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A hamiltonian description of the physical system composed of a dust
shell interacting with the gravitational field is considered. In the spherically
symmetric case, the phase space of the system is effectively reduced with
respect to the Gauss–Codazzi constraints. The Hamiltonian of the system
(numerically equal to the value of the A. D. M. mass) is explicitly calculated
in terms of the “true degrees of freedom”, i.e. as a function on the reduced
phase space.

PACS numbers: 04.20. Fy

1. Introduction

Matter shell is a singularity of the space-time geometry which arises
when two different, smooth 4-geometries are sewed across a (2+1)-dimen-
sional hypersurface Σ in such a way that they induce the same 3-geometry
on Σ. Dynamics of the composed “matter shell + gravity” system may
be described by the empty-space version of the Einstein equations outside
the shell and the Israel condition on the shell (see [3]). In paper [2] the
hamiltonian formulation of this dynamics was derived from first principles,
for a general fluid-type matter. For this purpose an appropriate Lagrangian
L = Lgrav + Lmatter was used. For its gravitational part Lgrav, the quantity

1
16π

√

|g(4)| R(4) was taken, with R
(4) = R

(4)
reg+R

(4)
sing, where R

(4)
reg is the regular

part of the scalar curvature of the (piecewise smooth) spacetime outside of

the shell and R
(4)
sing is its singular part. The δ-like singularity is concentrated

∗ Presented at the Workshop on Gauge Theories of Gravitation, Jadwisin, Poland,

September 4–10, 1997.

(1001)



1002 J. Kijowski

on the shell. It arises due to the fact that the metric, although continuous, is
not in general C1 across the shell and, therefore, the connection coefficients
Γ λ

µν have a jump on Σ.
As a matter Lagrangian Lmatter, the usual rest-frame energy density

(cf. [5]) was taken. It is completely determined by a choice of a single func-
tion e0 = e0(ω) describing the dependence of the molar rest-frame energy e0

of the fluid upon its molar rest-frame, surface density ω. The above function
plays role of a state equation. It determines completely the mechanical prop-
erties of the fluid. The particular example of a dust matter corresponds to
the constant function e0(ω) ≡ m (the dust carries only the rest-mass energy
m which is deformation-independent).

Hence, the phase space of initial data of the above system may be
parametrized by the following space of functions:

P := {(gkl, P
kl, yk, pk)} .

Here gkl is a Riemannian metric on a 3-dimensional, space-like Cauchy sur-
face C and P kl is the corresponding A. D. M. momentum describing its
external curvature (in the present paper we limit ourselves to the topologi-
cally trivial case C ≃ R

3 and we assume that its geometry is asymptotically
flat at infinity). The remaining objects yk and pk describe the configuration
and the momentum assigned to all the points of the material. Mathemati-
cally, all these points are organized into a 2-dimensional compact manifold
Z which we call a material space and parameterize typically by coordinates
(z1, z2). It is equipped with a volume structure, i.e. a differential 2-form

χ = h(z) dz1 ∧ dz2

which, when integrated over a domain D ⊂ Z, gives us the amount of matter
(calculated e.g. in moles) contained in D. Configurations of the material
are described by embeddings F : Z → C. Given a coordinate system (xk) on
C, we may describe such an embedding by three functions yk, which assign
the physical space position xk := yk(zA), k = 1, 2, 3; A = 1, 2; to each
point (zA) of the material. Functions pk = pk(z) describe the amount of
mechanical momentum carried by the matter.

The phase space is, therefore, described by 12 functions (gkl, P
kl) de-

pending on 3 independent variables xk and 6 functions (yk, pk) depending
on 2 independent variables zA.

