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The soft gluon part of a proton wave function is investigated and com-
pared with an onium case. It is argued that at every step of the gloun
cascade new color structures appear. Dipole equation kernel emerges when
a diquark limit is assumed.
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1. Introduction

A soft gluon evolution in QCD is governed by a so called BFKL equa-
tion which has been originally derived in [1–3]. In a series of papers [4] by
Nikolaev and Zaharkov and independently [5–7] by Mueller and collabora-
tors a dipole picture of the gluon cascade has been developed and shown
to be equivalent to the BFKL evolution. For its simplicity and probabilis-
tic interpretation the QCD dipole picture has been successfully applied to
describe proton structure function at low x measured at HERA [8, 9], to
proton-nucleon scattering [10] to photon-photon scattering [11] and Pomeron
phenomenology [12, 13].

The most convenient way to introduce the dipole picture is to consider
an onium: a qq̄ state of two heavy fermions. The onium wave function
consists of the original fermions and many gluons emitted during the time
evolution. In order to calculate the n gluon component of the wave function
one employs:

1. a light-cone perturbation theory and leading logarithmic approxima-
tion for the longitudinal phase-space integrations;

2. a large Nc expansion in which every gluon line in color space can be
represented as a qq̄ pair.
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In the first step (1 gluon component of the wave function) a quark com-
ponent of the gluon and the heavy antiquark from the original onium which
form a color singlet are said to constitute a dipole. A second dipole is formed
from an antiquark component of the gluon and the heavy quark from the
onium. The key observation leading to the formulation of the dipole picture
is that in the next steps (2 and more gluon component of the wave function)
each dipole emits subsequent gluons independently of other dipoles; in other
words there is no interference between the different dipoles. This leads to a
factorization of a kernel describing gluon emission from a dipole.

In this way real gluon emissions are taken into account. Total probability
of real emissions is UV divergent but IR finite. Virtual corrections, which
have to be included as well, make this probability finite and the complete
kernel is identical to the one of BFKL.

In [8, 9] it was assumed that qq̄ (dipole) configuration can be found in
a proton and this dipole configuration gives the dominant contribution to
the soft gluon density in a proton. This assumption leads to the same soft
gluon density in the case of a proton as in the case of an onium (up to
the normalization factor). Thus it becomes tempting to get this result by
explicit calculation. Indeed, one can naively expect that a 3 (or rather Nc)
quark configuration in a color singlet state surrounds itself by dipoles during
the evolution of the gluon cascade in close resemblance to the onium case.

In this letter we show that this naive picture breaks down. The reason is
quite simple: there are interference diagrams between dipoles and a proton
which cannot be neglected as it was in the case of the onium. There the
interference diagrams between different dipoles could have been discarded
since they were non-leading in Nc. However, in the case of a proton a num-
ber of quarks is Nc and this factor enhances the non-leading interference
contributions. As a result there is no universal emission kernel which fac-
torizes in subsequent gluon emissions and moreover the complicated color
structures emerge. Whether a simple probabilistic picture can be recovered
by introducing higher color multipoles remains still an open question.

It is however instructive to investigate a diquark limit, i.e. a limit in
which 2 (or Nc − 1) quarks are localized in one point. In that case the
original proton reduces to a quark-diquark system which is in fact identical
to an onium state. We have checked by explicit calculation that this diquark
configuration of valence quarks in a proton leads to the soft gluon density
of a dipole type.

In Section 2, we calculate the wave function of a proton in analogy with
[5]. Then the square of a proton wave function is compared with the onium

case. In Section 3, we show that in the limit where two valence quarks are
localized in the same transverse position (diquark approximation) the dipole
equation emerges. In Section 4 we shortly summarize our findings.
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2. Wave function of a proton

In analogy with Refs. [5, 7] we decompose the proton state |Ψ > in the
basis of the eigenstates of the QCD evolution hamiltonian H0. The 3 + n
particle (three quarks and n soft gluons) component of |Ψ > is defined as:

ψ(n) ijk a1...an

αβγ λ1...λn
(k0, . . . k2+n)

=< k0, α, i; k1, β, j; k2, γ, k; k3, λ1, a1; . . . k2+n, λn, an|Ψ > . (1)

k0, k1 and k2 denote quark momenta, whereas k3, . . . k2+n correspond to
gluons. Indices α, β, γ and λ1, . . . λn denote quark and gluon polarizations
respectively, and i, j, k, a1, . . . an – colors of three valence quarks and n glu-
ons.

k0,α,i

k1,β,j

k2,γ,k

Fig. 1. Initial proton state — three valence quarks with no soft gluons.

