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We study the equation of state (EOS) of β-stable dense matter and
models of neutron stars in the relativistic mean field (RMF) theory with the
isovector scalar mean field corresponding to the δ-meson [a0(980)]. A range
of values of the δ-meson coupling compatible with the Bonn potentials is
explored. Parameters of the model in the isovector sector are constrained to
fit the nuclear symmetry energy, Es ≈ 30 MeV. We find that the quantity
most sensitive to the δ-meson coupling is the proton fraction of neutron
star matter. It increases significantly in the presence of the δ-field. The
energy per baryon also increases but the effect is smaller. The EOS becomes
slightly stiffer and the maximum neutron star mass increases for stronger
δ-meson coupling.

PACS numbers: 21.65. +f, 97.60. Jd

1. Nucleon matter in the RMF model with the δ-meson

The standard RMF model [1] of nuclear matter, frequently used in as-
trophysical calculations, involves mean fields of σ, ω and ρ mesons. It does
not include the contribution of the isovector scalar meson δ [a0(980)] al-
though generally the density to which this field can couple does not vanish,
〈ψ̄τ3ψ〉 6= 0. The contribution of the δ-meson field is not expected to be
important for finite nuclei of small isospin-asymmetry, as the δ-meson mean
field vanishes in symmetric nuclear matter. However, for strongly isospin-
asymmetric matter in neutron stars presence of the δ-field can influence the
properties of dense matter. In Ref. [2] the RMF model was generalized to
include the contribution of the δ-meson. Here we investigate consequences
of such a generalized RMF theory for neutron stars.

∗ This research is partially supported by the Polish State Committee for Scientific
Research (KBN), grants 2 P03D 001 09 and 2 P03B 083 08.
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The dynamics of the RMF model is governed by the lagrangian

L = L0 + Lint , (1)

where L0 = Lψ + Lσ + Lω + Lρ + Lδ is the free-field lagrangian and Lint

is the interaction term. The free-field lagrangians for nucleons and meson
fields are:

Lψ = ψ̄(i∂µγ
µ −m)ψ , (2)

where m is the bare nucleon mass,

Lσ = 1
2 (∂µσ∂

µσ −m2
σσ

2) , (3)

Lω = −1
4(∂µων − ∂νωµ)(∂

µων − ∂νωµ) + 1
2m

2
ωωµω

µ , (4)

Lρ = −1
4(∂µ~ρν − ∂ν~ρµ)(∂

µ~ρν − ∂ν~ρµ) + 1
2m

2
ρ~ρµ~ρ

µ . (5)

Here mσ, mω, and mρ are masses of respective mesons. Lagrangians (2)–(5)
are the same as used in the standard RMF theory [1].

For the δ-field we use the simplest lagrangian of the massive isovector
scalar field,

Lδ = 1
2∂µ

~δ∂µ~δ − 1
2m

2
δ
~δ2, (6)

where mδ is the mass of the δ-meson.
The coupling of the meson fields to nucleons is assumed to have the

Yukawa form. For the σ-field we use the cubic and quartic selfinteraction
terms. The interaction lagrangian reads

Lint = gσσψ̄ψ − gωωµψ̄γ
µψ − 1

2gρ~ρµψ̄γ
µ~τψ + gδ~δψ̄~τψ − U(σ) , (7)

where U(σ) is the potential energy term of the σ-field due to Boguta and
Bodmer [3],

U(σ) = 1
3bmσ

3 + 1
4cσ

4 . (8)

In the RMF approximation, for a uniform nucleon matter only a few
fermion densities are relevant. These include the baryon density, 〈ψ̄γ0ψ〉 =
nB, the scalar density, 〈ψ̄ψ〉, the isospin density, 〈ψ̄γ0τ3ψ〉, and the scalar
isospin density, 〈ψ̄τ3ψ〉. A selfconsistent description of the system is achieved
by taking into account only those components of the meson fields which
couple to the above densities with all remaining components vanishing. For
normal nucleon matter the relevant components of mean meson fields are σ̄,

ω̄0, ρ̄
(3)
0 , and, for the δ-field, the isospin component δ̄(3).

