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We discuss three classical field theories based on the wave equation:
scalar field, electrodynamics and linearized gravity. Certain generating for-
mula on a hyperboloid and on a null surface are derived for them. The
linearized Einstein equations are analyzed around the null infinity. It is
shown how the dynamics can be reduced to gauge invariant quanitities in a
quasi-local way. The quasi-local gauge-invariant “density” of the Hamilto-
nian is derived on the hyperboloid and on the future null infinity J+. The
result gives a new interpretation of the Bondi mass loss formula. We show
also how to define the angular momentum. Starting from an affine approach
for Einstein equations we obtain variational formulae for Bondi-Sachs type
metrics related to energy and angular momentum generators. The original
van der Burg asymptotic hierarchy is revisited and the relations between
linearized and asymptotic nonlinear situations are established. We discuss
also supertranslations, Newman-Penrose charges and Janis solutions.

PACS numbers: 11.10. Ef, 04.20. Ha, 11.30. Ij

1. Introduction

In the papers [2—4], from the series “Gravitational waves in general rela-
tivity” Bondi, van der Burg, Metzner and Sachs have analyzed asymptotic
behaviour of the gravitational field at null infinity. The energy in this regime,
so called Bondi mass, was defined and the main property — loss of the en-
ergy — was proved. See also discussion on p. 127 in the last paper [10] in
this series. The energy at null infinity was also proposed by Trautman [1]
and it will be called the Trautman-Bondi energy (or TB energy).

We interprete their result from symplectic point of view and we show
that the concept of Trautman-Bondi energy arises not only in gravity but
can be also defined for other fields. In this case the TB energy can be
treated formally as a “Hamiltonian” and the loss of energy formula has a
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natural interpretation given by (2.21). We apply similar technique to define
the angular momentum.

We introduce here the language of generating functions which simplifies
enormously our calculations. This point of view on dynamics is due to
Tulczyjew (see [29]).

We start from an example of a scalar field for which we define TB en-
ergy as a “Hamiltonian” on a hyperboloid. The motivation for considering
hyperboloids in gravitation one can find in [12, 15] and [16].

In Section 3 we give an example from electrodynamics.

Next we prove analogous formulae for the linearized gravity. The result
is formulated in a nice gauge-independent way. We show how the formula
(2.21) can be related to the original Bondi-Sachs result — mass loss equation
(35) of [2] (cf. also equations (4.16) in [3], (13) in [4] and (3.8) in [10]).
Our result is an important gauge-independent generalization of this original
mass loss equation. It shows the straightforward relation between the Weyl
tensor on the scri and the flux of the radiation energy through it. We show
how to define the angular momentum from this point of view.

In Section 8 we give “spherically covariant” formulation of the asymptotic
equations from [4]. We discuss several features of the theory like supertrans-
lations, charges etc. and also the relations between linear and nonlinear
theory.

1.1. New results and propositions

We give a list of problems and results which seem to be important and

are discussed in this paper.
e Hamiltonian formula on a hyperboloid and at the future null infinity

for the scalar field
e application of the proposed method in electrodynamics

e natural outcome in linearized gravity, non-conservation laws, invari-
ants

e analysis of the symplectic structure proposed by Kijowski in Bondi-
Sachs coordinates, non-conservation law for the energy at null infinity
gives Bondi formula, symplectic structure on scri gives the result pro-
posed by Ashtekar et al.

e application of the method for angular momentum, Hamiltonian for-
mula and non-conservation law for it

e covariant formulation on a sphere of the Bondi—van der Burg—Metzner—
Sachs asymptotic hierarchy

e transformation laws with respect to the supertranslations in general
case without axial symmetry, hypothesis for the angular momentum
and static moment
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e TB Four-momentum for any (cross-)section of the future null infinity

in terms of the BvBMS asymptotics

e simple relation between asymptotics on scri in full nonlinear theory
and linearized gravity

e simple interpretation of the Newman—Penrose constant and their anal-
ogy in the linearized theory.

2. Scalar field

Consider a scalar field theory derived from the density of a Lagrangian
L = L(p,¢,), where ¢, := 0,¢. The entire information about field dynam-
ics may be encoded in the equation

SL(, o) = Ou(pdp) = (0up")op + pHopy - (2.1)
The above generating formula is equivalent to the system of equations

)

p_ 2
oL
= — . 2.3
vy (2.3)

It is obvious that the system of equations (2.2)-(2.3) is equivalent to the
Euler-Lagrange equations in the usual form

oL _o
M&DH_@QD'

Hamiltonian description of the theory is based on a chronological anal-
ysis, i.e. on a (3-+1)-foliation of space-time. Treating separately the time
derivative and the space derivatives, we rewrite (2.1) as

0L = (pog) + Ok (p"o¢) (2.4)

where we denoted p := p°. Integrating over a 3-dimensional space-volume
V' we obtain

5/L = /(p&p +p5¢>)+/pL5<p=/(p5<p—¢5p+5(p¢))+/pL&p,
1% 1% oV 1% oV
(2.5)
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where by p we denote the normal part of the momentum p*. Hence, the
Legendre transformation between p and ¢ gives us

—5/H(<p,p) = /(1’75@—@19) +/pi5<p, (2.6)
14 \%

ov

where the density of the Hamiltonian is

H:=pp—L (2.7)
and the Hamiltonian we denote by H := [ H. Equation (2.6) is equivalent
\%
to the Hamilton equations
oH oH
) = —— L) = — 2.8

provided no boundary terms remain when the integration by parts is per-
formed. To get rid of these boundary terms we restrict ourselves to an
infinitely dimensional functional space of initial data (g, p), which are de-
fined on V and fulfill the Dirichlet boundary conditions ¢lgy = f on its
boundary. Imposing these conditions, we kill the boundary integral in (2.6),
because dp = 0 within the space of fields fulfilling boundary conditions. In
this way the formula (2.6) becomes an infinitely dimensional Hamiltonian
formula. Without any boundary conditions, the field dynamics in V' can not
be formulated in terms of any Hamiltonian system, because the evolution of
initial data in V may be influenced by the field outside of V.

Physically, a choice of boundary conditions corresponds to an insulation
of a physical system composed of a portion of the field contained in V. The
choice of Dirichlet conditions is not unique. Performing e.g. the Legendre
transformation between ¢ and p* in the boundary term of (2.6), we obtain

/pl&o = 5/pls0— /s0510l : (2.9)
oV ov

ov
Hence, we have
—0H = /(P5s0—sb5p) — /s0510l : (2.10)
\% ov
The new Hamiltonian
H=t+ [ ot (2.11)
ov

generates formally the same partial differential equations governing the dy-
namics, but the evolution takes place in a different phase space. Indeed, to
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derive the Hamiltonian equations (2.8) from (2.10) we have now to kill 6p*
at the boundary. For this purpose we have to impose the Neumann bound-
ary condition pt |5 = f. The space of fields fulfilling this condition becomes
now our infinite dimensional phase space, different from the previous one.

The difference between the above two dynamical systems is similar to the
difference between the evolution of a thermodynamical system in two differ-
ent regimes: in an adiabatic insulation and in a thermal bath (see [22]). As
another example we may consider the dynamics of an elastic body: the
Dirichlet conditions mean controlling exactly the position of its surface,
whereas the Neumann conditions mean controlling only the forces applied to
the surface. We see that the same field dynamics may lead to different Hamil-
tonian systems according to the way we control the boundary behaviour of
the field. Without imposing boundary conditions the field dynamics can not
be formulated in terms of a Hamiltonian system.

2.1. Coordinates in Minkowski space

We shall consider the flat Minkowski metric of the following form in
spherical coordinates

Nuwdytdy” = —dt* + dr? + r?(d6? + sin® 0de?) .

The Minkowski space M has a natural structure of spherical foliation around
null infinity, more precisely, the neighbourhood of J7 looks like S? x M.
We shall use several coordinates on Ms: s,t,r, p,w,v,u. They are defined

as follows

r = sinhw=p!,

t = s+coshw=s+p /14 p2,

v=t+r=s+p (V1+p2+1).

The hypersurfaces s =const., © =const. and v =const. correspond to the

lines in the space Ms. The two pictures below show them schematically.
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r=0 r
Fig. 1. A piece of My close to the center in usual coordinates: radial r and tempo-

ral ¢.

s = const.
u=s
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Fig.2. A piece of M> close to null infinity in coordinates p, s.
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2.2. Scalar field on a hyperboloid

We shall consider a scalar field ¢ in a flat Minkowski space M with the
metric

2dsdp dp? :
Jdatda” = p 2 | —p?ds® + + +df? +sin?60d¢? | .
N P < P Tr 2 147 ¢

(2.12)
Let us fix a coordinate chart (z#) on M such that 2! = 0, 22 = ¢ (spherical

3

angles), 23 = p and 2° = s, and let us denote by ’(; Ap a metric on a unit

sphere ( %’AdeAde := df? 4+ sin? 6d¢?).
We shall consider an initial value problem on a hyperboloid X

Y= {x€M|x0:s:const.}

for our scalar field ¢ with a density of the Lagrangian (corresponding to the
wave equation)

1 1
L: = —5\/—det77W77“”cpuapy = —§p*281n0

% [P2(80 )2 (900)2 + 2903900

142 V1+p?

+ VABSDASDB] .

We use the following convention for indices: Greek indices p, v, ... run
from 0 to 3; k,l,... are coordinates on a hyperboloid X and run from
1 to 3; A,B,... are coordinates on S(s,p) and run from 1 to 2, where

S(s,p) :={z € X5 | 2® = p = const.}.
The generating formula (2.1) can be written for any V C X

5/13 = /(p°5s0),o+/p3530
174 1% oV

and in particular the definition (2.2) of the canonical momenta p* gives the
time and radial components of it

oL
p° —:pQSin9< 20 L ),

9o L+p2 1+
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Let us observe that in general the integral / L is not convergent on X' if we

4
assume that ¢ = O(p) and ¢3 = O (1). The same problem with “infinities”
we meet in p” and p3. We can “renormalize” L adding a full divergence

L:= —gsind|p (¥3) 1+p2(¢0) + mwgww Y Yavp
— L 150 sin 97/’73 o | - 183 (sinfp~te?) (2.13)
2 Nl 2 ’

where we have introduced a new field variable v := p~'¢ which is natural
close to the null infinity. The generating formula takes the following form
with respect to the new variable 1)

5/3:/@%@p+/ﬁw
|4 \%4

oV
and the Euler-Lagrange equations (2.2)—(2.3) we write explicitly

0 = @ = sinf Yo — vs
Do 1+p2 J14p2)’
oL 1
3 : 2
7= L= —sing | ——— + 0% | |
Otg < V1+ p? g
oL o
A : AB
™ = —— = —sinf Y B,
Oa v
oL
8M7TM = % =0.
It is easy to check that all terms are finite at null infinity, provided ¥ = O(1)
and 13 = O(1).
From the above equations one can easily obtain the wave equation
O¢ =0, (2.14)
where the wave operator O is defined with respect to the metric
2dsd dp?
Ny datda” == —p?ds? + P + i 5 +d6% +sin? d¢? = p277de“dx”

V14+p2 1+p

which is conformally related to the original flat metric 7.

(2.15)
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Remark. Let us observe that

1 — 1 = o
L= —5/=detn, 1" Puhy = L+ 5 (\/—det N, (I p) 7" wz) )

)

so we are not surprised that (2.14) holds. It can be easily checked that the
equation (2.14) is equivalent to the original wave equation

Op =0 (2.16)

by the usual conformal transformation for the conformally invariant operator

0 —i—%ﬁ because the scalar curvature R of the metric 7, vanishes.
From the Legendre transformation between 70 and 1y we can define the
“Hamiltonian” density

H:= lSim@ [(p¢,3)2 +

5 (10)? + %AB¢A7/)B] = %y — L

1
1+ p?

and the following variational relation holds

—5/H - / (msw —ww) n /ﬂ%w , (2.17)
\% \% ov
where here 7 := 70, B
Remark. The relation between (2.17) coming from L and (2.6) with
respect to L gives the same result for the numerical value of the Hamiltonian

H := [ H and this can be easily seen from the following observations
X

wop — pom = pop — pop”,
1
w36 — p3op = 55 sin fpip? .

So the formulae give the same Hamiltonian because pi? vanishes on J+.
Unfortunately, if we integrate the relation (2.17) over hyperboloid X', we
quickly realize that the boundary term

/ o = / sin Gepdn)

0% S(s,0)

does not vanish for the usual asymptotics of the field 1. If we want to have
a closed Hamiltonian system, we have to assume that 1|95, = 0 and then
the energy will be conserved in time. But we would like to describe the
situation with any data | 7+- In this case we can define the Trautman-
Bondi energy, but it would be no longer conserved, formally we can treat
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it as a “Hamiltonian” of the opened Hamiltonian system and the formula
(2.17) is useful as a definition of the Trautman-Bondi energy together with
its changes in time. In our case the boundary condition f depends on time
(see disscussion after formula (2.8)) and an interesting case for us is to
compare the data with different boundary conditions. Although the energy
defined on a hyperboloid is not a Hamiltonian in a usual sense, it plays
an important role for the description of the radiation at null infinity. The
method is useful for the construction of the other generators of the Poincaré
group and will be applied for the angular momentum.
We should express our Hamiltonian as a functional of (7, 1))

my/ 1+ p?

sin @

2
H:= %sin@ (pwg)2 + ( —H/Jg) + %’ABTZJATZJB (2.18)

and the Hamilton equations (2.8) are the following

s

)= (L") /14 02, (2.19)

o= (mv/T+ ) 5+ [(1+ p7)sin 0] , + (sin Y4 P4p) 4, (2:20)

and they correspond to the wave equation (2.14).

The variational formula (2.17) describes an open Hamiltonian system
because in our case there is no possibility to kill the boundary term. Our
“Hamiltonian” is not conserved in time

—do /H :/w?’z/}: / sin (1))? (2.21)

3 ox S(s,0)

(we remind that 0X'=5(s,0) is odd oriented). Formally, the result (2.21) can
be obtained from (2.17) if we replace variation § with dp but it can be also
checked by a direct computation using equations (2.19) and (2.20) together
with the definition (2.18) of the density H.

Nevertheless this formal calculation is very useful. For example, we can
easily define the angular momentum along the z-axis as a generator for the
vector field a%

/(777(;551& — 1) ¢0m) = —5/7“/1,¢ =—0J,.
z

X
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Using equations of motion, we can check that the angular momentum is not
conserved in time

—doJ. = —o /m/;,d, = /w?’%: / sin 64n) 4 . (2.22)

> ox 5(s,0)

We will show in the sequel that the formulae (2.21) and (2.22) can be written
for the linearized gravity and have the interpretation of the TB mass loss
formula and angular momentum loss equation.

Let us formulate the following theorem:

Theorem. If the TB mass is conserved then the angular momentum is
conserved too.

This means that it is impossible to radiate away the angular momentum
without a loss of mass. The proof is a simple consequence of (2.21) and
(2.22). If the TB mass is conserved then (from (2.21)) ¢ has to vanish on
J and from (2.22) we get that the angular momentum is conserved.