We take three valence quarks with no soft gluons to be the initial proton
state (Fig. 1). Black dot on Fig. 1 denotes the antisymmetrization of the va-
lence quarks in color space. It is convenient to factor out the antisymmetric
tensor in ψ(0) explicitly:

ψ(0) ijk
(k0, k1, k2) =

1√
3!
εijkψ

(0)(k0, k1, k2). (2)

In what follows we shall also suppress spinor indices αβγ.
Starting with three valence quarks, described by εijkψ

(0)(k0, k1, k2), we
can calculate 1-soft gluon component of a proton wave function. Summing
contributions of the three graphs in Fig. 2 we find (in the first order in strong
coupling constant g):

ψ(1) ijk a1

λ1
(k0, . . . k3) = i2

√
2g
k̄3 · ε̄λ1

k̄2
3

[

εi′jk(T
a1)ii′√

3!
ψ(0)(k0 + k3, k1, k2)

+
εij′k(T

a1)jj′√
3!

ψ(0)(k0, k1 + k3, k2) +
εijk′(T a1)kk′√

3!
ψ(0)(k0, k1, k2 + k3)

]

. (3)
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k0,α,ik0+k3,α’ ,i’

k3,λ1,a1

k1,β,j

k2,γ,k

k0,α,i

k1+k3,β’ ,j’

k3,λ1,a1

k1,β,j

k2,γ,k

k0,α,i

k2+k3,γ’ ,k’

k3,λ1,a1

k1,β,j

k2,γ,k

Fig. 2. One gluon component of a proton wave function.

Here we have used a light-cone decomposition of the momenta, with k̄i be-
ing the transverse component of ki. It is convenient to work in a mixed
momentum-space representation performing Fourier transform in k̄i. The
corresponding 2-dimensional transverse position vectors are subsequently
denoted by xi, whereas zi correspond to the fractions of the “+” compo-
nents of momenta with respect to the “+” component of the initial proton
momentum. The details of the kinematics can be found in Ref. [5]. The
1-gluon component of the proton wave function takes the following form in
the mixed momentum-space representation:

ψ(1) ijk a1

λ1
(x0, . . . x3; z0, . . . z3) = −

√
2

π
gψ(0)(x0, x1, x2; z0, z1, z2)

[

εi′jk(T
a1)ii′√

3!

x30 · ε̄λ1

x2
30

+
εij′k(T

a1)jj′√
3!

x31 · ε̄λ1

x2
31

+
εijk′(T a1)kk′√

3!

x32 · ε̄λ1

x2
32

]

, (4)

where xij = xi − xj and ε̄λi
is transverse part of gluon polarization vector.

Now we can calculate Φ(1) – square of the 1-gluon component of the
proton wave function summed over gluon polarizations, which is depicted in
the first row of Fig. 3. The color factor of the noninterference graphs (gluon
emitted and absorbed by the same quark line — first three graphs of the

+ + ++ 22 + 2

1/(Nc-1) 1/(Nc-1)++ 2

1/(Nc-1) 1/(Nc-1)++ 2

1/(Nc-1) 1/(Nc-1)++ 2

Fig. 3. Square of the one gluon component of a proton wave function for Nc = 3.
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first row of Fig. 3) equals CF . The color factor of the interference graphs
(gluon exchanged between the different quark lines — last three graphs of
the first row of Fig. 3) equals CF /(Nc − 1). However we cannot neglect
the interference diagrams, even in the large Nc limit. That is because in
the large Nc limit a proton would be composed not from three but from Nc

valence quarks. Therefore effectively each non-interference diagram has to
be split into (Nc−1) ’copies’ in order to match the interference graphs. This
is pictorially illustrated in Fig. 3 for Nc = 3. Each row in the second part of
Fig. 3 sums up to a compact expression resembling a dipole production by
an onium. Summing up the contribution from all 3 (or rather Nc(Nc−1)/2)
rows we get:

Φ(1)(x0, x1, x2, x3; z0, z1, z2, z3) = Φ(0)(x0, x1, x2; z0, z1, z2)

8αs

π

Nc + 1

2Nc

[

x2
10

x2
30x

2
31

+
x2

20

x2
30x

2
32

+
x2

21

x2
31x

2
32

]

. (5)

It is important to note that interference diagrams make the integral:
∫

d2x3

2π
Φ(1)(x0, . . . x3; z0, . . . z3) (6)

IR finite (like in the dipole case). The UV divergence appears because the
virtual corrections have not been taken into account (see [5]) and the integral
(6) should be appropriately regularized.

We can compare this result with the case of an onium.