It is a simple algebraic exercise to obtain the spectrum of nucleon energies
in terms of the above components of meson fields and to construct all relevant
nucleon densities. The single particle energies of protons and neutrons are

EP (N)(p) = gωω̄0 ±
1
2gρρ̄

(3)
0 +

√

p2 +m2
P (N) , (9)
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where the proton and neutron effective mass is, respectively,

mP = m− gσσ̄ − gδ δ̄
(3) , (10)

and
mN = m− gσσ̄ + gδ δ̄

(3) . (11)

The plus (minus) sign in the formula (9) refers to protons (neutrons).
We obtain the field equations for mean meson fields in the form:

m2
ωω̄0 = gωnB , (12)

m2
ρρ̄

(3)
0 = 1

2gρ(2x− 1)nB , (13)

where x = nP/nB is the proton fraction,

m2
σσ̄ +

∂U

∂σ
= gσ(n

s
P + nsN ) , (14)

and

m2
δ δ̄

(3) = gδ(n
s
P − nsN ) . (15)

In Eqs (14) and (15) nsP and nsN is, respectively, proton and neutron scalar
density,

nsi =
2

(2π)3

ki
∫

0

d3k
mi

√

k2 +m2
i

, i = P,N , (16)

with proton and neutron effective mass, mP and mN , given in Eqs (10)
and (11). Mean meson fields as determined through Eqs (12)–(15) depend
on the baryon density nB and the proton fraction x.

The energy of the uniform matter consists of nucleon and meson contri-
butions. The nucleon contribution is a sum of proton and neutron energies
(9) up to their respective Fermi momenta. Mean meson field contributions
are easily obtained from the lagrangians (4)–(6). With the mean meson
fields given by Eqs (12)–(15) the energy density of a uniform nucleon matter
becomes

εnuc =
2

(2π)3





kP
∫

d3k
√

k2 +m2
P +

kN
∫

d3k
√

k2 +m2
N





+
1

2
C2
ωn

2
B +

1

2

1

C2
σ

[

m−
mP +mN

2

]2

+U(σ̄) +
1

8
C2
ρ(2x− 1)2n2

B +
1

8

1

C2
δ

(mN −mP )2 . (17)
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In the spirit of the RMF theory [1] the parameters of the model are fit
to reproduce the empirical parameters of nuclear matter. In the isoscalar
sector, the coupling parameters, C2

σ ≡ g2
σ/m

2
σ, C

2
ω ≡ g2

ω/m
2
ω, b̄ ≡ b/g3

σ,
and c̄ ≡ c/g4

σ , are adjusted to fit the saturation properties of symmetric
nuclear matter (x = 1/2), i.e. the saturation density n0 = 0.145fm−3, the
binding energy B = −16 MeV per nucleon, and the compressibility modulus
KV ≈ 280 MeV. The fourth parameter, e.g. c̄, can be used to control the
stiffness of the equation of state of symmetric nuclear matter. Our choice of
these coupling parameters is discussed below.

The coupling parameters, C2
ρ ≡ g2

ρ/m
2
ρ, and C2

δ ≡ g2
δ/m

2
δ , in the isovector

sector are constrained to fit the nuclear symmetry energy, Es = 31± 4 MeV
[4]. This constraint gives C2

ρ as a function of C2
δ [2]. In the range of values

of C2
δ considered below, which is compatible with the Bonn potentials [5],

this function is well approximated by a linear relation [2]

C2
ρ = AC2

δ +B, (18)

with positive coefficients, A > 0, and B > 0, depending weakly on the
coupling parameters in the isoscalar sector.