Dynamical equations of the system impose the following constraints on
the above data:

H :=
1

16π

{

1√
g

(

P klPkl −
1

2
(P k

k )2
)

−√
g R

}

+ E(x, p, g) ≡ 0 , (1)

Hl := − 1

8π
P k

l|k + Pl ≡ 0 , (2)
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where the matter energy-density E and momentum-density Pl are defined
as components of the canonical energy-momentum tensor density T λ

µ of

matter: E := T 0
µnµ and nµ is a future oriented, space-time vector, or-

thogonal to C and Pl := T 0
l. They are derived in a usual way from the

matter Lagrangian Lmatter. Since the latter vanishes outside the shell, E
and Pl are δ-like, singular objects concentrated on the 2-dimensional shell’s
configuration S := F (Z) ⊂ C. More precisely, we have

Pl = ∆SF∗(χ)pl , (3)

E = ∆SF∗(χ)e(x, p, g) , (4)

where by ∆S we denote the invariant Dirac “delta” concentrated on S (we
have chosen this unusual notation in order to keep the lower case δ for de-
noting “variations”, i.e. differential forms in infinite-dimensional, functional
spaces). By F∗(χ) we denote the physical-space matter density defined by
the push-forward of χ from the material space Z to S. Every state equation
e0 = e0(ω) implies a specific form of the fluid energy e as a function of
momenta and the metric. For the dust matter e.g. we have

e =
√

m2 + gklpkpl . (5)

The constraints may actually be formulated in terms of equations (1) and
(2), if we understand them in the sense of distributions. These equations
contain, in fact, the usual vacuum constraints outside of the shell (i.e. where
E and Pl vanish), together with information about necessary discontinuities
of the connection coefficients and of P kl along S. These discontinuities are
contained in a singular part of the 3-dimensional curvature R (equation (1))
and in a singular part of the divergence P k

l|k (equation (2)). They must

arise in order to match the singular matter energy E and momentum Pl,
respectively.

Hence, we assume from the very beginning that gkl and P kl are piecewise
smooth outside of the shell and that gkl is continuous also across the shell.

The above phase space is equipped with the canonical pre-symplectic
structure

Ω :=
1

16π

∫

C

{

δP kl(x) ∧ δgkl(x)
}

d3x +

∫

Z

{

δpk(z) ∧ δyk(z)
}

hd2z , (6)

which means that – without constraints – the Poisson brackets between P kl

and gkl together with Poisson brackets between pk and yk would have been
δ-like, whereas remaining Poisson brackets would have vanish. Taking into
account constraints, the above quantities are no longer independent, which
gives rise to the degeneracy of Ω.
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The total Hamiltonian of the system is equal to the A. D. M. mass
(see [2] and [4]) and may be calculated in terms of the standard 2-dimensional
surface integral “at infinity” of C (the usual volume term NH + NkHk is
skipped here because we always work on shell).

The phase space P may be quotiented with respect to the degeneracy
of Ω. Cauchy data (points of P) which may be joint be a one-parameter
family of data (a curve) whose tangent vector belongs to the degeneracy
of Ω are treated as physically equivalent. The goal of the present paper
is to describe explicitely this quotient space P̃ (i.e. the space of classes of
gauge-equivalent Cauchy data) and to express the hamiltonian in terms of

the “true degrees of freedom” in P̃ . We are able to accomplish this task
in the spherically symmetric case. The resulting reduced phase space P̃ is
2-dimensional and may be nicely parametrized by two geometric quantities
characterizing the shell’s space-like configuration.

Two strategies are possible when dealing with the reduction problem
in gauge theories. The first strategy consists in looking for the complete
system of gauge-invariants which may be used to parameterize classes of
gauge-equivalent physical states. Unfortunately, this royal road is not al-
ways possible and we must use the other strategy, based on gauge-fixing.
It consists in choosing particular representatives in each class, selected by
imposing various gauge conditions. In this treatment, the quotient space
may be parameterized by the space of those special representatives. This
description depends a priori upon the gauge conditions used. It turns out
that in our case the purely spatial gauge, generated by the momentum con-
straint (2) may be treated in a gauge invariant (royal) way, whereas time-like
gauge generated by the energy constraint (1) needs a gauge-fixing approach
(or, at least, we are not able to do it without any gauge-fixing). Finally,
we show how to reconstruct the total space-time geometry from the reduced
dynamics.