Φ
(1)
onium(x0, x1, x2; z0, z2, z3) = Φ

(0)
onium(x0, x1; z0, z1)

8αsCF

π

x2
10

x2
20x

2
21

, (7)

gives the universal probability of a gluon emission from a dipole. In the large
Nc limit a gluon line can be represented as a quark-antiquark pair in color
space. The onium with one gluon has then a straightforward interpretation
of two dipoles and the probability (7) can be interpreted as a probability of
a dipole (or equivalently an onium) splitting into two dipoles.

In the large Nc limit there is no interference between different dipoles,
so once a gluon is emitted from one of the already existing dipoles we can
again identify the resulting color structure as two new dipoles. Therefore the
probability of emission of the second (or n-th) gluon is given by the sum of
the probabilities of a gluon emission by two (or n) already existing dipoles.

Thus for Φ
(2)
onium we get an expression:

Φ
(2)
onium(x0, . . . x3; z0, . . . z3) = Φ

(0)
onium(x0, x1; z0, z1)

(

8αsCF

π

)2 x2
10

x2
20x

2
21

(

x2
20

x2
30x

2
32

+
x2

21

x2
31x

2
32

)

, (8)
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x0 x0

x3 x3

x1 x1

x2 x2

a b

Fig. 4. Large Nc limit of the first gluon emission.

where the first factor x2
10/x

2
20x

2
21 describes a process in which the original

onium splits into 2 dipoles and the second term in brackets describes the
splitting of these 2 dipoles into 2 new dipoles each. This pattern is universal
at every order of αs.

Similarly Φ(1) of Eq. (5) can be interpreted as a probability of an emission
of the first soft gluon from a proton. Representing the first gluon as a
quark-antiquark pair, one might try to interpret the resulting state as a
proton made of two original quarks and a quark part of the gluon and a
dipole made of an antiquark part of a gluon and the remaining quark of
the original proton (Fig. 4a). In analogy with the onium case one could
naturally expect that in the next step one would get:

1. a proton emitting the next gluon described by the kernel of Eq. (5)
and

2. a dipole emitting the next gluon described by the kernel of Eq. (7).
Unfortunately it is not so.

We shall show this by explicit calculation of the square of the proton
wave function. We shall do this exactly, i.e. without escaping to the large
Nc limit. The 2-gluon component of the proton wave function equals:

ψ(2) ijk a1a2

λ1λ2
(x0, . . . x4) = −

√
2

π
g

[

(T a2)ii′ψ
(1) i′jk a1

λ1
(x0, . . . x3)

x40 · ε̄λ2

x2
40

+(T a2)jj′ψ
(1) ij′k a1

λ1
(x0, . . . x3)

x41 · ε̄λ2

x2
41

+(T a2)kk′ψ(1) ijk′ a1

λ1
(x0, . . . x3)

x42 · ε̄λ2

x2
42

+ifa1a2cψ(1) ijk c

λ1
(x0, . . . x3)

x43 · ε̄λ2

x2
43

]

. (9)

In order to calculate Φ(2) it is convenient to split the entire expression
into 2 parts. Contribution to Φ(2) coming from the second gluon attached



Problems with Proton in the QCD Dipole Picture 751

in all possible ways within a diagram of Fig. 4a equals:1

Φ
(2)
4a (x0, . . . x4; z0, . . . z4) = Φ(0)(x0, x1, x2; z0, z1, z2)

(

8αs

π

)2

CF

1

x2
30

[

Nc

2

x2
30

x2
43x

2
40

+
Nc + 1

2Nc

(

x2
31

x2
43x

2
41

+
x2

32

x2
43x

2
42

+
x2

12

x2
41x

2
42

)

+
1

2Nc(Nc − 1)

(

x2
31

x2
43x

2
41

+
x2

32

x2
43x

2
42

− x2
01

x2
40x

2
41

− x2
12

x2
41x

2
42

)]

. (10)

In this case the probability of the second gluon emission behaves as we would
have a dipole (x3, x0), a proton (x3, x1, x2) and a sum of four (or 2(Nc−1))
terms which in the large Nc limit can be neglected. However the prefactor
1/x2

30 corresponds only to one part of the emission kernel of the first gluon.

