx

a ∧ dxb = du ∧ dv

ya – invariant in null coordinates

xab – invariant in null coordinates

β, V, UA, γAB – parameters describing Bondi-Sachs type metric

C – null cone or van der Burg asymptotics

mTB – Trautman-Bondi mass

ΨAB – nonlinear asymptotic position on a null cone

ΠAB – nonlinear asymptotic momenta on a null cone

LX – Lie derivative with respect to vector field X

sz, sl, s – spin charge

m – mass charge
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pz, pl,p – linear momentum charge

jl0,k0 – static momentum charge (center of mass)

M – Minkowski space or asymptotics of function V in van der Burg notation

γ, δ – van der Burg parameterization of γAB

U,W – van der Burg parameterization of UA

N,P – van der Burg parameterization of NA

NA – asymptotics of UA

c, C,D – van der Burg notation for the asymptotics of γ

d,H,K – van der Burg notation for the asymptotics of δ
◦

χAB , CAB ,DAB – asymptotics of γAB

σx, σz – Pauli matrices

SABC – traceless symmetric tensor appearing in eq. (8.8)

ŜABC – “dual” of SABC , ŜABC =
◦

εA
DSDBC

ĈAB – “dual” of CAB , ĈAB =
◦

εA
DCDB

χ̂AB – “dual” of
◦

χAB , χ̂AB =
◦

εA
D

◦

χDB

D̂AB – “dual” of DAB , D̂AB =
◦

εA
CDCB

mon(F ) – monopole part of F

dip(F ) – dipole part of F

F – mono-dipole-free part of F

F – supertranslation of F

Yl – spherical harmonics with eigenvalue −l(l + 1) of the laplacian
◦

∆
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