We shall see in the sequel that this theorem also holds for Bondi-Sachs
type metrics describing asymptotically flat solutions at null infinity for the
full (nonlinear) Einstein equations.

2.8. Scalar field on a null cone

We shall consider an initial value problem on a null surface N defined as
follows

N = {xeM|v:s+p_1(1—|—\/1—|—p2)zconst.} , (2.23)

where we have introduced a null coordinate v := s + p~1(1 + /1 + p?)
which plays the role of time in our analysis. Formally, 7 corresponds to
the surface p = 0. Let us rewrite the Minkowski metric (2.12) using new
coordinates v, W instead of s, p

N datdz” = p2 (—p2dv2 — p*dvda + d#? + sin? Gd(bz) i

The relation between coordinates (v,u) and (z° 23) used in the previous
subsection is the following

v=a"+p M1+ V1+p?), u=-2"", p=2a",

1
=0y, 03=2p"0—p |1+ —= 0y,
1+ p?

1 1 1
d2? = dv+ = <1+7> du, da®==pdu.

2 V14 p? 2
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The density of the Lagrangian takes the form
_ 1 — _w . 1 o
L= 5 det 77“”17“ uthy, = sin 6 [1%1/@ - ¢% - Z,OQ WABibAibB

The formula (2.1) on the null surface N can be written as follows

5N/Z:N/(w”5¢),v+ /ﬂw

ON

and the corresponding components of the canonical momenta are

b OL . B
Y’ = R = sin 6y,
- 0L . : Yo
T = =sinf (Y, — 2¢g) = —sinb | p*hy + —— | .
D (¢ ) (P V3 1+p2>

If we perform Legendre transformation, we obtain the density of the Hamil-
tonian on the cone N

2 [e]
H =7%), — L =siné [(%)2 + pz WAB¢A¢B] .
Let us observe that on the limiting surface J* (parallel to N) we get
lim H = sinf(y5)* = sin 0¢* (2.24)
p—0

and the Hamiltonian [ H describes the total flux of energy through J7.
J+

Moreover, the symplectic structure on N has also a natural limit on scri'

/ o = / sin 0pgoe =0 / sin @ydypdudade . (2.25)
N N J+

We will show in the sequel that the above formulae exist in electrodynamics
and linearized gravity. Similarly, the equation

/ My = / sin Opath =% / sin ) 5 dudOde (2.26)
N N J+

describes the flux of angular momentum through J+.

! These observations has been applied by Ashtekar et al. [31-33] for the description
of the space of radiative modes in exact relativity, see also equation (7.17) in this
article.
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2.4. ADM mass

We have tried to treat separately the hyperboloid and scri and we have
learned that there is no possibility to get a nice Hamiltonian system. Let
us denote by N (only in this subsection) a “piece” of J+ between X and
spatial 1. If we take the surface X U N together

5 2/ H+ / H|= / (#6¢—¢6w>+ / <7’r6¢—¢67r)+ / T35+ / 7T

N X N ox ON
(2.27)

we will obtain a Hamiltonian system provided we can kill the boundary term.
This can be achieved, assuming for example that

lim ¢ =0

U— —00

which simply means that Y is vanishing at spatial infinity. This usually
happens for initial data on Cauchy surface t =const with compact support or
vanishing sufficiently fast at spatial infinity. The following relations confirm
our theorem

7T3‘82 = —Sin9¢:7rﬂ,
Y = S(s,0), 9N = S(s,0)US(—00,0),
—SmapM = / (mszp - 1/}57r) n / sin §4)63p , (2.28)
SUN O(XUN)
where mapnm = f H. Let us note that here N = L<J S(u,0) but we can

SUN
also consider N = U S(u,0) and then (2.28) leads to the Bondi mass on

u€[s,s0]

s, as a Hamiltonian [34].

2.4.1. One-parameter family of Hamiltonian systems and their limit

Dot ={s=7p>e},
14+V1+¢e2 €
Nie: = qu=1+ ; Spsep,
€ 1+V1+e?

€
. 1+\/1+€2}7
lim ¥, = 3,

e—0t
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lim N,. = N, cJ",

e—0t
lim I,. = 4%,
e—0t
1++v1 2 21 2
NT,EZ{UZT+ + +6’ +(€ +T§u§7},
g g

2
L. = {tﬂ, ps VIS m} |
€
Y e UN; UL, is an explicit example of a one-parameter family of surfaces
(with respect to 7) and the Hamiltonian related to this family is an ADM
mass. On the other hand, the Hamiltonian system (2.27) is a limit of these
systems with respect to the second parameter ¢ (¢ — 01). In this way we
have certain “finite” procedure for the Hamiltonian system (2.27) at infinity.

2.5. Energy—-momentum tensor

Let us consider the energy—momentum tensor for the scalar field ¢

1
™, = \/—_—77 (p'py — 30", L),
where 7 := det 7, and by ¢, we have denoted Kronecker’s delta. For the
Lagrangian L desribing scalar field ¢ the canonical energy momentum is
symmetric. From the Noether theorem we have

O (V—TH,X") =0

for a Killing vector field X* and integrating the above formula we obtain

Ao / VT, X" = — / VT3, X" . (2.29)

X ox

Usually, when X' is a spacelike surface with the end at spatial infinity, the
boundary term on the right-hand side vanishes and the equation (2.29) ex-
presses conservation law for the appriopriate generator related to the vector
field X. On the contrary, for the hyperboloid the right-hand side does not
vanish and (2.29) expresses non-conservation law. It can be easily verified
that for the energy and angular momentum we have respectively

/\/—_UTOOZ/H7
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/ V=T’ = / T
X X

The boundary terms arising in (2.29) for the energy can be expressed in
terms of energy-momentum tensor

1/ .
- / T3op *sin 0dOd¢ = -5 / T p %sinfdode¢ | = / P?sin0dAde | |
ox ox orcJg+

1
/ T,p~ *dpsin 0dde = / dz <§T”vp_2 sin 6d9d¢>

and )
§P72TUU — 1}[}2 )
T+
Similarly for angular momentum
1/ - .
— / T34p * sin 0dOde = -5 / T",p 2sinfdodg | = / Y 4 sin0dOde |
ox ox oxcJg+

1
/ TV yp *dpsin 0dfde = / dz <§Tv¢p_2 sin 9d9d¢>
N N

and

1 .
50 T =g
T

It is easy to verify that the result is compatible with (2.21)—(2.22) and (2.24)—
(2.26).

This calculation shows that quasi-local density [ 2 sin #dOd e of the en-

S2

ergy on J+ has two different interpretations. It is a boundary term which
describes non-conservation of the “Hamiltonian” on a hyperboloid X or a
density of a “Hamiltonian” on J . More precisely, it is a density with re-
spect to the parameter w but integrated over a sphere. This is an example
of an object which is local on M, but non-local on S?. We call such objects
quasi-local. It will be shown in the sequel that this concept of quasi-locality
is useful in electrodynamics and gravitation.

The equations (2.21) and (2.22) are examples of the general formula
which has the following form for any Killing vector field X = X*9,

do / V=T X" | = - / XA + 13X (2.30)

X ox
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Equation (2.21) corresponds to the vector field X := Jy and (2.22) to the
Xy = 0p.

Remark. One can check by a direct computation that X3| 7+=0, which
simply means that the (Poincaré group related) Killing field X is tangent to
the J7.

The vector field corresponding to the linear momentum in z direction

0
Xp = —&80 — p2008963 — psinf0y , Xp|s+ = —cosb0y

1+ p?

gives the loss formula

-0 P, = /7T3X?3¢ =— / sin @ cos 0(1))? (2.31)
ox 5(5,0)
where P, := /\/—_nTSXI’i.
Similarly,zwe can take a boost generator along z-axis
X = —pV/1+ p2cos85—/1+ p?sin 00p+sXp , Xil|l7+ = sXp]J++5¢,
where 04 := £4P0p, and the formula (2.30) takes the form

—0 K, = / X0 4) + w3 Xy = —s0y P, — / sin? 0y (2.32)
ox S(s,0)

for K, .= /TSX;L( or
b))

—9o K, + s0y P, = / sin 0401 .
S(s,0)

Equations (2.21), (2.22), (2.32) and (2.31) express the non-conservation
law of the Poincaré group generators defined at null infinity.

3. Electrodynamics

This section should convince the reader that the TB mass and angular
momentum at null infinity can be described in classical electrodynamics in
a similar way as for the scalar field in previous section.
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The field equations for linear electrodynamics may be written as follows
0L = 0, (F"™M0A,) = 0, (F™F)6A, + FHA,,, (3.1)

where A,, = 9,A, and L is the Lagrangian density of the theory. The
above formula (see [25]) is a convenient way to write the Euler-Lagrange
equations

oL
0, F"H =
H 0A,
together with the relation between the electromagnetic field f,, = A,, —
A, and the electromagnetic induction density F"# describing the momenta
canonically conjugate to the potential

(3.2)

oL

FU = .
Ay,

(3.3)

For the linear Maxwell theory the Lagrangian density is given by the stan-
dard formula

L=~V fun (3.4)

and relation (3.3) reduces in this case to FH := /=nHn"P fus.
Integrating (3.1) over V' we obtain

b /L = /ao(fkoaAk) + /]:”35A,, =
\%4 \% oV

= /ao(fB%AB +f305A3)+/(fB35AB + F%5A0). (3.5)
\% oV

We assume that the charge e defined by the surface integral

€= / Fo (3.6)
S(s,p)

vanishes. The situation with e # 0 can be described Similarly as in [24] but
we are interested in “wave” degrees of freedom and we are going to show, how
the volume part of (3.5) can be reduced to the gauge-invariant quantities.

Let A :=p2A S(s,p), Where Ag, ) denotes the 2-dimensional Laplace-
Beltrami operator on a sphere S(s, p). One can easily check that the operator

o
A does not depend on p and is equal to the Laplace-Beltrami operator on

[e]
the unit sphere S(1). Operator A is invertible on the space of monopole—
free functions (functions with a vanishing mean value on each S(s, p)).
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Let us denote by 48 the Levi-Civita antisymmetric tensor on a sphere
S(s,p). We can rewrite (3.5), provided that the electric charge e vanishes,

in the following way

5 L=
v

/30 [fOB,B AT 2AB g+ FR5A5 + FOB oo ATop 2 (e*P A B)
14

+ /(F’B,B A16p72AB 5 + FO35 A0+ B e A 0p 2(eAP Ay ).

ov
(3.7)

Here, by “||” we denote the 2-dimensional covariant derivative on each sphere
S(s,p). Using identities g FPO+03F30 = 0 and dg FP3+09pF% = 0 implied
by the Maxwell equations and integrating again by parts we finally obtain

5 [1-

v
/30 [7:30 5715( AAs — (p2AP ) 3) + (F*Bl%%pe) 5715P72(5ABAAHB)}
v

+/ []'—03 AT6(AAg — p 2 AP po) + (FPFIC ge) A_l(sp_Q(EABAAHB)} :

oV
(3.8)

The quantities &AO - p_QABHB,O and ( &Ag - (p_QABHB)f,) are gauge
invariant and it may be easily checked that

sin 0 < AAy — p_QABHB,o) = pngoHA (=7°)

and
sin 6 { AAs — (,O_QABHB),?;} = prAsuA (=m).

Let us introduce the following gauge invariants

Y = F/sing
*h 1 = p726ABABHA:—>k]:30/SiD9
mio= —p*F3a

B||lC 2 A
s = FOBCepc = p? « F 1A >
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where
* FHY = 6“V)‘0.7:)\

Now we will show how the vacuum Maxwell equations
OuF*™ =0, 0yxF" =0

allow to introduce equations for gauge-invariants. The result is analogous
to (2.19) and (2.20) describing scalar field

b= (L4 + sV, (3.9)
= (m/T4 %)+ [(1+ o) sin 03] , +sinf A, (3.10)
W= (147 + e/ T+ 7, (3.11)

st = (/1 +p?) s+ [(1+p°)sinf «¢3] , +sin A xp.  (3.12)
The proof of (3.9) is based on the observations that

. T
sinf@yg = FO0 5= —F34 4 = S0+ p) + s/ 14 p?,

Fha P

+
L+p2 /14 p2

sin gpg = F0 5 = FO4) 4
Similarly for (3.10) we have the following relations
— (>|<.7:0A||B€AB)70 — (*‘7;3AHB€AB)’3 + (*]_—ABHBchC)Q =0,
«FO4 = —p’e P Fyp
« P3N = pPeABFop,

*fAB = p €AB.7:03,
Foz = —p 1F%,

which allow to get the equation

]:3A ]:OA ]:3A o
(1 ||;1+ IIA2 + p2}-0AHA_ IIA2 + AFH
+p Vi+et), L+p%) 4

which is equivalent to (3.10). For (¢, xm) the proof is the same, provided
we apply the Hodge dual * for the variables and equations:

(m,9) = (37, 54)) = (m,9))..