2. Spherically symmetric case

Assuming the S2 topology of the shell, it is always possible to find a
“spherical parameterization” of Z, where z1 = Θ, z2 = Φ and the density h
is proportional to the volume form on the unit sphere. Hence, without any
loss of generality we may always assume that

χ = sin Θ dΘ ∧ dΦ . (7)

Assuming spherical symmetry of the data (gkl, P
kl, yk, pk) means that there

is a coordinate system (x1, x2, x3) = (θ, ϕ, r) in C in which we have
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y1(Θ,Φ) = θ ,

y2(Θ,Φ) = ϕ ,

y3(Θ,Φ) = ζ = const ,

p3 = p = const ,

pA = 0 ,

gAB = l(r) γAB ,

g33 = n2(r) ,

g3A = 0 ,

PAB = 1
2s(r) γAB

√
det γ ,

P 33 =
f(r)

n(r)

√

det γ ,

P 3A = 0 ,

where by γAB we denote the standard metric on the unit sphere

γAB =

(

1 0
0 sin2 θ

)

. (8)

The subspace Psym of spherically symmetric data may, therefore, be parame-
terized by two numbers (ζ and p) and by four functions (l, n, s, f) depending
on a single variable r. The functions are piecewise smooth outside of the
shell position r = ζ, whereas the metric coefficients n and l must be also
continuous at r = ζ.

These data are subject to constraints. It is a matter of simple calculations
to show that the radial momentum constraint H3 = 0 may be written as

−8π
p

n
∆(r − ζ) = f ′ − 1

2

s

n
l′ , (9)

where by “ ′” we denote radial derivative ∂/∂r and ∆ stands for the usual,
one-dimensional Dirac delta distribution. It is obvious that remaining mo-
mentum constraints HA = 0, A = 1, 2, are automatically satisfied. Similarly,
the energy constraint may be written as follows:

−8πe(p, l, n) ∆(r − ζ) =

(

l′

n

)′
− n − 1

4

(l′)2

ln
+

1

4

n

l
f2 − 1

2
fs . (10)

Different materials correspond to different state equations e = e(p, l, n). For
the incoherent (dust) matter, equation (5) implies:

e =

√

m2 +

(

p

n(ζ)

)2

. (11)
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The above 2 (per each point “r”) constraints generate 2-dimensional (per
point) group of spacetime reparameterizations, where variables (t, r) may be
replaced with any other variables (t̃, r̃), respecting the spherical symmetry
of our problem. Gauge transformations arise as degeneracy directions of the
symplectic structure of Psym, obtained by restricting the form Ω from P to
Psym. To calculate this restriction we insert our spherical symmetric Ansatz

into formula (6) and integrate over angles. This yields us the following
symplectic structure in Psym:

Ω = δ(4πp) ∧ δζ +

∞
∫

0

(

1

4
δs(r) ∧ δl(r) +

1

2
δf(r) ∧ δn(r)

)

dr . (12)

For computational reasons, it will be useful to represent the 2-form Ω as an
exterior derivative Ω = δΛ of the following 1-form:

Λ = Pδζ +

∞
∫

0

(

1

4
s(r)δl(r) − 1

2
n(r)δf(r)

)

dr , (13)

where we have denoted P := 4πp.
Every spherically symmetric solution of the vacuum Einstein equations

must be isomorphic to a Schwarzschild solution, and the only one between
them which satisfies regularity condition at r = 0 is the flat Minkowski
space. This implies that the geometry of our C must be a smooth 3-
dimensional subspace of the Minkowski space for r < ζ and a subspace
of a Schwarzschild space-time for r > 0. Both the value of the mass of the
external Schwarzschild space-time and the shape of the cut between it and
the internal Minkowski spacetime have to be determined from the dynamics.

3. Solving constraint equations

To be able to solve the constraints we are going to impose a gauge condi-
tion which enables us to fix uniquely the time variable. For technical reasons
we start with a family of gauge conditions which have been used in [7] to
prove the positivity of the A. D. M. energy. We will show elsewhere how to
pass to any other gauge condition.