The requirement that the nuclear symmetry energy is reproduced in
the presence of the δ-field is very important as the δ-field contribution is
strongly attractive. As shown in Ref. [2] the δ-meson coupling provides a
negative contribution to the symmetry energy that tends to cancel partially
the ρ-meson contribution. Thus to preserve the nuclear symmetry energy
a stronger ρ-meson coupling is needed. The formula (18) shows that the
parameter C2

ρ has the lowest value C2
ρ = B for C2

δ = 0. For any coupling

constant C2
δ > 0, the value of the ρ-coupling constant, C2

ρ , increases. Hence
for pure neutron matter inclusion of the δ-meson results unavoidably in
higher energy per particle at high densities, where contributions of vector
mesons dominate.

2. Equation of state and neutron stars

As we mentioned above, there is one parameter, e.g. c̄, which can be
used to label a family of EOS’s in the RMF model. We wish to retain this
freedom, as the true high density behaviour of the neutron star EOS is only
weakly constrained at present [6]. In the following we shall mainly use two
sets of coupling parameters which reproduce the saturation properties of
nuclear matter but predict different stiffness of the EOS at higher densities.
The EOS’s corresponding to these two sets of parameters are referred to as
soft and stiff. The soft EOS is specified by the parameters C2

σ = 1.582 fm2,
C2
ω = 1.019 fm2, b̄ = −0.7188, and c̄ = 6.563. For the stiff EOS the parame-

ters are C2
σ = 11.25 fm2, C2

ω = 6.483 fm2, b̄ = 0.003825, and c̄ = 3.5×10−6.
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The above EOS’s limit in a sense the family of EOS’s in the RMF model.
They are close to the softest and to the stiffest EOS in the RMF theory that
are physically allowed. The stiff EOS corresponds to a very small value of the
parameter c̄. Physical consistency of the RMF theory requires that c̄ > 0.
In Fig. 1 we show a plot of the parameter c̄ as a function of C2

σ. As one can
see, c̄ = 0 for C2

σ ≈ 11.5 fm2 and thus any acceptable value of C2
σ must be

lower (Fig. 1). In terms of the maximum neutron star mass, the EOS with
c̄ → 0 is the stiffest acceptable EOS in the RMF model. We choose small
but finite value c̄ = 3.5 × 10−6 with corresponding C2

σ = 11.25 fm2.

Fig. 1. The coupling parameter, c̄, as a function of the coupling parameter C2
σ.

The parameter c̄ for the soft EOS has the highest allowed value, c̄ =
6.563. The maximum neutron star mass corresponding to this EOS is about
1.44M⊙. This is the mass of the heavier neutron star in the binary pulsar
PSR B1913+16 [7], which has the largest precisely measured value of a
neutron star mass. Hence this EOS is the softest one still compatible with
measured neutron star masses.

We also show below some results for an intermediate EOS with the pa-
rameters C2

σ = 5.318 fm2, C2
ω = 2.31 fm2, b̄ = −0.03952, and c̄ = 0.4229.

The coupling constant gδ of the δ-nucleon interaction is a parameter in
the one-boson-exchange fits of nucleon–nucleon scattering data. Its value is
not, however, strongly constrained at present [5]. Our aim in this paper is
to investigate the influence of this coupling parameter on the EOS of dense
matter and on properties of neutron stars. To do so we adopt here a range of
the δ-meson coupling compatible with the Bonn potentials [5], C2

δ ≤ 4.4 fm2.
The maximum value of C2

δ we use exceeds the value corresponding to the

Bonn potential C [5] which is C2
δ ≈ 2.5 fm2.
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For a given δ-coupling, C2
δ , we obtain the ρ-meson coupling, C2

ρ , from

Eq. (18) applying for the soft EOS the coefficients A = 0.63 and B = 5.0 fm2.
For the stiff EOS, the coefficients in Eq. (18) are A = 0.60 and B = 4.31 fm2.