—m = p*F3 4=

and
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Now we will show, how our variables appear in formula (3.8). Let us
perform the Legendre transformation in the volume V/

—F%5 | Az — g_l(P_ZABHB),:s} = —0 [}-03 <A3 - ﬁ_l(ﬂ_QABHB),s)}
+ {As - 571(,072143\\3),3] o F
and on the boundary oV
F035 <Ao _ 271[2143”3’0) -5 [}-03 (Ao _ 371[2143“370)}
— (40— A71p28) ) 670
This way the formula (3.8) may be written as

5/ L= B0 A™'m) = 050 A~ 02 F g 0)]
\%4
— —/ao 7 ATy e A6 ]

14

+/ {pQ}—A()HA &7151/1 — F3AIBe , 5§ *¢] . (3.13)
ov

Finally we obtain the following variational principle

6/32—/80(77 &_161#4—*77&_16*@Z))+/7T3£_151,Z)+>k7r3&‘16*1[),
1%

\% ov
(3.14)

where the Lagrangian L is defined by

T=1L-a <¢ ﬁ*lw) s <¢ ﬁ*pofAOHA) (3.15)

and boundary momenta are

3 2 A 2 70A ngIIA : v 2
= = p ot a = P4 — == = sinl | ==+ p"Y3 | ,
+p 1
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From Lagrangian relation (3.14) we immediately obtain the Hamiltonian
one, performing the Legendre transformation

—6/H — —/7’7&‘151/)—1/}&_157T+>k7'r£_15*¢—*¢&_16*7r
1% 14

+/7r3 A5 + 13 A16 %, (3.16)
oV

where S .
Hi=-7A"% - A %) -1 (3.17)

is the density of the Hamiltonian of the electromagnetic field on the hyper-
boloid.
The value of [ H is equal to the amount of electromagnetic energy con-

14
tained in a volume V and defined by the energy—momentum tensor
1
THy = " Py + 001 fx
We are not surprised that the quantity H is related to T% by

/ Hdodg = / V—nT°d8de
S(s,p) S(s,p)

and to prove it we can use the following identity
ptsind |:*7T AL *1/1 — 7 A — 04 (1/1 AfpofAOHA)]

= FBFoz — F a0 A7 p 2 Fo ja — FOMNBeyp A1 Foape?? .
The non-conservation law for the energy we can write as follows
~on (1 = [sing (6271046 A1)
X ox

_ / (0 A7+ ) A1) sin0d6ds . (3.18)

S(s,0)
For angular momentum defined by

Jy = — /7T 3_11/@1) + &_1*&(;5
P
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we have a similar formula

—30Jz = 30/71' gilwﬁ—i—*ﬂ&il*lb@
X

_ / sin 0 <¢ Ay + ) ﬁ—lw,d)) d0ds,  (3.19)
S(s,0)

but the relation with symmetric energy-momentum tensor is not so obvious.
J, ::/\/—_nTO¢:/f03f3¢+*f03 * f3¢ -
b b

Using the relations
9 . A —2_AB
T = —p Zsinbfs? 4, Vs =—p e faup,
_9 . A —2_AB
o= p Zsind xf3?) 4, Wz =—p 2 xfam,

we can express .J, in terms of (7,1, s, %)) as

J, = /1/1 ( ﬁ_lﬂ',d, + sin@éqs &_1*1/113) +/*1P ( z_l*n',d, - sin95¢ g_l*lb,g)
b >

_ _/w£—1¢,¢+wﬁ—1*¢,¢+/sinewé¢ A~ lw),

P o0x

where éA = e4P20p and we have used the identity

/Sinaw,géqs &71 *) = — /Sine*lbéd) 5711@3-

52 S2
A o
The boundary term | sinfyd,; A ~Lw) usually has to vanish, if we want
ox
to interprete the integral [/ —nTO¢ as an angular momentum generator,
b))

but in our case 1, %) do not vanish on J and we obtain in general two
different definitions of the angular momenta .J, and J,.
Let us observe that
o

Ao = (0 A7 4%15)  —05(A7" %)

and

/ <‘7:>‘0A¢>7>\ = /Sin 0 &71/072 (ABHB)@ B /Sin 9¢3¢ zil *y

\%4 )% )%
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so the angular momentum J, is related rather to the canonical energy-
momentum tensor with gauge A” |8 = 0 than to the symmetric one. More
precisely, the canonical energy-momentum density 7+, is related to the sym-
metric one as follows

1
T#, = PV Ay, = 0L = V=il", + (F¥A,) |

)

For the angular momentum we obtain

/T% = —/71' &_11[)7(]5—{—*71' &_1*¢’¢— /sin9¢7¢ &_1,0_214]3”3
by X ox
= J, + / (9 £*1p72ABHBsin9d9d¢.
S(s,0)

Let us observe that if ¢ 4 and %) 4 are vanishing on J% then J, is well
defined in terms of the canonical energy-momentum tensor density TO¢ and
is conserved.

3.1. Electrodynamics on a null surface

Now we will show, how the formula (2.25) can be obtained in the classical
electrodynamics. Let us consider a volume V' C N, where N has been
already defined by (2.23). Let us integrate infinitesimal symplectic relation

/ F¥5A,dpdodp = / For A~ 6p 2 AP pdode
/.7:””5 A - (p72ABHB),p dpdfde
—/}'”A”BeAB A_15P_2AA||B€ABde9d¢
and Similarly to the considerations on Y we have

1
P siné

AA,— (p? AP p) Fhia=v,=2p"Yz,

where ©w = —% and 0, = 2p20y. For dual degree of freedom holds the
analogical relation

FoAlBg g = *]—"”AHA = 2sinfp 2 *1 3
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and finally we obtain gauge—independent part 4+ boundary term + full vari-
ation

/ F§A,dpdode = / Fr A~16p 2 AP pdods
|4 ov

) / sin 00 A 14, dudfde
1%

+/sin9 (q,z),u A6 + why A6 *q,z)) dudfde .
1%
(3.20)

This equality means that, modulo the boundary term and full variation, we
can reduce our symplectic form on J T to the invariants. The final form is
similar to (2.25) and posseses a quasi-local character. Let us notice that on
the surface v =const. we can use the coordinate u as well as @ or in other
words Oy|ny = Og|n, du|y = du|ny and this observation refers obviously to
the objects on N but not on M.

Now we will show, how the flux of energy through J 7 is related to the
energy-momentum tensor, similarly as in Subsection 2.5.

1 _ 1 _ 1
T = 5p (R 5o )+ Smanf

/ TV, p 4 sin0dpdfdg = — / sin Odudfde (w,u AN+ #py A *w,u>
\% \%
% / p? sin fdudfde (v* + xp?)
|4
The last term vanishes on the scri

p—07F

p* (V* +x?) = 0
so that

[ v, = [ ausinga6ao (v &b+, A e
J+ J+
(3.21)
The integral on a sphere in quadratic brackets represents the quasi-local
density of the flux of the energy through J*. The main difference with a
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scalar field is that here there is no possibility to work with the local density

[¢]
because of the operator A ~!' and only a quasi-local object assigned to a
sphere can be well defined. However, if we introduce “quasi-local vector”

Wy = Oa( A1) + eaBap( AL w1))

then the flux of energy through J* can be described by a “local density”

_ / sin 0d0de (w,u AN+ #py A *w,u> - / sin 0d0deé Y ABY U |
S2 S2

o
where 748 is the inverse metric to the standard metric on a unit sphere

( %AdeAde = d#? 4 sin? fd¢?). Similarly, the symplectic structure (3.20)
takes the form

/ FU§A,dpdode ~ / sin 0dudfdp@A6w 4 ,
Vv Vv

where ¥4 = % ABgp and symbol “~” denotes equality modulo full variation
and boundary term.

4. Linearized gravity on a hyperboloid

We start from the ADM formulation of the initial value problem for Ein-
stein equations [5]. In Subsection 4.1 we introduce the hyperboloidal slicing
and in Subsection 4.2 we consider an initial value problem for the linearized
Einstein equations on it. In Subsection 4.3 we discuss “charges” on the hy-
perboloid and in the next two subsections we introduce invariants, which
describe reduced dynamics. In Subsection 4.6 we derive the “Hamiltonian”
in terms of gauge invariant quantities.

4.1. Hyperboloidal conventions

The flat Minkowski metric of the following form in spherical coordinates
Nuwdy'dy” = —dt* + dr? 4+ r?(d6? + sin® dp?) (4.1)

with r = sinhw, t = s+ cosh w already defined in Section 2, can be expressed
in the coordinates s, w well adopted to a “hyperboloidal” slicing of Minkowski
spacetime M

Nuwdyt'dy” = —ds® — 2sinhw ds dw + dw? + sinh? w(dH? + sin? fd¢?). (4.2)
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In this section we use the different coordinate w instead of p used pre-
viously, but at the end we will return to p to compare the results for the
scalar field and linearized gravity. Let us fix a coordinate chart (y*) on M,
such that y' = 6, y?> = ¢ (spherical angles), 3> = w and 3° = s. So we have

Yo={yeM: y’ =5} = U Sy(w) where Sy(w) :={y € X : 9> = w}
w€[0,00(

(4.3)

) and 90X =

_1
’ sinh w

and Y is a three-dimensional hyperboloid, Ss(w) = S(s
Ss(00) = 5(s,0).

We use the similar convention for indices (as for coordinates (z*)),
namely: greek indices p, v, ... run from 0 to 3; k,[, ... are coordinates on X/
and run from 1 to 3; A, B, ... are coordinates on S(r) and run from 1 to 2.

The hyperboloid X has a very simple geometry. The induced Riemannian
metric 1, on X in our coordinates takes the form

nudy*dy' = dw? + sinh? w(d6? + sin® 0d¢?) . (4.4)

The hypersurface Y is a constant curvature space and the three-dimensional
curvature tensor of X' can be expressed by the metric

SRijkt = Mk — MikMj1 - (4.5)

4.2. ADM formulation for linearized gravity on a hyperboloid

Let (gkl,Pkl) be the Cauchy data for Einstein equations on a three—
dimensional hyperboloid Y. This means that gi; is a Riemannian metric on
Y and P* is a symmetric tensor density, which we identify with the ADM
momentum |[5], i.e.

P = \/det gun (9" TrK — KM)

where K}, is the second fundamental form (external curvature) of the imbed-
ding of X' into a spacetime M, which is now curved.
The 12 functions (g, Pkl) must fulfill 4 Gauss—Codazzi constraints

Pl-l“ = 8mv/det gmn Tipn” (4.6)

1
(det gmn)R - Pklpkl + §(Pklgkl)2 = 167T(det gmn)Tuunﬂny ) (4-7)

where T}, is an energy momentum tensor of the matter, by R we denote
the (three-dimensional) scalar curvature of gg;, n* is a future timelike four—
vector normal to the hypersurface X' and the calculations have been made
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with respect to the three-metric gg; ("|" denotes the covariant derivative,
indices are raised and lowered etc.).

The Einstein equations and the definition of the metric connection imply
the first order (in time) differential equations for gy; and P* (see [5] or [6] p.

525) and contain the lapse function N and the shift vector N* as parameters

. 2N 1
g = —= (sz - §gklP> + N+ Ny (4.8)

V9

where ¢ := det g, and P := PFlgy,

: 1 2N 1
pPEl —  _N Rk _ Zkp ) _ 2 [ pkmp 1 _ Z ppk <P’“N’”)
G ( 59 75 m =5 + "
ANk (prp Lpa ok pmi i pmk
2\@9 K5 |m Im
_|_\/§ <N‘kl _ gklN|m|m> + SWN\/ETmngkmgl" ] (49)

We want to consider an initial value problem for the linearized Einstein
equations on the hyperboloidal slicing, introduced in the previous section.
For this purpose let us first check that on this slicing the ADM momentum
Pl for the background flat Minkowski spacetime on each hyperboloid X is
no longer trivial

PM = 2, /gg"! (4.10)
and

gy dyt = nudyFdy! = dw? + sinh? w(d6? + sin? Adp?) (4.11)

where ¢* is the three dimensional inverse of g;.
Let us define the linearized variations (hg, P¥') of the full nonlinear
Cauchy data (g, P*') around background data (4.10), (4.11)

hit = g — ke, P = PR 24nM (4.12)

where A := \/det 7y (= sinh?wsin ).

We should now rewrite equations (4.6)—(4.9) in a linearized form in terms
of (hy, P*). Let us denote P := nuP* and h := n¥hy. The vector
constraint (4.6) can be linearized as follows

Py~ Pl — 240 + Any; . (4.13)
Let us stress that the symbol “|” has different meanings on the left-hand side
and on the right-hand side of the above formula. It denotes the covariant
derivative with respect to the full nonlinear metric gi; when applied to the
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P¥! but on the right-hand side it means the covariant derivative with respect
to the background metric 7g;. The scalar constraint (4.7) after linearization
takes the form

1 1
——(PFp, — Z(PFg )2 ) ~ A (R, —RIE) —o2p. 4.14
VIR \/§< i~ 5 (P gk) <h =h )‘k P (4.14)

The linearized constraints for vacuum (7}, = 0) have the following form
P e — 240" ), + Ahy = 0(= 8T ATj,n"), (4.15)

A <hklu - h|k> w 2P = 0(= 167 AT}, n"n"). (4.16)

The linearization of (4.8) leads to the equation

. 2N 1 1
by = A (Pkl - 577kl7)> + h0k|l + h01|k + 2Nny (n + §h> — 2Nhy;
=N (hingept + hmte = Pktym) (4.17)
where N := Tlnoo = coshw, N3 = np3 = —sinhw, Ng = nga = 0 are

the lapse and shift for the background and n := % is the linearized lapse.

Finally the linearization of (4.9) takes the form

PH — - NAR + NP 4 NPH|, 24 (R + o' = 3 Thg™ )

m m m m
+A [(Nn)‘kl — nkl(Nn)‘ |m} — EN (h RlL 4 gl phllm h‘kl>
A
) N, [hkllm + 3pmHE 4 gpmkll _ nkl(hlm + th"‘n)} . (4.18)

It is well known (see for example [8]) that linearized Einstein equations are
invariant with respect to the “gauge” transformation:

h;w - h;w + 5/.1;11 + gu;u > (4'19)

where &, is a covector field, pseudoriemannian metric g, = 1, + h,,, and
“.” denotes four—dimensional covariant derivative with respect to the flat
Minkowski metric 7,,,. There is no (3+1)-splitting of the gauge for hy-
perboloidal slicing, similar to the situation described in [8]. The (3+1)-
decomposition of the gauge acts on Cauchy data in the following way

A*lf])kl N A*lr])kl + N€O|kl o Nnkl§0|mm o QNfO?’]kl o Nké-(]‘l o Nl§0|k
hie = b+ e + St + 2Nm1 0 (4.21)
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It can be easily checked that the scalar constraint (4.16) and the vector
constraint (4.15) are invariant with respect to the gauge transformations

(4.20) and (4.21). The Cauchy data (hy, P) and (hx, 5’61) on X are
equivalent to each other if they can be related by the gauge transformation
§u- The evolution of canonical variables Pk and hy; given by equations
(4.17), (4.18) is not unique unless the lapse function n and the shift vector
hO}, are specified.

Let us define the “new momentum” p* as

pHi= P A (20 = fh)  (pi= P+ AR)

and notice that this object can be also introduced in full nonlinear theory
as PRl + 2\/§gkl and after linearization gives p*, i.e.

PH 42, /ggh ~ pHt.

Let us also observe that the new momentum is trivial for flat Minkowski
data. Moreover, the symplectic structure is preserved

and the gauge transformation for p* is simpler than for P*

A*lpkl N A*lpkl —i—NfOW . Nnkl§0|mm o Nk§0|l . Nlé-(]‘k + 2nkle§O|m
(4.22)

The vector constraint has a familiar form
il = 0(= 8w ATj,n*). (4.23)

We can also rewrite the dynamical equation (4.18) in terms of the new
momentum

= Nmp‘kz N <nklp _ 3pkl> A [(Nn)lkl _ nkl(Nn)\m‘m i 2Nm7kz}

m

+NAQﬂh—wﬁ>—gNQWWm+MW%,JWWm_hW)

+§Nm |:hml\k L pmkll _ pkllm nkl(h\m _ 2hmn|n)] . (4.24)

We will show in the sequel that it is possible to define a reduced dynamics
in terms of invariants, which is no longer sensitive on gauge conditions. The
construction is analogous to the analysis given in [7].
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4.3. “Charges” on a hyperboloid

The vector constraint (4.23) allows to introduce “charges” related to the
symmetries of the hyperboloid. There are six generators of the Lorentz
group, which are simultaneously Killing vectors on the hyperboloid /. Let
us denote this Killing field by X*. It is defined by the equation

Let V C X be a compact region in Y. For example V := U Ss(r) and

r€lro,ri]

OV = Ss(ro) U Ss(r1). From (4.23) and (4.25) we get

s [ 4zt =0= [pxi = [0"xu= [0, (@20)
1%

\%4 \%4 ov

The equation (4.26) expresses the “Gauss” law for the charge “measured” by
the flux integral.

In particular for angular momentum, when X = 0/0¢, we can show
the relation of this charge to the dipole part of invariant y, which we will
introduce in the sequel (Subsection 4.4).