Consider the following gauge condition: βP 33g33+PABgAB = 0, where β
is a fixed costant (as a particular case we may obtain this way the “maximal
surface” condition for β = 1). In terms of our parameterization, this gauge
condition reads:

s

n
= −β

f

l
. (14)
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In the present paper only values β < −1 are considered. Inserting the above
relation into momentum constraint (9) we see that outside of the shell our
data must fulfill the following equation

f ′ +
1

2
β

l′

l
f = 0 . (15)

This implies that the function log(f l
β

2 ) is constant outside of the shell. We
conclude that

f =

{

A+l−
β

2 for r > ζ ,

A−l−
β

2 for r < ζ .
(16)

The difference (A+ − A−) is also determined by the constraint (9). Indeed,
the only singular term on the right hand side is produced by the jump of f

and is equal to (A+ − A−)(l(ζ))−
β

2 ∆(r − ζ). Let us denote by

R :=
√

l(ζ)

the physical radius of the shell and by

U :=
P

n(ζ)
√

l(ζ)
=

4πp

n(ζ)R
(17)

the normalized radial momentum. Equation (9) implies:

A+ − A− = −2UR1+β . (18)

The constraint equation is not yet solved, because we still have to fulfill the
boundary conditions: for r → ∞ our data must be asymptotically flat and
for r → 0 must be regular. Taking into account that l must behave like r2

at 0 and at infinity, the above condition implies that for β < −1 we have
A+ = 0 because of the necessary condition f(∞) = 0. Hence, we have:

f =

{

0 for r > ζ ,

2UR1+β l−
β

2 for r < ζ .
(19)

Now we are going to solve the hamiltonian constraint (10). We first do it
piecewise, outside the shell. Using our gauge condition (14) and the previous
result (16) we obtain the following equation:

0 =

(

l′

n

)′
− n − 1

4

(l′)2

ln
+

1 + 2β

4l1+β
nA2

± , (20)
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where A± stands for A+ outside of the shell and for A− inside the shell. Let
us introduce the following quantity:

k :=
l′

n 4
√

l
. (21)

It is easy to check that equation (20) may be rewritten as follows:

0 =
4
√

l

n
k′ − 1 +

1 + 2β

4l1+β
A2

± . (22)

This, in turn, is equivalent to

0 =

{

k2 − 4
√

l

(

1 +
A2

±
4l1+β

)}′
. (23)

This means that the function under differentiation sign must be piecewise
constant. However, the internal constant (i.e. inside the shell) must vanish
due to the regularity condition for the metric at r = 0. Indeed, for small
r the function l must behave like n2r2. This implies that k2 behaves like
4
√

l and there is no room for any non-vanishing constant (we see that for
−1 < β < 0 we would have got a singularity a r → 0). Denoting the
remaining external constant by “−8H” we conclude that

l′

n
=











±2
√

l

√

1 − 2H√
l

+
A2

+

4l1+β for r > ζ ,

2
√

l

√

1 +
A2

−

4l1+β for r < ζ ,

(24)

where the sign in the first line is +1 or −1, according to whether l′ is
positive or negative. Outside of the shell the sign may even change at those
points where the expression under the square root vanishes. On the contrary,
inside the shell the sign is unambiguously positive because for a space-like
hypersurface in the Minkowski space l is always increasing.

We claim that the value of H is equal to the A. D. M. energy calculated
at r → ∞. The easiest way to verify this statement consists in choosing the
coordinate r in such a way that, for big values of r, we have l(r) = r2 . In
this gauge equation (24) implies:

g33 = n2 =
1

1 − 2H
r

+
A2

+

4r2+2β

, (25)

where A+ = 0. We conclude that H plays role of the Hamiltonian of our
physical system. Its value may be calculated from the singular part of equa-
tion (10). Indeed, the singular part of the right hand side of (10) is equal to
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the jump of the function l′

n
. This way we obtain

−8πe = 2R



ǫ

√

1 − 2H

R
+

A2
+

4R2+2β
−

√

1 +
A2

−
4R2+2β



 , (26)

where by ǫ we denote the sign of l′ on the external face of the shell. Using
our previous results and denoting by M := 4πm the total rest mass of the
shell we obtain

−

√

(

M

R

)2

+ U2 = ǫ

√

1 − 2H

R
−
√

1 + U2 . (27)

Consequently, we obtain an unambiguous expression for the Hamiltonian:

H(R,U) =
R

2







1 −





√

1 + U2 −

√

(

M

R

)2

+ U2





2




(28)

Also the value of ǫ may be obtained unambiguously from equation (27):