To obtain the EOS of the neutron star matter we first calculate the
proton fraction x of the charge-neutral β-stable neutron star matter, which
satisfies the condition

µN − µP =
√

k2
N +m2

N −
√

k2
P +m2

P + 1
2C

2
ρ(1 − 2x)nB = µe = µµ , (19)

where µe = ke = (3π2ne)
1/3 is the electron chemical potential and µµ =

√

k2
µ +m2

µ is the muon chemical potential. Charge neutrality requires that

ne + nµ = nP = xnB.
In Fig. 2 we show the proton fraction x as a function of density for a

few values of C2
δ . One can notice that for both EOS’s the proton fraction is

substantially larger for indicated values of the δ-meson coupling, C2
δ , than for

vanishing coupling, C2
δ = 0. It exceeds the critical value for the direct URCA

process to dominate the cooling rate of neutron stars, which is xURCA ≈ 0.11,
already at densities less than twice the nuclear saturation density. For the
stiff EOS and for the δ-coupling corresponding to the Bonn potential C,
C2
δ = 2.5 fm2, the proton fraction is about 40% higher than for vanishing

δ-meson coupling. For the soft EOS the proton fraction increases by about
20%, a somewhat weaker effect.

Fig. 2. The proton fraction, x, of the neutron star matter for the soft EOS (solid

curves) and the stiff EOS (dashed curves), for indicated values of the δ-meson

coupling, C2

δ
.
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The energy density of the β-stable neutron star matter, εns, is obtained
as a sum of nucleon and lepton contributions,

εns = εnuc +
1

4π2
k4
e +

2

(2π)3

kµ
∫

0

d3k
√

k2 +m2
µ, (20)

where nucleon contribution, εnuc, is given in Eq. (17). Next terms represent
the energy density of the electron Fermi sea and the muon Fermi sea. The
energy per baryon with the contribution of the δ-field for both soft and stiff
EOS is shown in Fig. 3. For comparison, curves with no δ-field included are
also shown. As one can see in Fig. 3 the energy per particle increases with
δ-coupling C2

δ . The effect is stronger for the stiff EOS. For C2
δ = 2.5 fm2 the

energy per baryon is about 10% higher than for C2
δ = 0. For the soft EOS

the energy per baryon increases by ∼ 5%.

Fig. 3. The energy per particle of the neutron star matter for the soft EOS and

the stiff EOS. Curves labeled 1, 2, and 3 correspond, respectively, to C2

δ
= 0,

C2

δ
= 2.5 fm2, and C2

δ
= 4.4 fm2.

It is interesting to note that actually the nucleon contribution to the
energy per baryon at a given nB decreases with increasing C2

δ for both EOS’s.
It is the lepton contribution which makes the total energy per particle higher.

This behaviour can be easily understood. With increasing C2
δ the proton

fraction of the neutron star matter in β-equilibrium increases making the
system less isospin-asymmetric. This in turn reduces the amplitude of the

ρ-meson mean field, ρ̄
(3)
0 , which provides a repulsive contribution. As a
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result, the nucleon energy per baryon is lowered in spite of the fact that
the ρ-meson coupling parameter, C2

ρ , is higher. However, increase of the
proton fraction results in higher density of electrons and muons which thus
contribute more to the total energy per particle. The energy per baryon of
the β-stable neutron star matter displays a similar behaviour as the one of
pure neutron matter which becomes higher with increasing δ-meson coupling
[2].

In Fig. 4 pressure as a function of mass density, P = P (ε/c2), a relation
referred to as the EOS of neutron star matter, is shown. In this plot curves
corresponding to C2

δ = 4.4 fm2 and to Cδ = 0 differ significantly for both soft

and stiff EOS. Pressure at a given mass density is higher for C2
δ = 4.4 fm2

than for C2
δ = 0 which indicates that the EOS becomes somewhat stiffer

when the δ-meson contribution is present.

Fig. 4. Pressure as a function of mass density for the soft EOS and the stiff EOS.