167ws* : = 167" = —2/p3¢ = —2/p3A(r2€AB cos )5
oV ov

= 2/T2p3AB<€AB cosf = /Aycos@. (4.27)
ov ov

The time translation defines a mass charge as follows

(16”/ATOM““) = 0= /N [/1 (hklu - h‘k>|k — 277} + 2N;p",
14 g
= / 2N + N A (B = B) + A (N = NTR) |
|4
= /2Nkpk3 +A (Nh%‘k — NhB + Nph* — N3h)
ov

|l

(4.28)

and it can be related to the monopole part of an invariant x (Subsection 4.4).
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167p° = / 2N, + A <Nh3k|k — NhB + Nphk3 — N3h)
ov

A 2 sinh?
- / . <2 cosh? wh33 — coshwsinhwH,3 — H — Mpg?’)
sinh w A
ov

_ / 4. (4.29)

r
ov

Remark. The traceless part of hi; and p* have nice properties with
respect to the gauge transformation (4.19), which splits into 0-component
(transversal to X)) which acts on p* and space components (tangent to X))
which act on hy; — %nklh. The traces h and P remain nontrivial unless we
impose gauge conditions. The most popular gauge condition, which allows
to obtain the scalar constraint (4.16) as a full divergence (see (4.30) below),
is to assume that P = 0. Assuming such gauge we can define another “mass”
charge as a surface integral coming from the scalar constraint (4.16) (but we
obtain totally nonlocal object). More precisely, one can analyze the scalar
constraint (4.16) (in the same way as (4.26) for the vector one)

2v/7> = //1 (n*) —h\k)|k - /A (n* = 1) (4.30)

|4 ov

but there is no “Gauss” law for the “mass” defined by the surface integral on
the right-hand side of (4.30), unless we impose gauge condition P = 0. This
means that such definition of the mass charge, measured by the flux integral
at null infinity, is not gauge invariant like the ADM mass at spatial infinity.
This consideration should convince the reader that the definition (4.29) is
better than (4.30) together with vanishing P.

4.4. The (2+1)-decomposition and reduction

Now we introduce reduced gauge invariant data on X' for the gravita-
tional field, similar to the invariants introduced in [7]. For this purpose we
use a spherical foliation of X' (see equations (4.3) and (4.4)).

In this section we present mainly results without detailed proofs as in the
section about electrodynamics. See also Appendix A where we give explicit
formulae used in this section.

Let k := cothw. The gauge (4.21) splits in the following way

hss — hss + 2633+ 2NE°, (4.31)
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hsa — hsa+&a+8&as—2rEa, (4.32)
hap — hap +&a + Epja + 26maBEs + 2Nnape?, (4.33)

where by we denote the covariant derivative with respect to the two—
metric nap on S(r). Similarly, the gauge (4.22) can be splitted as follows

(£||77

A71p33 N A71p33 + N§0\33 o Nf(]\mm — A71p33 o N§O||AA o 2]\[1%50737

(4.34)

ALp3A o A71,BA L NEOBA | NBOIA _ =134 4 Ne03A 1 £0.A
sinh w ’
(4.35)

AflpAB N A*lpAB + N§O|AB _ N,)7AB§O|mm +277ABNm§O|m _ A*lpAB
+N§OHAB — Nnap <§0’33 + §OHCC + (k — 2N3)§0, 3> . (4.36)

It is also quite easy to rewrite the (2+1)-decomposition of (4.17)

. 2N 1
hay = 1 <p33 - §p> + 2hogj3 + 2N (n + haz) — N2haa3
2N 1
= 7 <p33 - §p> + 2h03,3 + 2Nn + 2Nhsg — N3h3373 R (4.37)
. 2N 3
haa = 7]9314 + hog‘A + hOA\?, +2Nh3zs — N h33‘A
2N 3
= [ Psa + ho3,a + hoaz — 2khoa — N°h33 4, (4.38)
. 2N 1
hap = 7 PAB — 577ABP + h0A|B + hOB‘A 4+ 2Nnapn+2Nhap
2N 1
—N®(hgaip + hspja — haps) = T (pAB - 577ABP> + hoa|B
+hop||a + 26maBho3 + 2Nnap(n + haz) +2Nhap
—N®(hsa B + hap|ja — hass)- (4.39)

The vector constraint (4.23) can be splitted in the similar way
ps*e = p3’ 3+ o3t a — kp*Pnap =0, (4.40)

1
pAk|k = pa’3 +pABHB = P3A,3 T SABHB + §S||A =0, (4.41)

where S := pABn,p and S4B = pAB — %nABS. Similarly, let us denote
H = hABnAB and xap = hap — %WABH- The invariants are defined as
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follows
x: = 2cosh?wh® + 2 coshwsinh wh?’CH(; + sinh? wXABHAB
1, o 2 sinh?
—coshwsinhwH, 3 — 5( A +2)H — %pgg, (4.42)
X : = 2sinh? wSABHAB + 2 coshwsinhwp?’AHA + &pgg , (4.43)
y: = 247 sinh? wp?MBe | (4.44)
Y = A(A + 283 Pe 5 — sinh? w(AxC g 056MP), 5 - (4.45)

The (2+1)-decomposition of the scalar constraint (4.16) can be written in
the form

A <h|ll - hkl“k) +op
= [A(H, 5 — 2034 4 — 260 + kH)] 5 — 2A(h** + H)
1
+2(p* + 8) — AP | pa + 2603 4) + A <h33AA + §HCC> =0.
(4.46)
The dynamical equations (4.24) take the following (2+1)-form:
AT = AT N3 (p* 5 — kS) — (Nn)14 4 — 26N, 5
N
+5 [h33HAA + H, 33+ 26H, 3 — 26(2h%4 4 + 1%, 5) — (2074 4), 3}
1
+5Ns [H, 5 — 2034 4] (4.47)
AT = AN 4 2mp*) + (), — Nl
N

2
+3 [H,BHA _epBBlla ThsA _ hABHB,B
Sin w

1
72’ihABHB _ hBBHAHB + hBAHB||B:| + §N3h33”A , (448)
A pap = A"'N°pap, s+ A7 N [nap(0® + S) + pas]

N3
+N(TLHAB - nABnHCC) — N?]AB(”, 33 + KN, 3) + QT]ABNBTL, 3+ 7 |:h3A||B

1
+h 4 — 1ah3Y 10 + nas <§H7 35— h3% 4 — B, 3) —xa, 37703]

N 1
+§ [( CBaBUCA);3 + XABHCHC - XCAHBC - XCBHAC + h33||AB + 577ABHHCC
+nap——5—(h* + H) + nap(kH, 5 — 26h3) 4 — 2671%%) + ———xap
sinh” w sinh” w

1
(UAB(Hh%§H,3)+h3AB+h3BA),3:| . (4.49)
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We can check the reduced field equations for our invariants

N
x = X+ (N3x),3, (4.50)

X = N3X,3+ ANAgx — AN3(x, 3 + 2kx), (4.51)
. N N3

Y = AN3ATYY), 3+ ANAgy — AN3(y,3 + 2xy), (4.53)

where Ay is a Laplacian on a hyperboloid X.
It can be easily verified that the invariants x and y fulfill the usual
d’Alembert equation (as a consequence of the above dynamical equations)

EX:O’

Ol

y =0.

Let us notice that x and y are scalars on each sphere Sq(r) with respect
to the coordinates y*.
For the scalar f on a sphere we can define a “monopole” part mon(f) and a
“dipole” part dip(f) as a corresponding component with respect to spherical
harmonics on S2. Similarly, the “dipole” part of a vector v* corresponds to
the dipole harmonics for the scalars ’UAH 4 and 4By A||B- Let us denote by
f “mono—dipole—free” part of f. According to this decomposition we have

x = mon(x) + dip(x) + x,
y = mon(y) +dip(y) +y-

Then the mono-dipole part of each scalar can be solved explicitly from the
equations (4.50)—(4.53) and the solution has the form

4m . 12k
X—X =
= sinhw = sinh?w’
_ 12s
y-¥ = sinh?w

Let p := k. We obtain

and
k = p(s+ coshw) + kg .

Moreover, ﬁm =0, ( 5 +2)p = ( & +2)ko = ( & +2)s = 0, which simply
means that m is a monopole and kg, p, s are dipoles and they are constant
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on Mjs. They correspond to the charges introduced in [8]. Let us rewrite the
solution in coordinates wu,r, which will be more useful in the sequel

4m+12p  12(ko + pu
- P (ozp),

. - (4.54)

12s
y=y-+ 7 (4.55)

Let us also remind the relation between spatial constant three-vectors in
cartesian coordinates and dipole harmonics

where z; are cartesian coordinates and j9, p!, s

vectors representing our charges (see [8]).

are corresponding three-

4.5. Reduction of the symplectic form on a hyperboloid

We want to show the relation between the symplectic structure and the
invariants introduced in the previous subsection. Let (pkl, hii) be the Cauchy
data on a hyperboloid.

The quadratic form [ p*&hy; can be decomposed into monopole part,

1%
dipole part and the remainder in a natural way.

From the considerations given in the Appendix B we can easily see that

/z_a“é@kl - /x AN A 12 x4+ Y ATIA +2) Lay,
Vv Vv

where symbol “~” denotes equality modulo full variation and boundary term.
Moreover, the “mono-dipole” part has the form

1
kl 33
mon </p 5hkl> N/72cosh2wp dmon(x),
\4

\4

2 cosh? w
\4 1% 1%

: 1 : ° ...
dip /pqukl ~/7p335d1p(x)—i—//l(thHBaAB) A~ Lodip(y)

+/ (tanhw 3*1h3A||A - > odip(X) . (4.56)

4 cosh? w

The mono-dipole part of invariants: mon(x), dip(x),dip(X), dip(y) repre-
sents 10 charges which are supposed to be fixed, they are analogous to the
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electric charge in electrodynamics. If we assume that there is no matter in-
side volume V' then all of them are vanishing (this is included in (4.54) and
(4.55) as the regularity conditions at r = 0). In particular on hyperboloid
2} we obtain that mono-dipole part vanishes for linearized vaccum Einstein
equations and the symplectic structure can be reduced to the invariants

/pkl5hkl ~ /X AA+2) 7 0x+ Y AT(A+2) by, (457)
X X

4.6. Non-conservation laws on a hyperboloid with the end at J+

Let us return to the coordinate p := ﬁ The metric on M takes
the starting form (2.12). It is convenient to introduce new canonical field
variables similar to the variables for the scalar field and electrodynamics
-1 -1

, Yyi=pTy,

Y- A
I, : = —— I, .= — Y

Vit U 1

Equations of motion are the same for both degrees of freedom

U,: =p

[ 1<

1 ,\/1+ p?

—V -V, . ;

m P sin 0
11, ~ (/T4 ),y = sind | AW+ (14 9200 ), |
and they are similar to (2.19), (2.20) for the scalar field and (3.9), (3.10) for
electrodynamics.

The reduction of the symplectic form (from the previous section) allows
to formulate the Hamiltonian relation in terms of the new canonical variables

S [0 ATV A 42760, — 1T, AT A +2)7 16, = 1670H

L=z |,
_ Z / [HL\/ 14 p2+sinf(1+ pz)%,p} 271( A+ 2)~ 1oy,
=Ygy
(4.58)
where

1 II,+\/1+ p? o _,, 0 _q (/14 p?
167H:== —— 4V, 2 —— + Y,
mH 2 Z /< sin 6 + p) AT(A+2) sin 0 MG

=2,y
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)

1 o o
+§ /p2SiH9WL,p A_l(A +2)_1IPL;p*Sin9wL(A +2)_1WL'
L:zfyv

(4.59)

Similarly for angular momentum we propose the following expression

167, = > [ILATNA+2)7'0,,. (4.60)
=2,y %

The non-conservation laws for the energy and angular momentum

~16700H = Y [ sin6d ATN(A +2)7',,
THs(0)

—16m0yJ, = Z sin O, &_1( A+ 2)7',,, ,
THs(0)

are similar to (2.21), (2.22) and (3.18), (3.19). It should be also possible to
formulate linear momentum P, in a similar way as (2.31)

—16m0 P, = Z / sin 6 cos 6 [LPL &*1( A +2)71,| |
TS0

but this will be analyzed in a separate paper?. It is obvious that all these
formulae are quasi-local.

5. Linearized gravity in null coordinates

We are going to follow the idea from Subsection 2.2 and apply it to
linearized gravity.

5.1. Minkowski metric in null coordinates

Let us define the null coordinates: v :=t —r, v := r + t together with
the index a corresponding to the coordinates (u,v). The spherical foliation
is the same as previously and the coordinates on a sphere (z4), (4 = 1,2),
(x! = 0,22 = ¢) are the same.

2 The meaning of the expression in quadratic brackets is not obvious and it should
be rather )Py a5 where 1ap are introduced in Section 7. Also in electrodynamics
the definition of P, is not obvious, however in electromagnetic case we have energy-
momentum tensor.
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For convenience we need also some more denotations: p := r~! = %,

Pa = pzea, where ¢, = %, Ep = —%, n“beaeb = 1. We will also need
€% := n%g; and we can check that €% =1, e¥ = —1, 1% = 1.

The explicit formulae for the components of Minkowski metric can be
denoted as follows

_9 0 1
NAB =0 27 aB, nab:_ilEab’7 Naa =0,

where Fy, = 0= E,, and E,, = 1 = —E,,. Similarly, the inverse metric
has the following components

nAB = 2 ,.‘;/AB’ n® = _2‘Eab‘ . =0,

where E¥* = 0 = E" and E"W = 1 = —E". We shall also need the

derivatives

nAP a= 2pea P, NAB,a = —2PaTAB

and finally the nonvanishing Christoffel symbols except ' g are the fol-
lowing
I4p = pe"nap, TPap=—pead’s.

5.2. Riemann tensor in null coordinates

We need to derive the linearized Riemann tensor in null coordinates

2Raped = hadpe — Mod,ac + Pocad — Pac,bd »
2Rupep = hapDpe — hobD,ac + Poc,ab — PacpD
+pep (haD,e + heD,a — hae,p) — pea (hop,c + hepp — Poe,D)
2Rapcd = haajcp + hec|jad — wajac — hacpd
+peb (haajic — hac)ja — hacd) — pea (hooija — hoajjc — hacy)
+omace® (hvda — hadp — haba) — 20°€beahac ,
2Rapcd = haa)se + hpejaa — hpdgjac — hac)B.d
+2peq (hweya — hacyB)
+pmBce® (haa,d — hda,q + had.a + 2peqhan)
—pnace® (hap,a — hiB,a + had,B + 2p€ahaB) ,
2Rapcp = hapjiop — Mp)ica + hoc) D,a — Pac) Db
+2peb (hapjic = hacyip) + 20€a (hocyp — hopjic)
2Rapcp = hap|sc + hsojap — hepjjac — hac)BD
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+mmace® (hep.a — hap|p — hap||B)
+pnBpe”
a

—PNBCE

—mape® (hBca — hapjic — hac||B)

(hac,a = hacyia — haajc)
(

hap.a = haap — Pap)a)

+p? (hgpnac + hacnep — hapnee — hpenap)
+2P25a5bhab (nacnBD — MBCNAD) -

5.3. Ricci tensor in null coordinates

The Ricci tensor takes the following form

2Rap = h%ac+ o cb — hap“c — PScoap
thaap!® + hpaat = hap! 4 — Hap
+peaH p + pepH o + 206 (hab,e — hach — hoea) 5
2R.B = hBap — hapc + Mo B — heap
+ha 1A — ha" 4 + XBY 40 — 3H| B
+peq (thB,b - hbb,B) —2p" g0 — 20%cac s
2Rap = (h"ayp+h"pja) , — hajjan — XaB™
—2pe"YaB,a + X410 + X8 04 — xa8'“ ¢
+nap [—3(HIC o+ H) + 20 (H o — ha™tjj4)
+p%(2e%  hap — H)} .