ǫ = sgn





√

1 + U2 −

√

(

M

R

)2

+ U2



 . (29)

We see that our reduced space P̃ may be globally parameterized by two
variables: R and U , with the function l and the constants ζ and β playing
role of pure gauge parameters. For a given point (R,U), each choice of these
gauge parameters enables us to reconstruct the entire Cauchy data. In this
reconstruction we use the values of the constants A± and H, given uniquely
by (19) and (28). The gauge parameters are not, however, completely free.
The first condition is obvious: l(ζ) = R2. Moreover, l must be monotonically
increasing from 0 to R2 for r < ζ. Whether or not l remains monotonic also
outside of the shell depends upon the sign “ǫ” given by (29). If it is positive,
l must be everywhere increasing (and – because of the asymptotic flatness –
it must behave like r2 at infinity). If it is negative, the function l must first
be decreasing outside of the shell till it arrives to its minimal value lmin and
then it must increase again up to infinity. The value lmin corresponds to the
point in which we have l′ = 0. Due to equation (24), it may be obtained as
the root of the following equation:

1 − 2H√
lmin

+
A2

+

4l1+β
min

= 0 . (30)
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The sphere corresponding to lmin has the smallest area and may be called
a throat of our space (for β < −1 the above equation gives us the standard
value

√
lmin = 2H). Any function l which satisfies these conditions and

which has a non-degenerate minimum at the throat (i.e. such that the second
derivative of l does not vanish) may be chosen at will. Then, equations (24),
(19) and, finally, (14) enable us to reconstruct completely the data (n, l, f, s).
Within our gauge subspace given by (14), all states may be obtained this
way. We will show that states obtained for different choices of ζ and l are
gauge equivalent.

Equation (19) implies that for negative β’s the entire external curvature
of our surface vanishes outside of the shell: P kl = 0. Because the spacetime
outside of the shell must be Schwarzschild with mass H, the only surfaces
satisfying this condition are the standard Schwarzschild {t = const} sub-
spaces. Our Cauchy surfaces corresponding to different negative values of β
coincide, therefore, outside of the shell and differ only inside the shell.

4. Canonical structure of the reduced phase space

We will be able to derive the dynamics of our system from the Hamil-
tonian (28) once we know the reduces symplectic structure in terms of the
variables (R,U). For this purpose we restrict the canonical form Ω to the
gauge space (14) and express it in terms of the parameters (R,U, l, ζ). It
turns out that the form does not depend upon l and ζ which proves that the
latter are really gauge parameters. Technically, it is simpler to work with
the 1-form Λ given by formula (13) because the reduction commutes with
external derivative.

Using (14) we rewrite (13) in the following way:

Λ = Pδζ +

∞
∫

0

[

1

4
sδl − 1

2
nδ
(

l−
β

2 f l
β

2

)

]

,

= Pδζ +

∞
∫

0

[

1

4
n

(

s

n
+ β

f

l

)

δl − 1

2
nl−

β

2 δ
(

fl
β

2

)

]

. (31)

Reducing the form to the subspace of data fulfilling our gauge condition (14)
consists in dropping out the first term under the above integral.

Equation (19) implies:

fl
β

2 = 2UR1+β B(ζ − r) , (32)

where by B we denote the Heaviside function. Hence
[

δ
(

fl
β

2

)]

(r) = 2B(ζ − r)δ(UR1+β) + 2UR1+β∆(ζ − r)δζ , (33)
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because the derivative of B(ζ − r) with respect to ζ produces the Dirac
distribution. We obtain this way

−1

2

∞
∫

0

nl−
β

2

[

δ
(

fl
β

2

)]

(r)dr = −







ζ
∫

0

(

nl−
β

2

)

(r)dr







δ(UR1+β)

− URn(ζ)δζ , (34)

because l(ζ) = R2. But URn(ζ) = P and we see that the last terms kills
the term Pδζ in Λ. Finally, we obtain:

Λ = −w−δ(UR1+β) , (35)

where we have denoted by w− the following quantity:

w− :=

ζ
∫

0

(

nl−
β

2

)

(r)dr . (36)