Solid and dashed lines correspond, respectively, to C2

δ
= 0 and C2

δ
= 4.4 fm2.

The soft EOS and the stiff EOS calculated for C2
δ = 2.5 fm2, a value

corresponding to the Bonn potential C, are given in Table Ia and Table Ib,
respectively. As the proton fraction at high densities is rather high, es-
pecially for the stiff EOS, leptons (electrons and muons) make a sizable
contribution to the total mass density.
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TABLE Ia

Soft equation of state, C2

δ
= 2.5 fm2

nB(cm−3) ρ(g/cm
3
) P (dynes/cm

2
)

8.320×1037 1.404×1014 1.612×1031

8.360×1037 1.411×1014 4.034×1031

8.400×1037 1.418×1014 6.487×1031

8.440×1037 1.425×1014 8.971×1031

8.481×1037 1.431×1014 1.148×1032

8.562×1037 1.445×1014 1.661×1032

8.603×1037 1.452×1014 1.922×1032

8.644×1037 1.459×1014 2.186×1032

8.686×1037 1.466×1014 2.454×1032

9.248×1037 1.561×1014 6.288×1032

1.013×1038 1.712×1014 1.303×1033

1.077×1038 1.821×1014 1.840×1033

1.217×1038 2.061×1014 3.161×1033

1.334×1038 2.263×1014 4.407×1033

1.462×1038 2.486×1014 5.877×1033

1.756×1038 3.003×1014 9.672×1033

1.924×1038 3.303×1014 1.211×1034

2.109×1038 3.634×1014 1.499×1034

2.321×1038 4.019×1014 1.858×1034

2.561×1038 4.457×1014 2.295×1034

2.825×1038 4.945×1014 2.816×1034

3.116×1038 5.491×1014 3.436×1034

3.437×1038 6.100×1014 4.175×1034

3.917×1038 7.026×1014 5.380×1034

4.321×1038 7.818×1014 6.485×1034

4.766×1038 8.705×1014 7.797×1034

5.258×1038 9.700×1014 9.355×1034

5.800×1038 1.081×1015 1.120×1035

6.619×1038 1.254×1015 1.426×1035

7.555×1038 1.456×1015 1.810×1035

8.250×1038 1.611×1015 2.121×1035

9.841×1038 1.974×1015 2.910×1035

1.123×1039 2.305×1015 3.686×1035

1.281×1039 2.696×1015 4.670×1035

1.463×1039 3.160×1015 5.917×1035

1.669×1039 3.711×1015 7.501×1035

1.905×1039 4.368×1015 9.515×1035

2.175×1039 5.154×1015 1.208×1036
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TABLE Ib

Stiff equation of state, C2

δ
= 2.5 fm2

nB(cm−3) ρ(g/cm
3
) P (dynes/cm

2
)