5.4. Gauge in null coordinates

The gauge transformation &,
= Py + &)
splits in the following way

hao — hap + Eap + &ba s
haoa — hga + ga,A + gA,a + 2P6a5A >
hap — hap+&a B +E&Bjja — 2pmaBe*a .

705
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The following formulae will also be useful.

XaB — xaB+&ap + &4 — 148ES |
1 1

SH — SH+6% 4= 2p"a,

haA B haA +£a||A +£A,a-

They are straightforward consequences of the previous ones.

5.5. Invariants

Let us introduce the following gauge invariant quantities

Yoi: = (A +2hea 5™ = (072xa%1085"P) 0 (5.1)
y: = 20 (pyac™?) o E?, (5.2)
1 o
xX: = p*2XAB||BA -3 AH+ pfla“H,a — H + 2%°hgy, — 2p*1€ahaAHA,
(5.3)
Xab: = A(A+2)has — (A +2) [(07%ha™ 1 4) 6 + (07261 4) ]
+[p 207X P 14B) ] T+ (P20 2x P 1 4) ]

) @

(5.4)
They fullfill the following equations

(P y)a=0, 20 %yp,E” = (a+2)y,
2Eab(p_2}’),b + p—2ya _ 0’

[0 (Yap = y5.)” + 9 (@ +2)ya =0,

(P 'y)a+p!
(p
p2x® = A(A +2)x,

n"%ap = 0,

Xab = 2(p" %) ap — Nap(p~2X) ", (5.5)

ay =0,

x) %, = —p~lax,

if we assume vacuum equations R, = 0.

5.6. Reduction of symplectic form on J T

Now we will show how the linearized symplectic form on the null sur-
face N can be reduced to the invariants in “wave” part Similarly to the
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“hyperboloidal” case. In the full nonlinear theory it was introduced by Ki-
jowski [27] (however he was interested only in spacelike surfaces), see also
short reminder in the Section 6.

We shall calculate this form in a convenient gauge but the final result
will be gauge-invariant. This way we shall prove that, modulo boundary
terms depending on the gauge, the invariant part of the symplectic form can
be obtained in the demanded shape in “wave” part.

5.6.1. Gauge conditions
Let us assume the following gauge conditions
A
XAB:O7 ha ||A=O.

It is easy to verify that they are compatible for the “wave” part

p 2 xMap — p XA+ (A +2)6% 4,
p2xa% c5e™? — p2xa% 0" 4 (A +2)84 57,
haja — haja+p? Ada+ (EY4)a

More precisely, mono-dipole-free parts of £, and £4 are uniquely defined
under these gauge conditions.

5.6.2. Partial reduction to extract gauge invariant part

The linearized 7" has the form )
o = — A + En“”(hg + H)A

and it can be simplified in our gauge. Let us observe that invariants (5.1)
and (5.4) have simple form in this gauge in terms of h,,. From (5.4) and

(5.5) we obtain h% = —4h,, = 0. Moreover, 748 = LApABps — AxAB

vanishes. Similarly 7TAb|| 4 = 0 because 74® = —AhA’. Finally from the

above considerations we obtain

/ EHV(SAELW _ / ECd(SAgd _ 27TbAHB€ABp72 zfl(sAabAHBeAB )
S5(s,p) S(s,p)

One can show the following relation

/ch / A2 %) A2 A 122500 %), (5.6)

where ~ denotes equality modulo boundary terms and full variation.
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Similarly one can prove

/WbA||B€ABp2 A15AY 4 5P

174

~ / APy ATHA +2)725 [(07 ) — (0 2yt . (5.)
174

5.6.3. Full reduction to x,y

We would like to obtain a similar formula to (2.25). The “curl” part (5.7)
reduces easily to the demanded form

//poyb Afl( A +2)725 [(pf4yv),b_ (pf2yb),v]
\%

~ /2/1,02(,0_1z),u ATYA+2)7 180 y).
174

On the other hand, the second part of (5.6) can be rewritten in the following
way

/APQ(p—1Xab)7u 3—2( A+ 2)"25(p %)

v

~ [ 24027 500 AT A +2)7 50
v

+ / 164p° [ﬂ‘l(p‘lx),w +

o

% A(p‘lx),v] A72(A +2)7265(p %),

Let us observe that the last term vanishes on J*, more precisely ( p_lx)w =

O(p?). The presented calculations should convince the reader that the fol-
lowing formula holds

[aoms, ~ [2a0 [0 A& 425w
N N

+ ()0 ATHA +2)715(0,)

and this is a quasi-local form which is similar to (2.25) and (3.20).
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6. Generating formula for Einstein equations

Let us remind some results from [27] which will be useful for the sequel.
The variation of the Hilbert Lagrangian

1
=16 V09I B (6.1)
may be calculated as follows
1
= [ v _ )u'l/ MV

5L =5 (g VIl R ) = ~35-0" 500+ 13-Vl 45 (62)

where 1
g = Vgl (B = 59" R). (6.3)

It was proved in [27]| that the last term in (6.2) is a boundary term
(a complete divergence). For this purpose we denote

1
= m 4
m Ton lgl g (6.4)
and )\ )\
We have

NAy, = WDy, — 0T = R —To,T5, + Th, Ty
= RﬂV+Au0 v T _AA)\A (66)

Hence, we obtain an identity

N (WM@ TSR,y + TS (AW o AAAA ) + (Orm™) S AY,
= TRy, + (Vamh) 0A), . (6.7)
Due to the metricity of I' we have V m#” = 0. This way we obtain

TSRy = Ox (TOAY, ) = O (m)OT), ) | (6.8)

where we denote
= N — ﬂ“(yééf) . (6.9)

Inserting (6.8) into (6.2) we have

1
— = W Nz A
oL 167Tg 0Guw + O <7T 5AW> . (6.10)
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We conclude that Euler-Lagrange equations G* = 0 are equivalent to the
following generating formula, analogous to (2.1) in field theory

5L = ) (w“”éAfw) (6.11)

or, equivalently,

5L = 8, (W)\W”&Fi‘w) . (6.12)

This formula is a starting point for the derivation of canonical gravity. Let
us observe, that it is valid not only in the present, purely metric, context but
also in any variational formulation of General Relativity. For this purpose let
us rewrite (6.10) without using a priori the metricity condition V7 = 0.
This way we obtain the following, universal formula

1 v VKR VK
5L = =G5, — (Vmy") 6T, + O (W 5rfw> . (6.13)

It may be proved that, in this form, the formula remains valid also in the
metric-affine approach and in the purely-affine one. In metric—affine formula-
tion, the vanishing of V7" is not automatic: it is a part of field equations.
We see that, again, the entire field dynamics is equivalent to (6.12). Finally,
in the purely affine formulation of General Relativity the Einstein equations
are satisfied “from the very beginning” whereas the metricity condition for
the connection becomes the dynamical equation. We conclude that also in
this case the entire information about the field dynamics is contained in the
generating formula (6.12).

This formula, compared with (2.1), suggests that the role of field po-
tentials in General Relativity should be rather played by the connection I,
whereas the metric g should rather remain on the side of canonical momenta.
This observation was the origin of the purely affine formulation of the the-
ory. Also in the multisymplectic formulation (i.e. formulation in terms of
Poincaré-Cartan form — see [26]) the connection appears on the side of field
configurations. We stress, however, that the results do not depend upon the
choice of a variational formulation.

7. Metrics of Bondi—Sachs type

In this section we shall consider the initial value problem for the curved
space-time M with a metric of the form

gudatda” = —%ewdu2 — 2% dudr 4 r?yap(de? — UAdu)(dz? — UPdu)
(7.1)
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on the null cone C' = {z € M | 2% = u = const.} (see [10], [2], [4]) with the
boundary 0C' at the future null infinity. We have the following non-vanishing
components of the inverse metric g

1%
g = L2
T
g% = _e20
FA = e 2B
1
A A
gt = =7 B

where 448 is the inverse metric to y4p.
Let us define the “covector” Upg as

Up := gpaU™ = rlypaU”.

We have in our coordinate system the following non-vanishing components
of the metric g,

v
goo = —?ezﬁ—i-UAUA,
gos = _6265
goa = —Ua,

gAB = T 7YAB-

v/detyap =sinf.

The metric (7.1) implies the following expressions for 1677+ = /—ggh”
and AN, =T*,, — & I'?,)s defined by (6.4) and (6.5)

We also assume that

'z
vV—g = e26r2sin9,
1677% = —r?sinf,

167748 = ¢¥sin HWAB ,
167733 = rVsind,
167734 = —? sinHUA,
1677% = —r?sinf,
167748 = 2P singyAB
A3 = A%, =0,

1
Ay = —B3— =,
T
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1

Ayp = 56_25 (7“2%413)3,
2
Adgy = =
T
1 1
A33A = 5efQBU]‘%,g,gBA ~3 (lnsinﬂ)vA
Vv %4 -1
Adgs = —B3+ <—> ~UPBp— B~ e PU U 5,
r 2r 3 2
1 %4
Ay = ¢ 28 <9AB — 9483+ Uqp + UB||A> :

The following expression below was proposed by Trautman and Bondi
and will be called the TB mass:

1
Mg ::8—7T/7“—V. (7.2)
oC

Choose a (3+1)-foliation of space-time and integrate (6.11) over a 3-
dimensional null-volume V C C = {2 = const.}

/ / (76 A,)" / THEAD, (7.3)

ov

Similarly as in the case of electrodynamics, we use here adapted coordinates;
this means that the coordinate 23 is constant on the boundary V. Adapted
coordinates simplify considerably derivation of the final formula. We stress,
however, that all our results have an independent, geometric meaning. To
rewrite them in a coordinate-independent form it is sufficient to replace
“dots” by Lie derivatives Lx, where X is the vector field generating our one-
parameter group of transformations, which we are describing. In adapted
coordinates X := 8%0. Moreover, the upper index “3” has to be replaced
everywhere by the sign “ 1”, denoting the transversal component with respect
to the world tube. This way our results have a coordinate-independent
meaning as relations between well defined geometric objects and not just
their specific components.

Because the translation between these two notations is so simple, we have
decided to use much simpler language, based on adapted coordinates. The
volume part of the formula (7.3) can be simplified (or reduced) as follows

167‘('71"“/(51421, = 16775 A9, 4 3277O% 5 AD, + 167706 A,

= 327725 4%;3 + 1677185 A 4
2t sin 0 s . (7.4)
)
3

)

1
=—3 sin (r'yAB)’35 (mfAB) +46
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The last term in the above formula is a full variation of the quantity,
which logarithmically diverges when we try to integrate it, 3 = O(r~2?)

and 2r*sin 0 (%) , = O(r~!). Removing of this term (we can call such

procedure: the renormalization of the symplectic form) corresponds to the

renormalization of the Lagrangian for scalar field (2.13).
On the other hand, the boundary part in (7.3) can be rewritten as

1671'77“”5143“” =16m7330 A% 35+ 3277036 A3 )3+ 3271346 A3 5 4 + 1677 AB 6 A3 4 5

1 v
=2sin6 (2V — TQUBHB) 5ﬁ+sin9'yAB5UAHB—§ sin 6 <g'AB — ?gAByg) 5'yAB

\% \% \% .
+r? Sin@e_QﬁUBﬁggBA(SUAf(S [27’2 sin ¢ (7‘_2+<2_T) +?6735UB[37B>‘| ,
3

(7.5)

L(H)?

where by we have denoted a covariant derivative with respect to the
two-metric gap on OV.
Inserting these results into (7.3) we obtain

1676 / L:—/% sin @ [(7“’)/,4]3),3 K} (m,AB)] 0+/T2 sin He_QﬁUB,ggBAéUA
v v T oV
+/ 2sin 6 (2V—7“2UB||B) 5ﬁ+%sin0 (TV’}/AB73 - T2;YAB - 2UAHB) 5’)/AB
ov

M/4r2 sin9B73—5/r2 sin
\%

ov

(7.6)

2V %4 Vv
—2+<—> +2—ﬂ,3—2UBﬂ,B
T T 3 T

because 2-dimensional divergencies “04 f4” vanish when integrated over the
boundary OV'.
From (7.4) we get the relation

. 1 3
167 AY, = —5sinf (rap)y (r448) + 2rtsin @ (g) . (7
3

On the other hand, from [25] we know that

1677/7#”5)(,43” = /\/—g (V3X0 — vOx?)
ov

v

= /7“2 sin 0
ov

(= 272 sin 6A33) ) (7.8)

r

1% 1% :
<—> + 27@3 —2UPBp — 26— e ?PULUS
3
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where the last equality can be checked directly for the metric (7.1) and
X# =§f. From (7.7) and (7.8) we obtain the final formula

16775/L:/% sin 0 [(T")/AB) 6 (ryap) 3—(ryap)30 (T’)/AB)} —5/2V sin ¢

A oV
1 [ . _
+3 /SHN9 (TV’YAB,:J, —1r?yap = 2Uyp + 1’ 2BUg’YC,chB) 548
ov
2
+ / 212 sin 6 <r_‘2/ - UBHB + UAUfg) 68 — r’sin He_zﬁUAéU”g. (7.9)

oV

Remark. It seems to me that a more natural “control mode” in the above
formula corresponds rather to the control of the term (r2U#) 3 than U% and
it can be achieved by the following manipulation

—r?sin HG_QBUA(SU:Q = —sinfe PUL(2UN) 340 (7" sin He_QﬁUAUA>
1
+27r sin He_QﬁUAUAéﬁ + . sin He_%UAUA&yAB .