Using equation (24) we get:

w− :=

ζ
∫

0

n

l′
l−

β

2 l′dr =

ζ
∫

0

l−
1+β

2

2

√

1 +

[

U
(√

l
R

)−(1+β)
]2

l′dr . (37)

Because l is a monotonic function in the interval [0, ζ] and −(1+β) > 0, we
may calculate the integral with respect to the following variable

ξ := U

(√
l

R

)−(1+β)

, (38)

over the interval [0, U ]. Hence

w− = − 1

1 + β

(

UR1+β
)

2

1+β
−1

U
∫

0

ξ−
2

1+β

√

1 + ξ2
dξ . (39)

The last integral may be denoted as F (U), where F is the indefinite integral.
It turns out, that the exact form of the function F will not be necessary for
our purposes. Indeed, we have:

Λ =
1

1 + β
F (U)

(

UR1+β
)

2

1+β
−1

δ(UR1+β) =
1

2
F (U)δ

[

U
2

1+β R2
]

,

=
1

2
δ
[

F (U)U
2

1+β R2
]

− 1

2
R2U

2

1+β F ′(U)δ(U) ,

=
1

2
δ
[

F (U)U
2

1+β R2
]

− 1

2
R2 1√

1 + U2
δ(U) . (40)
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The first term is a complete (variational) derivative. Hence, it may by
skipped out when we calculate the external derivative Ω = δΛ. The second
term may be rewritten as follows:

Λ̃ = −1
2R2 δµ , (41)

where the quantity µ has been defined as µ := arcsinh U or U = sinh µ.
It plays role of a momentum canonically conjugate to the “area” variable
ρ := R2, because of the formula

Ω = δΛ̃ = −1
2δ(R2) ∧ δµ = 1

2δµ ∧ δρ . (42)

Rewriting the Hamiltonian (28) in terms of the canonical variables (µ, ρ),
we finally get:

H(µ, ρ) =
1

2

√
ρ







1 −
(

cosh µ −
√

M2

ρ
+ sinh2 µ

)2






(43)

We are going to prove that the quantity µ may be interpreted as the hyper-

bolic angle between the vector normal to Schwarzschild surface {t = const}
(calculated on the external face of the shell) and the vector normal to the
Minkowski surface {t = const} (calculated on the internal face of the shell).
The angle α(u,v) between two normalized vectors u,v is defined by their
(hyperbolic) scalar product: cosh α(u,v) := (u|v). Similarly as in Euclidean
geometry, we may call this quantity the angle between the two surfaces: the
Schwarzschild one and the Minkowski one. To prove the above interpreta-
tion of µ it is sufficient to use formula (24). On the internal side of the shell
we use the second formula and put l = R2. We get as a result:

l′

2
√

ln
=
√

1 + U2 . (44)

But inside of the shell the geometry of C is given by a 3-dimensional, spher-
ically symmetric surface in the Minkowski space. It is easy to show that in
the Minkowski space the quantity on the left hand side is equal to cosh α,
where α is precisely the angle between such a subspace and the Minkowskian
flat {t = const} surface. This implies that U = sinh α. But our surface is
just the smooth continuation (across the shell) of the external Schwarzshild
{t = const} surface. This finally proves that µ = α is the angle between the
Schwarzshild and the Minkowski 3-dimensional leaves.
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5. Dynamics. Reconstruction of the spacetime geometry

The Hamiltonian (43) generates uniquely the dynamical equations for
the canonical variables (ρ, µ). Take any solution of these equations. Next,
for each time separately let us choose the gauge variables ζ and l. This
enables us to reconstruct the complete set of Cauchy data at each instant
of time, separately. To reconstruct the entire space-time geometry we have
to find also the lapse and the shift functions. For this purpose we use
Einstein equations, where canonical data gkl and P kl (together with their
time derivatives) are already known. The resulting equations are elliptic
equations for the lapse and the shift. For the lapse function we obtain this
way a second order equation in variable r as a condition to preserve the
β-gauge in time. This equation has to be solved with boundary conditions:
N = 1 at infinity and dN

dr
= 0 at r = 0. To calculate the shift function we

use the equation for the time derivative of the 3-dimensional metric. This is
a first order equation with respect to the shift and enables us to reconstruct
it uniquely.
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