3.190×1037 5.359×1013 8.324×1029

3.526×1037 5.924×1013 9.026×1030

3.898×1037 6.550×1013 2.364×1031

4.310×1037 7.242×1013 4.792×1031

4.765×1037 8.007×1013 8.641×1031

5.268×1037 8.853×1013 1.453×1032

6.438×1037 1.082×1014 3.625×1032

7.118×1037 1.197×1014 5.486×1032

7.869×1037 1.324×1014 8.135×1032

8.700×1037 1.465×1014 1.186×1033

1.044×1038 1.764×1014 2.282×1033

1.255×1038 2.125×1014 4.237×1033

1.375×1038 2.335×1014 5.702×1033

1.507×1038 2.566×1014 7.555×1033

1.652×1038 2.821×1014 9.925×1033

1.810×1038 3.104×1014 1.296×1034

1.984×1038 3.418×1014 1.683×1034

2.175×1038 3.766×1014 2.178×1034

2.399×1038 4.183×1014 2.855×1034

2.646×1038 4.652×1014 3.727×1034

2.919×1038 5.180×1014 4.846×1034

3.219×1038 5.777×1014 6.277×1034

3.551×1038 6.454×1014 8.102×1034

3.917×1038 7.225×1014 1.042×1035

4.321×1038 8.105×1014 1.338×1035

4.766×1038 9.114×1014 1.713×1035

5.258×1038 1.027×1015 2.188×1035

5.800×1038 1.161×1015 2.788×1035

6.619×1038 1.378×1015 3.852×1035

7.555×1038 1.643×1015 5.276×1035

8.622×1038 1.971×1015 7.183×1035

9.841×1038 2.381×1015 9.716×1035

1.123×1039 2.895×1015 1.304×1036

1.281×1039 3.542×1015 1.740×1036

1.463×1039 4.357×1015 2.307×1036

1.669×1039 5.390×1015 3.044×1036

1.905×1039 6.700×1015 4.000×1036

2.175×1039 8.366×1015 5.239×1036
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To gauge the influence of the δ-meson coupling on the EOS we have
calculated models of neutron stars. The high density EOS calculated in the
previous section was matched with the low density EOS due to Baym, Bethe,
and Pethick [8] by constructing a proper phase transition. By making this
construction we have found interface between crust matter, described by the
EOS of Ref. [8], and liquid core matter, described by our RMF theory. Both
EOS’s in Table Ia and Ib are given for liquid core matter starting from the
core interface density.

In Fig. 5 density profiles are shown for the canonical neutron star mass
1.4M⊙. For the soft EOS generally the radii are smaller than for the stiff
EOS. The effect of the δ-meson contribution is more profound in case of
the soft EOS. The radius increases from R ≈ 10.6 km, for C2

δ = 0, to

R ≈ 11.9 km, for C2
δ = 2.5 fm2, and to R ≈ 12.5 km, for C2

δ = 4.4 fm2.
For the stiff EOS the radius is R ≈ 13.8 km for C2

δ = 0, R ≈ 14.2 km for

C2
δ = 2.5 fm2, and R ≈ 14.6 km, for C2

δ = 4.4 fm2. The central density
decreases with increasing δ-coupling. In case of the soft EOS, the central
density is nc ≈ 8.5n0, nc ≈ 5.4n0 and nc ≈ 4.4n0 for, respectively, C2

δ = 0,

C2
δ = 2.5 fm2 and C2

δ = 4.4 fm2. For the stiff EOS corresponding central
densities are nc ≈ 2.3n0, nc ≈ 2.1n0 and nc ≈ 1.9n0, respectively.

Fig. 5. The density profile of 1.4M⊙ neutron star for the soft EOS and for the stiff

EOS. Solid, dashed and dotted-dashed lines correspond, respectively, to C2

δ
= 0,

C2

δ
= 2.5 fm2, and C2

δ
= 4.4 fm2.

It is interesting to study the core of 1.4M⊙ neutron star models with the
proton fraction exceeding the critical URCA value, xURCA, where the direct
URCA process dominates the cooling rate. With increasing C2

δ there are
two effects influencing its size which tend to cancel one another: increase of
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the proton fraction at a given baryon density (Fig. 2) and decrease of the
central density nc due to stiffening of the EOS. The former one tends to
extend the core while the latter one tends to shrink it. As a result, the core
size is rather insensitive to changes of the δ-coupling C2

δ . It is determined
primarily by the stiffness of the EOS for C2

δ = 0. Generally, the mass of the
core where direct URCA process dominates is higher for the soft EOS than
for the stiff EOS.