It is convenient to introduce the following asymptotic variables (IT4p,¢A5)
related to asymptotic degrees of freedom

AB AB ° AB o
YT =y —r YT bap i=1yaB — T YV AB,

1 . 1 . °
g : = —§s1n9(r’yAB)73+§s1n0<T’YAB)

)

If we pass to the limit, the formula (7.9) takes the form

—16wdmrg = —5/4Msin9
oC
= /ﬁABMJAB — B ap —%/Sin6¢AB5¢AB7
C ocC
(7.10)

where V = r — 2M + O(r~!) and the asymptotic conditions are given in
[4] and will be summarized in the next section. We can denote the non-
conservation law for the TB mass

1 . . 1 [} (0]
—1670gmrs = —i/sinﬂi/)AmbAB = §/sin9 X AB,u XABM , (7.11)

oC ocC
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where the last form in the brackets becomes clear when we learn about
(o]
asymptotics presented in the next section. In particular Y ap|7+ = X aB

and A8 ;1 = — XAB,
Similarly, for angular momentum we get the answer from the superpotential
proposed by Komar [20]

167 / ™LA, = / V=9 (V?X? - V°X?)
%

|4

where now X = 9/0¢.
The right-hand side can be expressed in terms of the Bondi-Sachs type
metric

/\/—g (V3X0 — V0X3) = /’I“4 sinﬂefmmbAU’g1 — 167J, .
oV oV

The limit is taken on J ' and according to the asymptotics presented in the
next section we obtain

1o o
oC
But on the other hand
167 / T Ly AS, = / T A = / Map™?
1% 1% |4
and
. . 1 ) .
16”80/7TWA2V7¢ = /UABl/’ABw — g g? = 3 /Slné’l/}ABl/JAB,¢-
C C oC

We will show in the next section that the non-conservation law for angular
momentum agrees in terms of the asymptotics

. 1 o o
167J, = — / 3 X ABu XAB’(b sin #dfde . (7.13)
oC
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7.1. Symplectic structure on scri

Let us observe that we can use the previous results (7.4) and (7.5) to
reduce the form
AL, = T (A, + 243 ). (7.14)

Let us also remind the coordinate system which should be used to describe
the situation in a similar way as in Section 2.3 for scalar field and 3.1 for
electrodynamics. (u,r) — (v,7), u = —2r v =u+2r, Oy = 0y, Or = —20g+
Oy, du Adr = %dﬂ A dv and finally 7*“6 A}, drdfd¢ = %WW(SA}’WdequS.

If we put
2 sin 6 (%) ] (7.15)
"™/ 3

)

1
167§ AD, = —5sin0 (rya5), 0 (rv*B) + 6

and

167T7T‘“’5A3W = 2ginf (2V — T’2UBHB) 00 + sin HWAB(SUAHB
1

v
—5 sin @ <gAB — —gABg,) 57‘43 +r? sinHefzﬁUB,ggBAéUA
T

-0 [2rzsin0<KQ+<Z> +Kﬁ3—B—UBBB>] (7.16)
r 2r 3 T ' ’

into (7.14), assuming asymptotic behaviour on J*, we obtain the following
formula at the future null infinity

16776 A" | 7+ = —sin 0y AP + 46(sin O M) . (7.17)

Remark. The symplectic form

/ dudfde sin 0698 A 61 ap

g+
has been considered by Ashtekar et al., see [31, 32| and [33]. Their re-
formulation in a conformally geometric way (in the spirit of the “universal
structure” of Penrose’s null infinity) has given the symplectic structure on
the space of radiative modes of the non-linear gravitational field in exact
general relativity.

Let N = [uj, uyf] x 52 C Jt be here a “finite piece” of J+. The relation

for the TB mass is based on the following observations. First of all from
(7.17) we obtain

1 1 .
1677/ §7T‘“'A”W7Odﬂd9d¢ =-3 /sin 01p 4o B dudfde+2 / M sin 0dOd ¢
N N ON
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and secondly

167 / T Lx AY = / V=g(V¥*X" - V'X") = — / 2M sin #dfde ,
N ON ON
where X = J, so finally

1 ..
—4 / M sin §d0d¢ = -5 / sin 0y 4 AP dudede .
ON N
The left-hand side of the above formula represents the change of Bondi mass
from initial state u; to final state uy (ON = {us} x S? U {u;} x S?) but the
right-hand side is a flux of the energy through N which is a piece of JT
between initial and final state, compare with (8.13) and (8.14).
Similarly, for angular momentum we have

1
1677/7T“"£XA”W = 167T/§7TﬂVAUH,,,¢dﬂd0d(b
N N

1 .
= - / sin 0y 4 p1’y” dudode
N

where now X = 0y.

8. Multipole structure of Bondi—van der Burg—Metzner—Sachs
equations

The metric (7.1) depends on the six functions: V, 3, yap, U4 and the
asymptotic behaviour of them is described in [3] and [4]. We shall rewrite
formulae from van der Burg paper [4] in a “spherically covariant” way. More
precisely, we denote:

0. M iV are scalars
1. Pairs of functions U, W and N, P can be combined in two vectors U4 and
N4, respectively

Uy =U=U,
Ug = sin? U® = W sin# ,
Ny = N =N,

Ny = sin? 9N? = Psin.
2. Pairs of functions ¢,d, C,H and D, K correspond to the symmetric

traceless tensors )O<AB, Cap and Dyp:
90699 = - )%‘% = 2c,
;ced) = sin’6 )cég‘b = 2dsin 6.
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Similarly C% = C, D% = D etc. The reason for this notation arises in a
natural way, if we change the parameterization of the 2-dimensional metric
vaB- Let us remind that van der Burg in [4] (p. 112) proposed the following
parameterization

yapdaz?ddz® =e?7 cosh(20)d0%+2 sinh(26) sin dAdp+e 27 cosh(26) sin? d¢?,

(8.1)
which differs from original Sachs formulation by a linear transformation of
the functions v and § (see [3] p. 107). Next the used functions vy and d are
expanded in the form

1
v=c/r+ (C’ — 603 - gcd2> r 34+ Drt 400 7?),

1, 1
§=d/r+ (H — Ed?) + §czd> rP+ Krt+0(r ).

Let us notice that there is no 7=2 term, which was analyzed in [10], and
vanishing of this term is called “outgoing radiation condition”.

We propose to change this parameterization in such a way that for the
original Bondi axi-reflection-symmetric metric both formulations are the
same. The main advantage of our change is that the expansion terms take
a nice geometric form (mainly the term of order r—3 takes a nice form).

Let us fix the frame df, sin #d¢ which is orthonormal with respect to the

e]
background metric 7 4p. The symmetric matrix (close to unity)

<e2'7cosh(25) sinh(29) >

sinh(26) e~27 cosh(26) (8:2)

with the determinant equal 1 can be also parameterized in a natural way by
the exponential mapping
exp(aoy + bo,),

where o, and o, are Pauli matrices

(1 0 (01
%?=\o -1 ) ==\10)"

The solution of the matrix equation

< 27 cosh(20) sinh(20)

sinh(20) ¢ cosh(20) ) = explao, +bos)  (8.3)

leads to the nonlinear relation between a,b and -, d in the form

arccosh(cosh(2d) cosh(27))

a = sinh(2y) cosh(26)
\/sinh2(25) + cosh?(20) sinh?(2)
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arccosh (cosh(26) cosh(27))
sinh?(26) + cosh?(26) sinh?(2y)

b = sinh(20)

but the asymptotic relation for small v, ¢ is simpler, namely

a=2y+ 2752 +0(7,9)°,

b=2+ %%5 + O(v,6)%,

and it gives only a correction in 72 for our expansion. More precisely,

%a =c/r+ (C’ - é(c2 + d2)c> r3 4+ Drt + O(r75) ,

1 1
55 =d/r+ (H — 6(d2 + 02)d> r3 4+ Krt 4+ 0(r™),

and now we can write the expansion in the matrix form

B Lo YCD -3 —4 -5
logyap = Xap/r+ QCAB—ﬁ Xcp X©7 Xap | r 242D apr " 4+0(r?),
(8.4)
where each term of the expansion is a traceless symmetric tensor on a sphere.

[¢]
The indices are raised with respect to the inverse 4P of the background
metric (which is a standard metric on a unit sphere). It is diagonal in our

[} [} [}
coordinates, Vg9 =1 and Vg4 = sin? #. The metric connection of the Y sp
has the following non-vanishing components

FG(M) = —sinfcosf , F¢¢9 =cotf.

We are ready to show the asymptotic expansions for the rest of the quan-
tities, which appear in Bondi-Sachs type metric (7.1). They were introduced
in [4] (p.114) but now we can rewrite them in a covariant way on 52

1 o OINA 1 1o, o 1 /o o 1A
A _ AB A °BC cD
U* = __27’2 X IIB+—T3 +ﬁ [5 X B X ||C+—16 (XCDX > ] 5
1o 2N 4 1 o °
Ug: = r?yU8 = —— xP —<X XCD) ,
A T°YAB 5 X ayp Tt . + T6r \ Xco 14
Vv 2M NAHA 1 [1o4m o C cp °
===+ — 51X BXa et g X Xeo|
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Basic equations (Eq. (13)—(15) in [4]) can be expressed as follows

1 o o 1 o
Mu= —5Xapu XAE + 1 X 4B (8.5)
1o o D o
N4, = —M”A—ZEAB <Xc |DE 8EC>
1B
3 o O 1 o o
—7 X B X0 = 7 X P X ep (8.6)

The “dynamics” of the further asymptotic hierarchy (Eq. (8)—(9) and (11)—
(12) in [4]) takes the form

. 1o o o 1 o o
~4Cap - g XP Xep X aBu + 1 XAB x P

= Najp+ Npja — YasN%c

(¢}
XC’D,u

o o

-M SEAB—igAC X XEF||FG§7EG, (8.7)

—4Dap = ( A+ 4)Cap — ( )%ACNB)HC

~(X5°Na)je + ¥ as( X°PNp)jc. (8.8)
Let us observe that mono-dipole but also quadrupole part of the right-hand

side of (8.8) vanishes. More precisely, let us rewrite this equation in the
following way

—4Dap = (A +4)Cap — Sa%p|c, (8.9)
where . S 5 S
Sapc = XacNp+ XBcNa— Yap XcpNP.

It is easy to check that S4pc is a traceless symmetric tensor (in each pair of
indices) and the same holds for S4pc := e4pSP . One can prove (see [30])
that SABCHCAB and SABCHCAB are orthogonal to the first three eigenvalue
spherical harmonics (with [ = 0,1, 2).

On the other hand, from the relation

CABIC oy g = OB 4pc + 2048 4p
we obtain that

[(ﬁ+4)CAB = (A +6) (C*P4p)

||AB

and Similarly for C’AB :=eapCPp.
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This way we get 10-dimensional space of quadrupole Newman—Penrose
charges in D op which are conserved ( [14], [4]). More precisely, quadrupole
(and also mono-dipole) parts of (%DABH ap and &LZA)ABH ap have to vanish.
However, for the polyhomogeneous asymptotics they may be not conserved
(see [10]).

Let v = u + 2r, than the metric (7.1) takes the following form

g datdz” = (—Z + TQVABUAUB + 626> du? — A dudv
r
—QTQVABUBdudmA + rzfyABdmAde (8.10)

and its linearization can be expressed as follows

1 1 o o
H=>~-.=. AB =~ (),
2 r? XaB X
1% o oM N4
haw = 1—— 428472y 4pUAUP = 2 4 — 14
T T T
huvg_ﬁgoa

o o 1o 2N 4

hya = —1r? VABUB—T’XABUB%—§ XBA||B+Ta
o o 1 o o

XAB = 7 X 4B, hABgTXAB"f‘i?”Q YapH = r Xap.

The linearized asymptotics of invariants

o AM | GN
X = ——+—35
T T
~ 1o C oup 6 °AB
Y = —oXa ope™m + G Najp e
. [}
Up=rx =2 4M, V,=1rx, = XAB||AB,ua

o C o . o C
~ AB ~ °AB
Wy:Ty:—XA IICB€ s Wy:Ty7u:— XA IICB& s
u

)

give an indication, how to relate linearized theory to the van der Burg asymp-
totics. This observation will be used in the sequel.

8.1. Supertranslations

Let us consider J1 as the cartesian product S2 x R! or rather trivial
affine bundle over S? with typical fiber R!; in some more general situations
R! may be replaced by an interval I. The supertranslation corresponds to
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the zero section of this affine bundle. On the other hand the boost trans-
formation leads to the nontrivial scaling factor in a fiber and a conformal
transformation on a base manifold S? (see [3] p. 111).

A prolongation of the supertranslation from scri “to the interior” in Bondi
coordinates (metric (7.1)) leads to the following asymptotic relations (see

also [3] p. 119)

1 1 o AB
74 = 1‘A+ —OéHA T 52 <X B —QOéABOéB—i-FABCozBaHC) +...,
r T
_ 1 1 o AB
7= u-a-galla, g [X ajaayp — ol <a||Ba”B)/J *
_ 1 o 1 [ cAB 1 o AB 1 o AB
T=rogAatos [XBQ||A+§ X Qa5 X uaB

1 1, o o \I4
_§a||ABO5HAB _aHAaHA +Z( AOZ)Z _ <Aa) O[A:| 4+ ...,

Now we can check the transformation law for 90( and M

o 1 o AB 1045 1 o AB
M = M+5 X putjjat 3 X qap + 7 X w45

Xap = Xap —20aB+ Vap Ac,
0a = 04+ a0y

and finally we obtain that certain combination

o AB o o o
AM — X ap=4M — X*P|up+ A(A +2)a (8.11)

has a simple transformation law with respect to the supertranslations. More-

[e]
over, mono-dipole part of 4M — Xx4B |AB 1s invariant with respect to the

supertranslations. It corresponds to the mass and linear momentum at
null infinity. We would like to stress that in general the definition (7.2)
is correct only on a {u = const.} cross-section of J*. Let us consider any
(cross-)section s : S? — J 7T of the affine bundle J+.

Definition
16mmyy : = /(4M— SEABHAB) (s(6, $)) sin 0d0ds , (8.12)
SQ

o k
16mph : = / (40 = X4%145) (0, 6) - simbavds.  (8.13)
32
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The above definition together with (8.11) gives the following:
Theorem 1. The energy-momentum 4-vector at null infinity is invariant
with respect to the supertranslations.