Contribution to Φ(2) coming from the second gluon attached in all possible
ways within a diagram of Fig. 4b equals:

Φ
(2)
4b (x0, . . . x4; z0, . . . z4) = Φ(0)(x0, x1, x2; z0, z1, z2)

(

8αs

π

)2 Nc + 1

2Nc
(

−2
x30 · x31

x2
30x

2
31

)[

Nc

2

(

x2
03

x2
40x

2
43

+
x2

13

x2
41x

2
43

− x2
01

x2
40x

2
41

)

+
Nc + 1

2Nc

(

x2
01

x2
40x

2
41

+
x2

02

x2
40x

2
42

+
x2

12

x2
41x

2
42

)]

. (11)

In this case we get a color structure which cannot be identified with a proton
and a dipole emitting a gluon. The probability of the second gluon emission
behaves as we would have the original proton (x0, x1, x2) and two dipoles
(x3, x0 and x3, x1) with subtraction of another dipole (x0, x1). This is a
signature of a new color structure. Here the prefactor corresponding to the
first emission reads: −2 x30 · x31/x

2
30x

2
31. The fact that even in the large Nc

limit expressions in square brackets in Eq. (10) and Eq. (11) are different,
makes it impossible to collect the prefactors into one compact expression
like Eq. (5).

To get the full expression for Φ(2) one has to sum all (see Fig. 3) con-
tributions from three (or Nc) diagrams of the type of Fig. 4a, where the
first gluon is emitted and absorbed by the same quark in the initial proton
and from three (or Nc(Nc − 1)/2) diagrams of the type of Fig. 4b, where
the first gluon line extends between two different quark lines of the original

1 Strictly speaking Fig. 4 represents the large Nc limit of the first gluon emission,

however, as already said, we calculate 2-gluon emission exactly.
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proton. On the top of the first gluon the second gluon line should be added
accordingly. Thus one gets:

Φ(2)(x0, . . . , x4; z0, . . . z4)

= Φ
(2)
4a (x0, x1, x2, x3, x4; z0, . . . z4) + Φ

(2)
4a (x1, x0, x2, x3, x4; z0, . . . z4)

+Φ
(2)
4a (x2, x1, x0, x3, x4; z0, . . . z4)

+Φ
(2)
4b (x0, x1, x2, x3, x4; z0, . . . z4) + Φ

(2)
4b (x0, x2, x1, x3, x4; z0, . . . z4)

+Φ
(2)
4b (x1, x2, x0, x3, x4; z0, . . . z4) . (12)

Although the full expression is IR finite there is no factorization of the first
gluon emission as given by Eq. (5). It seems to us that this might be due to
the fact that at every step of the gluon cascade new color structures appear
which cannot be reduced to one proton and a number of dipoles.

3. Diquark limit and dipole equation

It is not clear to us whether the assumption, made in Refs. [8, 9], that
up to a normalization factor there is no difference between a proton and an
onium soft gluon dynamics can be justified in general case. However, if we
assume that two valence quarks are localized in the same transverse position
we recover the dipole equation. This is is of course an expected feature, since
two (or Nc − 1) quarks in antisymmetric state behave like an antiquark.

It is, however, instructive to check this on the example of Φ(2). Putting
x1 = x2 in the expression (12) for Φ(2) and remembering about combinatory
factors we get:

Φ(2)(x0, x1 = x2, x3, x4; z0, . . . z4) = Φ(0)(x0, x1 = x2; z0, z1, z2)

(

8αs

π

)2

CF

x2
10

x2
30x

2
31

[

Nc

2

(

x2
30

x2
43x

2
40

+
x2

31

x2
43x

2
41

)

− 1

2Nc

x2
01

x2
40x

2
41

]

, (13)

which in the large Nc limit reduces to (8).

4. Summary

In this short note we have calculated two soft gluon contribution to the
wave function of the proton. The first gluon emission, described by Eq. (5),
reveals all nice features of the onium case:

1. it is IR finite and
2. can be interpreted as dipole emission from the initial proton.

One has to stress that this result can be obtained only if the interference
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diagrams of the type of Fig. 4b are included. With respect to the graphs of
the type of Fig. 4a their color factor is suppressed as 1/Nc, however, their
number grows like Nc and therefore they cannot be neglected.

The emission of the next gluon causes the problem. Kinematical factors
in transverse configuration space corresponding to diagrams of Fig. 4a and
Fig. 4b are completely different. In fact the naive interpretation, that in the
first emission the proton splits into a dipole and another proton breaks down.
Instead we encounter new color structures, like the one in Fig. 4b, where
the quark and antiquark lines which are localized in the same transverse
position are interchanged many times. This is perhaps the signature that
some new color structures, not only dipoles and three-quark singlets (like
proton) appear. However, we do not have any solid proof of this statement
at the moment.

We have also checked by explicit calculation that if 2 (or Nc − 1) quarks
are “by force” put into the same transverse position the dipole equation
emerges. This is an expected feature, since two (or Nc − 1) quarks in anti-
symmetric state behave like an antiquark.
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useful discussions and R. Peschanski for discussions. The authors acknowl-
edge the support of Polish KBN Grant PB 2 PO3B 044 12. M.P. acknowl-
edges support of A. v. Humboldt Foundation.
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