The neutron star mass as a function of central density is displayed in
Fig. 6 for the soft and the stiff EOS. We also show results for the inter-
mediate EOS, with parameters given in Sect. 2. Maximum mass increases
slightly with C2

δ . The δ-field plays a more important role for the soft EOS.
The maximum neutron star mass is Mmax = 1.403M⊙ for C2

δ = 0. Since
this value is less than the mass of the neutron star in the binary pulsar PSR
B1913+16, which is 1.44M⊙, this EOS is too soft to be realistic. However,
with inclusion of the δ-field contribution the maximum neutron star mass in-
creases to Mmax = 1.452M⊙, for C2

δ = 2.5 fm2, and to Mmax = 1.48M⊙, for

C2
δ = 4.4 fm2. Inclusion of the δ-meson with C2

δ = 2.5 fm2 results in about
4% increase of Mmax that makes the soft EOS astrophysically acceptable.

Fig. 6. The spectrum of neutron star masses for the soft EOS and the stiff EOS.

Also, results for the intermediate EOS are shown. Solid, dashed and dotted-dashed

lines correspond, respectively, to C2

δ
= 0, C2

δ
= 2.5 fm2, and C2

δ
= 4.4 fm2.

For the stiff EOS the maximum neutron star mass is Mmax = 2.275M⊙,
Mmax = 2.309M⊙ and Mmax = 2.313M⊙ for, respectively, C2

δ = 0, C2
δ =

2.5 fm2 and C2
δ = 4.4 fm2. In this case Mmax increases by ∼ 1.5% for

C2
δ = 2.5 fm2. Central densities of the above maximum mass neutron stars

are, respectively, nc ≈ 6.2n0, nc ≈ 5.9n0 and nc ≈ 5.7n0.
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3. Conclusions and discussion

We have studied the influence of the δ-meson coupling on the EOS of
neutron star matter in the RMF theory. When the isovector scalar field of
the δ-meson is added to the standard RMF model, the nuclear symmetry
energy has two contributions of opposite sign. The conventional ρ-meson
contribution is positive, whereas the δ-meson contribution is negative [2].
This reflects the fact that in pure neutron matter the ρ-meson provides
repulsion whereas the δ-meson produces additional attraction. It is thus
obvious that in order to make physically relevant predictions of the EOS
of neutron star matter the coupling parameters of the δ and ρ mesons to
nucleons should be constrained in such a way that the empirical value of the
nuclear symmetry is preserved.

We have found that the quantity most strongly affected by the pres-
ence of the δ-field is the proton fraction of the neutron star matter in β-
equilibrium. It increases rapidly with C2

δ . The effect is more profound for
the stiff EOS, for which the proton fraction increases by ∼ 40% for the value
of C2

δ = 2.5 fm2 corresponding to the Bonn potential C. For the soft EOS
the proton fraction increases in this case by ∼ 20%. For higher values of the
δ-coupling parameter this increase is larger (Fig. 2). The URCA threshold
concentration of protons, xURCA ≈ 0.11, occurs at lower densities.

The δ-field contribution makes the energy per baryon of β-stable neu-
tron star matter higher by ∼ 10% and ∼ 5% for the stiff and soft EOS,
respectively, and for the Bonn potential C value of C2

δ . Here the increase is
due to larger leptonic contribution since the nucleon contribution actually
decreases with C2

δ . The EOS with C2
δ 6= 0 is slightly stiffer than for C2

δ = 0.
Maximum mass of the neutron star also increases by a few percent.

One should stress that the extension of the RMF model to include the
isovector scalar meson δ is the most natural one. In fact, the standard RMF
model with no δ-field is not fully selfconsistent, as for isospin-asymmetric
matter the density 〈ψ̄τ3ψ〉 6= 0 whereas the mean field with the same quan-
tum numbers vanishes. The coupling constant gδ is not well determined
at present [5]. However for values in the range compatible with the Bonn
potentials [5] the contribution of the δ-field in pure neutron matter at satu-
ration density is quite strong [2]. If the ρ-coupling is unchanged, the neutron
matter becomes selfbound for C2

δ ≈ 1.0 fm2. To avoid such an unphysical
behaviour the ρ-coupling C2

ρ should be readjusted to meet the requirement
that the empirical value of the nuclear symmetry energy is reproduced.
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