On the other hand, the angular momentum defined by (7.12) is not invariant
with respect to the supertranslations but obeys the following transformation
law

16mJ, = 16mJ, + / AMo .
SQ
The definition (8.13) allows us to define the flux of the energy through

the piece of JT between any two cross-sections of the null infinity in a
supertranslation-invariant way. More precisely, let

T S22 gt
for i = 1,2 be two different cross-sections of JT such that there exists

N C Jt with ON = 55(S?) U 51(S?). Then one can easily check from the
definition (8.13) and the relation (8.5) that

1 v AB :
mTB(SQ) - mTB(Sl) = 167 (4M - X ||AB) sin 6dfd¢
ON
1 o o
= ——— [ Xapu Xx*P ,sinfdudfde
327 ’ '
N
= (flux of energy through N).
(8.14)
Similar formula holds for linear momentum py, defined by (8.13)
1 o Sk
k k _ AB .
Pi(s2) = p"(s1) = 7~ <4M— X HAB) — sin fdfdg
ON
1 v °oap 2*
= ——— | XaBu X"~ ,— sinfdudfde¢
327 ’ o

N
= (flux of linear momentum through N). (8.15)

Remark. The supertranslation gauge freedom exists also in the linearized
theory. The linearized part of the supertranslation corresponds to the gauge
condition which preserves five components of the linearized metric: hy,., H,
hyr, hra. More precisely, it is a solution of the gauge conditions

¢, =0, &My =N, (Eape??), =0,

2
i+ 6 =0, & +8"u=0,
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where we use here the Minkowski background metric in the form

N dztdz” = —du? — 2dudr + r? %AdeAde .
The solution of the above gauge equations is quite simple

1o 1 o
£A: ; WABO‘HB’ é-u = —«, gr = _5 AO&,

where « is any real mapping a : S? — R and mono-dipole part of a corre-
sponds to the usual translations in Minkowski space. The gauge transfor-
mation for traceless symmmetric tensor x 4p

o (o]
XAB — XAB — 2rajap +7 7 a5 Aa

is similar to the nonlinear case.
Proposition. How to remove the supertranslation gauge freedom?

e]
Assume at time ug that 4M — x 4B |aB = 0, then for example the stationary
solution becomes a simple stationary solution (the definition is given in
e]
Subsection 8.4). This procedure allows to treat X 4P as the invariant
asymptotic degree of freedom and will be considered in Subsection 8.4.
Remark. The Kerr-Newman metric in certain Bondi-Sachs coordinates

can be asymptotically represented in such a way that M =0 = >o< AB-

8.2. Hierarchy of asymptotic solution on scri for scalar wave equation

Let us rewrite the wave equation in null coordinates (u,v)

p o )%+ Ap =0 (8.16)

and suppose we are looking for a solution of the wave equation (8.16) as a
series

o =p1p+ e’ +p3p’ + ..., (8.17)

where each ¢, is a function on scri, 9, = 0.
If we put the series (8.17) into the wave equation (8.16), we obtain the
following recursion

1 o
Outpn+1 = _%[ A+ (n—=1)njp, . (8.18)

Compare with equations 2, 3, 4 in [2].

Remark. The kernel of the operator | A +1 (I + 1)] corresponds to the
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[-th spherical harmonics. The right-hand side of (8.18) vanishes on the n—1
spherical harmonics subspace. This means that the corresponding multipole
in ¢,41 does not depend on u. In particular, for n = 3 we have quadrupole
charge in the fourth order. The nonlinear counterpart of this object is called
Newman-Penrose constant or NP charge. We discuss some features related
to NP charges in Section 8.5.

8.3. Linear theory, asymptotic hierarchy, “charges”

Let us first check that the linearized theory can be obtained, if we remove
nonlinear terms in the asymptotic hierarchy (8.6)—(8.8)

]

' A
AM = X*P|aBu.

AB

3NAHA = - AM 3]\7,4\\13g = - A)EABHAB,

1
4
. o ~ o o AB
—4C*B 45 = (A +2)NY 4 —4C*P upu=(A+2)Nape
—4D*B 45 = (A +6)C*P 4 — 4D 4p. = (A +6)CP ) 45,
x = AMp+ 6N 4p> + 6C*P | 4pp® + 4D 4pp" + O(p°)
o AB R R
y = X2 app+6Najpe  p* + 605 app® +4DAB | 450" + O(p°) .

It is easy to verify full agreement with (8.18) up to the 4-th order for the
invariants x, y. Moreover, let us define m := mon(M), p := dip(M). Then
we get

M=m+3p+M, 4M= x"P4p,, m=p=0
and Similarly for N4 we obtain

AB

NA:—pHAu—k(I)IA— € SHB—FNA,

where p, kg and s are dipoles. This way we have reconstructed “charges”.
Let us notice that the mono-dipole parts of invariants

1
x = 4mp + 1250z - p> + 12p'a; - p? - <u + —) ,
p

y = 12t - ,03

or

x=4(m+3p)-p+12(kg +p-u)-p?, y=12s-p

are the same as in (4.54) and (4.55).
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8.3.1. Nonradiating solutions

Suppose [ M = 0, then from asymptotic equation (8.5) we know that

S2
. 1 o o
OZ/M:—g/ AB,U XAB’U
S2

52

so we get §AB7u = 0, and finally also M = 0. Moreover, equation (8.6)
gives the relation

. o 1.
3N e’ = ZXCDHC’D

so the dipole part dip(N Al|B gAB ) vanishes and this means that the angular

momentum is conserved. This way we have proved the theorem formulated
at the end of the Subsection 2.2, namely:

Theorem 2. If the TB mass is conserved than angular momentum is
conserved too.

The general solution of this type (namely M = 0 = X AB,u) Will be called
nonradiating solution and it has the form

M =m+3p+M,

A o ~ u 1o R
NA — _p||Au_k\0\ _ 6ABSHB+NA+ 3 (Z 6ABXCDCDB_MHA) ’

~ A ~ ~
where N© = N4 and Nﬁ = (0. The integration of the equations

4Cap = —Naip — Npja+ 748N c
o 1
+(m +3p+ M) X ap + ZXAB)ZCDHCD ;

4Dap = —( A +4)Cap + SACBHCa
with . . . .
Sapc = XacNB+ XBcNa — Vap XcpNP

gives polynomial (with respect to the variable u) solutions of degree 2 for
Cap and degree 3 for Dyp.

8.4. How to relate linearized theory with van der Burg equations

The “first order” asymptotics of the Bondi-Sachs type metric on J T is
o
described by three functions M, X 4p. We shall try now to relate these data
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with the boundary value on J 7 of our invariants ¥, in the linearized theory
in such a way that the non-conservation laws for the mass and angular mo-

[}
mentum are similar in both cases. Suppose we know M, X 4p at the moment
o
u=ug and X ap, on J7T (actually we need only in the neighbourhood of

ug). We propose to perform a supertranslation which is related to the data
at ug in such a way that

(4M — X{!F5)(uo) = 0. (8.19)

Remark. The condition (8.19) for flat Minkowski space corresponds
to the appriopriate choice of the surface {u = ug = const.} which is a
true cone with a point-like vertex. Let us call the condition (8.19) the
supertranslation gauge at the moment ug. This way we have removed
quasi-locally the supertranslation ambiguity at the moment ug. We stress

that the relation 4M — ;("?EB = 0 holds only at ug because in general

QF( X ABu) = 4M ,, — )%ﬁfB ,, 18 not vanishing, however for the nonradi-
ating solutions the condition (8.19) may be fullfilled globally for all u. This
is the main difference between the linearized theory, where the condition

4M — ;ﬁfB = 0 can be fullfilled globally, and nonlinear data, where we can

only demand this condition to be fullfilled at one moment uy3. Neverthe-

less, these procedure allows us to relate nonlinear data at ug with linearized
theory, namely

_ Y AB o AB ;
4M = X||AB_>W$7 X||AB,U—>%C7

- AB AB :
Xjjap = Yy»  Xjapu — Yy

and also )%AB = limpﬂm <1/JAB —p*1 '(;’AB>- Now it is easy to verify
the analogy. The calculations from the previous sections devoted to the

linearized gravity should convince the reader that in linear theory we can
believe in the following equations

3 The choice of the supertranslation corresponds to the choice of the “better” local
Bondi-Sachs coordinate system. More precisely, the cross-section u = wug of .7;
for the Einstein metric g,, in the Bondi-Sachs coordinate system (u,z*) should be
compared rather with the cross-section ©w = up — a of 7, JT in the flat Minkowski space

with coordinates (@, z*) on the future null infinity, where 7 is the usual flat coordinate
corresponding to the usual null cone. The mono-dipole freedom in the choice of the
supertranslation o (and in the choice of coordinates (%, z*)) corresponds to the usual
translation freedom in the flat Minkowski space.
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167 0ymrs :/sin0d6d¢ (9 ATNA +2)71, 18, AN A +2)71, |

S(s,0)

(8.20)

1670, :/sin9d6d¢ (50 AT (A+2) 71 oty AT (A+2)710,)
S(s,0)

(8.21)

On the other hand, the energy defined in terms of the asymptotics on J 7+ by
(8.13) together with (8.5) gives the non-conservation law for the TB mass

. 1 o o
—16m0ymqyps = —/4Msin6?d9dq§: 5/ X AB,u XAB,U sin 6dfd¢
S2 52
_ /sin9d9d¢ [( X120 AT A +2)7 1 (X R)
SQ
+ (i) ATHA + 27 G R0 (8.22)
Similarity l.)etween (8.20) and (8.22) is obvious, provided X ﬁme — U,
XﬁfBﬂL - Wy'

We propose the following definition of the angular momentum (around
z-axis) in terms of the asymptotics:

3 o o
o= /NAHB £ 4B cos 0 sin 0dOde ,
T
SQ
where v 1 o o BC
Na :=NA+EXABX Ite&

It is compatible with the earlier proposition given by (7.12). We have
promised at the end of the previous section to show the relation (7.13) for
angular momentum. The following sequence of equalities holds

. . 1 o o
167J, = —/6N¢+§8u(X¢B XBCHC)
SQ
o ° B 1 S AB o 1o ° BC
= [ Xop X7 jjowt 5 X Xoap — 5 XeBu X7 |0
52

1 o o
= —5/ XAB,u X AB,$

5’2
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where in the middle we have used equation (8.6). The last equality (in the
above sequence) is a nontrivial identity and can be denoted more geometri-

cally

. 1. 1 )
/XAXABXBCHC + §XBCXABHCXA - §XAXABXBC||C
S2
1 [.
=-3 /XAB(XCXABHC + X pxca + X axen) , (8.23)
S2
where now xyap and xap are any symmetric traceless tensors on a unit
sphere, X409, := 0y and
XaB.o = XXapjc + X pxca + X axos -

Another form of (8.23) can be transformed in the following way.

1 [.
3 /XBC (X*xanc + Xexs™ja — X xpeya) =0
S2
is equivalent to
/XBCXA (XBC)a — XBA|IC) = /XBCXCXBAA
52 52
and the last equality holds for integrands

. A . A ~
XX (XBoja — xajc) = X2 XAeacxs”|p

A BC FD A, FD
= X“Xx" eaceprX T p =X XarX | D-

This way we have proved (8.23) and finally also (7.13). Let us rewrite the
final result in the form

. 1 o o
—167J, = —/ XﬁB X AB,¢

2
52
= /sin@d@d(b [( ;(ﬁfB)m 5_1( A+ 2)7( 52\1?,{13]3)@
52

+ (i) AT A +2) 7 (]Fs) 0]

The similarity with (8.21) is obvious, provided that the supertranslation
ambiguity is removed.
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8.4.1. Stationary solutions

Let us introduce in the full nonlinear asymptotics the following objects

AM = Q + Biiis,

XAB = Bap —2qap+ YaB Aq,

where () and Bap are invariant with respect to the supertranslations, ¢
represents supertranslation ambiguity

g=q+a, ¢=0,

and equation (8.5) is equivalent to

. 1. . .
Q= _§BABBAB = QF(Bag),

where quadratic term corresponding to the flux of energy we denote by QF.

The supertranslation gauge Q(ug) = &( & + 2)q allows to relate ¥, at
J T with B4p. The decomposition is chosen in a convenient manner for the
situation of the so-called “sandwich-wave”.

Suppose Bap has compact support on J (suppBag C [u;,uf] x S* C
J). Let us also suppose that below u; and upper uy our gravitating system
is stationary. These two assumptions define a “sandwich-wave”.

In Subsection 8.3.1 we have defined the nonradiating solution. Now let
us answer the question: When a nonradiating solution becomes stationary?
From N4 = 0 we obtain p=M = )QABHAB = 0; m, kg, s are not re-
yAB

stricted but also |AB does not vanish. From D A = 0 we get Cyp =

(A +4)_1SACBHC' Similarly, CAB = 0 gives m X ap = NAHB + NBHA
— PYABNCHC or NAHB gAB =0 and XABHAB = ( A + Q)NAHA

Let us call a simple stationary solution the situation when )cé 4B = 0 and
M = m = const., described by van der Burg in static case (sec.5 in [4]).

Remark The equations related to the Newman-Penrose charge in static
situation presented in [4] at the end of page 119 can be denoted in our
notation as

o 1 o
(A+10)Dap =15 <MCAB —NANB+§ 'YABNCN0> .
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We have defined three categories of special solutions:
simple stationary solutions C stationary solutions C nonradiating solutions

and let us observe that the supertranslation gauge leads to the conclusion
that every stationary solution in supertranslation gauge (8.19) is simple.

(nonradiating solutions in supertranslation gauge) N (stationary solutions)
= simple stationary solutions

On the other hand, in the case of the “sandwich wave” the supertranslation
gauge at u; and at uy in general is not the same. The difference depends on

uf uf
/ Qdu = / QFdu

so in general the initial and final states cannot be simple in the same Bondi
coordinates.

8.5. Special solutions of asymptotic hierarchy, Newman—Penrose charges

The equations (8.5)—(8.8) represent a nonlinear analogue (up to the
fourth order) of the hierarchy (8.18) for the usual wave equation.

We could define, as a generalized NP charge, any solution which starts
in the n + 1-th order from “multipole constant”. More precisely, if ¢ €
ker| A+ (n — 1)n] then from (8.18) wp41.,4 = 0. Let us observe that if this
charge vanishes we can derive “finite” Janis solution [13|, which is obtained
by “cutting the series” and derive hierarchy “upward”. More precisely,

0 = pip+pap’ ...+ onp",

on € ker[A +n(n—1)] = ¢pr1 =0, ¢, =Cu)Y,-1(0,9),
B 2% — 2 .

Phol = n(n—l)—(k:—l)(k—Q)gpk’

k<n,

and Y] is a spherical harmonics (] A+ [(I4+1)]Y; = 0). In particular, when
$1 =0, then C(u) is a polynomial of degree n — 1.

On the other hand, if NP charge is not vanishing, the solution ¢ can not
be stationary. Moreover, monopole and dipole examples show that these
solutions are singular (but on 7). The monopole example is the following

2

o

2
1 p AQDQZO, auQDQZO.

= 2 Tt = s
¥ ©2pv 8022 ¥ ou
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Similarly the dipole one

4 v—u 4 p3 o
—_— = — -, 2 :0, a :0’
’02(1) — ’LL) @33 (2 + pU)2 ( A+ )@3 uP3

and generally

ni1 Eker[ A +n(n—1)] = Pn11 =0, w1 =CY,1(0,9),

but now C' = 0 and ¢p40 = — i ¥Pn+1 7 0.

For gravity we have:
1. Dap = 0 = Janis solution
2. Dap — pure quadrupole = NP charge solution.

In the Janis paper there are only linearized solutions. We shall try
now to construct an asymptotic quadrupole solution of nonlinear hierarchy
(8.5)-(8.8). Let us assume that M and P lcp are given quadrupoles

(0=(A+6)M=(A+6xP cp).

o
Mu — XAB,uZOa

)

o D o ~
AM = (0, 9), Xc ||DE 5CE:?/(9a¢)a
DAB - 07

(e} (e} (o] (e} D
Sapc = XacNp+ XBcNa— YaB XcpN™,

o -~ 1 o
Cag = (A +4)7(Sa%)c) — 70 (nAHB +npja — VABTLCHC) :

24
NA = —p”Au—kJ)'A— gABsHB—i-NA—i-gnA,
M = m+3p+M,
1o4p.
nt: = 1 6ABXCDH(JDB — M4

Nayp + Npjja— 748N c = (m+3p+ M) X ap

1. R o _
+ ZXABXCDHCD —4(A+4) (1B c0) -

This is a special example of the nonradiating asymptotic solution, which was
defined by the condition that the TB mass is conserved.
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9. Closing remarks
We have shown how to define energy at null infinity and its flux through

the J+ for linear hyperbolic theories like scalar field, electrodynamics and
linearized gravity. For a given surface (hyperboloid) which ends on J* we
have assigned generators like energy and angular momentum. They fulfill
non-conservation law which comes in a natural way from the variational
formula. The boundary term describing flux through 7 has been obtained
in three ways:

a) from the variational formula on a hyperboloid

b) from the variational formula on the future null infinity surface J +

¢) from the energy-momentum tensor.

In all cases we get the same answer for the scalar field and electrodynam-
ics. For gravity, where there is no energy-momentum tensor, the symplectic
method has been successfully applied and it gives the correct answer for the
energy at J ' and the non-conservation law for it. The method is useful for
the definition of the angular momentum.

We have explained the relation between linearized theory and Bondi-
Sachs asymptotics and discussed the role of the supertranslations.

Appendix A
Ezxplicit formulae on a hyperboloid

We give explicit formulae for the relations which have been used exten-
sively in the Section 4.

A=sinh’wsing, Ny=—Npm, Ny=-Ngy=Nnu, NF=-Nj=3N,
N =coshw, N?=N3=—sinhw, N4=0, NAB,3 = 2KNAB ,

’I’]AB,g = —2m7AB, €AB,3 = 2KEAB, eAB o = —9ke4B k= cothw,
1

A,3:2"€A7 ’{N73:_KN3:N7 R,3 = ——; 9 )
sinh® w

3 A A A

I“ap = —knap, I'"p3=rdg, 1“"Bc,3=0,

2 2 1

Rapcp = ——5— (MacnBp —napnsc), “Rap = ——5—n4B,

sinh” w sinh” w

£33 _ ¢33 (BBA L gBA_ e A (lAB _ (lAB L ABeS.
§33=2E33, &314 =&3)1a — K€a, Ea3 =8a3 — KA,

Eaip = Eay + P&,

h333 = hs3 3, hsaga = haz a —2kh3a,

hAP s = hAP 3+ 26h"P, hapis = hag,s — 2khap, bz =h"p.3,
R34 3 = W34 5 + k3, s = hsa,s — khaa,

h3ap = h3a g — khap + knaphss

hapic = hap|c + knachsp + knpchsa .
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Appendix B

Reduction of the symplectic form on a hyperboloid

Let (p*, hy;) and (¥, gz;) denote two pairs of Cauchy data on a hyperboloid.
The (2+41)-splitting of the tensor gx; gives the following components on a sphere:

2 _  AB 2 ° 1 2

7:= n"7qaB, q33 — scalars on S, g34 — vector and 4 op := qaB — 5MaB 4 —
symmetric traceless tensor on S?. Similarly, we can decompose the tensor
density p*. The quadratic form i p* g1 can be decomposed into monopole

1%
part, dipole part and the remainder in a natural way.
The “mono-dipole” part we write separately

1 tanh? w
mon / Plau | = / ————p*mon(¢) + / ———p* mon(s*)

2 cosh? w A
\%4 1% 4
1 33 2
+§ tanh wp”’mon(q) , (B.1)
v
1
di M —/ i
P /p Qi Y p(€)
v v
—2/dip(sinh2 wp*1Be 4 ) 5_1(Q3A||BE )

tanh? i
anA nggdip(833)+ /tanhwp33dip(q)

/

N |

P o
dip <72 + tanh w A_lp?’AA>

2 cosh” w

1 o2
X (5 A ¢ —2sinhw coshwq3AA> , (B.2)
where invariant £ is defined as follows .
¢€: = 2cosh®wg® +2 coshwsinhwq‘?AHA + sinh? w qABHAB

2 1, 0 2 inh?
—coshw sinhw q,g—i(A—i—Q)q—QMs?’g.

From the vector constraints 9
sinhwp33, 5 + sinh wp?’AHA —coshw p=0, (B.3)

—_

o o 2
(sinh? wp?’AHA),g + (sinh? w pABHAB) + 3 =0, (B.4)

(sinh? wpABe 4 ), 3 + (sinh? weAC BABHBC) =0, (B.5)
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we can partially reduce our form

12
/Pkl%z = /p33q33 + 2% 34 + = pq +pAB g up

v 14
o
— /p33¢133 - 2(sinhwp3AHA) Afl(sinhwquHA)
14
72(sinhwp3A||B€AB) 5_1(sinhwq3A||BsAB)

o

1 22 ° ° ° g
+/§ pq +2(sinh2 wedc pAB”Bc) A_l( A+ 2)_1(Sinh2 well QABHBC)
/smh w pA ||AB)A_1(A+2)_1(Sinh2quBHAB)
14
/P33%3 — 2(sinhwp®j4) A~ (sinhwg®) 4)
v

o
/ s1nhwp3AHB€AB) A 71(sinhwq3AHBsAB)

2
(tanh wp®?, 5 4 tanh wp?’AHA) q

+
\<
N | =

[e] (o)

(simh2 wp3A”BEAB), 3 A_l( A+ 2)_1(sinh2 weAC ‘JABHBC)

<

—

\
s

) 1 o o _
{(smh2 wpgAHA), 3+ 3 A (tanhwp®?, 3 + tanh wpgAHA)} A

+ 2)_1(Sinh2w (CZ)ABHAB)

X

I
\[>0<

12 o o
tanh wp?3 [5 q—(A +2)"(sinh®w QABHAB)]

Q

-2 (smh wp HA) AT ( A+ 2)_1(sinh2w 3ABHAB)

(sinh2 wp3A”BEAB) ﬁ_l( & + 2)_1(simh2 weAC ‘;ABHBC)

)

(sinh2 wp3A||B€AB) At {Q3A||B€AB —(A+ 2)71(sinh2 weAC QAB||BC),3:|

\
)

|
\%\%\<

sinh®w o A
+

o 1 2
p* [Q33+(A +2)7! ( B||AB) ,3—§(tanhw ‘1),3}

coshw

<\<
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12 o o [}
+/tanhwp3AHA [5 ¢ +2sinhwcoshw A ' ( A +2) 7! (sinh®w ¢47)4p),3

)

—(A+ 2)71(sinh2w (3’43”,43) -2 ﬁl(sinhwcoshwquHA)] .

The volume term in the framebox is mono-dipole-free and corresponds to
the invariants y, Y. The last two terms we can proceed further, but first let
us write a scalar constraint in two equivalent forms

sinh®w o " 1 :
( C]ABHAB) 3+ (A +2) [%3 - §(tanh7" q),;;} = (tanhw§), 5 +¢

coshw

2
+Z (tanh® ws*® — tanh w sinh? ws3AHA) , (B.6)
1 o o 2 o o o
5 A( A +2) q42sinhw cosh w(sinh? w qABHAB),g — Asinh®w C_IABHAB

—2( A+ 2)(coshwsinhwq3AHA)
2sinh? w

1 ( &533 + 2 sinh w cosh w53A||A> .

(B.7)

= 2coshw(sinhw¢), 3 — &5 -

For the “radiation” part we get the following result:

° _, sinh®w o 1 2
/p33 [q33 F(A+2) (B2 G45, p) s — 5(tamhw Q),3:|
v

12 o o o
+/tanhwp3A||A [5 q 4+2sinhw coshw A Y A + 2) " (sinh? w qAB||AB),3

coshw

1%
—( A+ 2)~(sinh? w (CJ)ABHAB) -2 ﬁ_l(sinhw coshwq3A||A)}

)

2
p33( A+2)71 [(tanhw«f), 3+ &+ Z(tanh2 ws?® — tanh w sinh?® ws?’AA)}

— T —

tanhwp3A||A &71( 5 +2)71 {2 coshw(sinhw¢), 3 — &f

Jr
1%
9 sinh? o

7%( As33 ¢ 2sinhwcoshw53AA)}

— / [tamhwp33 + 2sinh’ w zflpgA“A} (A+27%
ov

+/ [ Ap® — A tanhwp®, 5 — 2sinhw(sinhwp®)4), 3
1%

o [e]

_ & tanhwpgAHA} AN A +2)7



Bondi Mass in Classical Field Theory 737

2 o
+ / 1 [tanhwp%( A +2)7!(tanh ws®® — sinh? ws3A||A)
v

_ sinh? wPSAHA &‘1( 5 +2)"!(tanh w 2833 + 2sinh? ws3AHA)}

:/[tanhw &pgg—l—QSinthpgAHA zfl(z +2)7 ¢

oV
—|—/ [ &p% + 2sinh® w EJABHAB + QSinhwcoshwpsAHA} 5_1( A+ 2)~ ¢
v
2 o o o
+/Z [tamh2 wp®3 (A +2)7 s — 2sinh? wp3A||A ATHA + 2)_183’4“4
v
2 o o
— / v tanh w sinh? w (pgg( A+ 2)*153‘4”,4 +p3A||A( A+ 2)71533) , (B.8)
v

and again the framebox corresponds to the invariants (here x and X).
Finally we get in volume integrand the gauge invariant part

“radiation” part in V‘

/ p" g = monodipole part in V +

\%4
+ /[tanhw Ap®® + 2sinh? wp3AHA] Afl( A+ 2)715
ov
-2 /(sinh2 wp3AHB€AB) Afl( A + 2)71(sinh2 weAC 5ABHBC)
)%
12 o o
+/tanhwp33 [5 q—(A +2) ' (sinh*w qAB||AB)]
ov
—2 /(Sinh2 wp?’AHA) A_l( A+ 2)_1(Sinh2w qABHAB) )
ov
where
1 tanh?
monodipole part in V = / 72p33m0n(§) + / e wp33mon(s33)
2cosh”w A
\%4 \%4

2 cosh? w

1% 1%
tanh? 33 o
+/ anA wpg?’dip(sg?’) + /dip (pi + tanh w A_lp?’AA)
1% 1%
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1 o 2
X (5 A g —QSinhwcoshwq3A||A> ,

(o]
“radiation” part in V' ‘ = / [ Ap*® + 2sinh? w Z%ABHAB

o

+2 sinhwcoshwp?’AHA} 3_1( A +2)71e
—2/(simh2 wpgA”BeAB) Al [Q?,ABgAB
v

—(A+ 2)71(Sinh2 weAC (.}ABHBC),:&] .

Appendix C
List of symbols

V' — three-dimensional volume or function in Bondi-Sachs type metric
L — Lagrangian density

27 — hyperboloid

o — scalar field

1) — rescaled scalar field

0 — “variational” derivative

0, — partial derivative

T", — symmetric energy-momentum tensor

Nuw — flat Minkowski metric

n — det .

T*", — canonical energy-momentum density

0", — Kronecker’s delta

p* — canonical field momenta

m — canonical momenta

‘H — Hamiltonian, energy generator

H — density of a Hamiltonian or two-dim. trace of hap
z#, y” — coordinates on M

t — time coordinate on My

r — radial coordinate on M

w — related radial coordinate on My, r = sinhw

p — “inverse” radial coordinate on Ma, r = p~*
s — “hyperboloidal time” coordinate on Mz, s =t — /1 + 12

u,v — null coordinates on Mz, u =t —r,v=t+r
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w — coordinate on My, w = —2r
6, ¢ — spherical coordinates on S2

d — exterior derivative

W, v, ... — four-dimensional indices running 0, ...,3
k,l,... — three-dimensional indices running 1,...,3
A, B, ... — two-dimensional indices on a sphere
a,b, ... — two-dimensional “null” indices on M,

O — d’Alambertian, wave operator

O — conformally related wave operator

M, — conformally related metric

R — scalar curvature

X — vector field

i® — spatial infinity

J — null infinity

J+1 — future null infinity

J~ — past null infinity

N — null surface “parallel” to Jtora piece of Jt
mapm — ADM mass

S? — sphere parameterized by 6, ¢

S(s, p) — sphere in M corresponding to coordinates s, p
Ss(w) — sphere in M corresponding to coordinates s,w
S(s,0) — sphere on J 7

S(1) — unit sphere

o
Y A — metric on a unit sphere

A — two-dimensional laplacian on a unit sphere

° . . . a0
€48 _ skew-symmetric tensor on a unit sphere, sinf %% =1

e8 — two-dimensional skew-symmetric tensor, r2sin %% = 1
|| — two-dimensional covariant derivative on a sphere

O — dual of 04, Os = P05

FH¥ — electromagnetic induction density

fuv — electromagnetic field

A, — electromagnetic potential

1,%p — gauge-invariant positions for electromagnetism

4T — gauge-invariant momenta for electromagnetism

J, — angular momentum

739
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gkt — three-dimensional riemannian metric

P* — ADM momentum

K™ — extrinsic curvature

RM, s — curvature tensor

R, — Ricci tensor

I, — Christoffel symbol

n* — normal unit future directed vector

R — three-dimensional scalar curvature

hx; — linearized metric

P* _ linearized momentum

p*! — “new” linearized momentum

g — det giy

A — volume element, A = r%sin 6

&, — gauge in linearized gravity

K — cothw

x,X,y,Y — invariants

xAB — traceless part of hap

Sap — traceless part of pap

S — trace of pan

A s — laplacian on a hyperboloid

J. — angular momentum generator

P. — linear momentum generator

., ¥, — “asymptotic position” on a hyperboloid

11, I, — “asymptotic momenta” on a hyperboloid

¢ — abstract index, t =,y

Eab — 3Eapdz® Ada’® = du Adv

Yo — invariant in null coordinates

Xqb — Invariant in null coordinates

8,V, U, vap — parameters describing Bondi-Sachs type metric
C — null cone or van der Burg asymptotics

mTe — Trautman-Bondi mass

wAB _ ponlinear asymptotic position on a null cone
Il 4 — nonlinear asymptotic momenta on a null cone
Lx — Lie derivative with respect to vector field X
s%,s',s — spin charge

m — mass charge



Bondi Mass in Classical Field Theory

p*,p!, p — linear momentum charge

§'° ko — static momentum charge (center of mass)

M — Minkowski space or asymptotics of function V' in van der Burg notation

v, — van der Burg parameterization of yap

U,W — van der Burg parameterization of U*

N, P — van der Burg parameterization of N4

N# — asymptotics of U%

¢,C, D — van der Burg notation for the asymptotics of

d,H, K — van der Burg notation for the asymptotics of §

o
X aB,CaB,Dap — asymptotics of yap
04,0, — Pauli matrices

SaBc — traceless symmetric tensor appearing in eq. (8.8)
Sapc —“dual” of Sapc, Sapc = €4PSpse

Cap —“dual” of Cap, Cap = €4°Chop

o ° o
~ ~ D
XaB — “dual” of XaB, XaB = €4~ XDB

Dap —“dual’ of Dap, Dap = €4Dep
mon(F') — monopole part of I’

dip(F') — dipole part of F

F — mono-dipole-free part of F'

F — supertranslation of F

Y, — spherical harmonics with eigenvalue —I(I + 1) of the laplacian &
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