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We draw attention to a novel type of geometric gauge invariance re-
lating the autoparallel equations of motion in different Riemann-Cartan
spacetimes with each other. The novelty lies in the fact that the equations
of motion are invariant even though the actions are not. As an application
we use this gauge transformation to map the action of a spinless point par-
ticle in a Riemann-Cartan spacetime with a gradient torsion to a purely
Riemann spacetime, in which the initial torsion appears as a nongeometric
external field. By extremizing the transformed action in the usual way, we
obtain the same autoparallel equations of motion as those derived in the
initial spacetime with torsion via a recently-discovered variational principle.

PACS numbers: 02.40. −k, 04.20. Fy

1. Introduction

Einstein’s theory of general relativity predicts correctly all post-Newtonian
experiments in our solar system as well as some effects of strong gravitational
fields observed in binary systems of neutron stars [1]. The theory has, how-
ever, two unsatisfactory properties. One is the somewhat academic fact
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that gravity cannot be quantized in a renormalizable way [2], but only as an
effective theory which is unable to predict short-distance gravitational phe-
nomena at a scale much shorter than the Planck length lP ≈ 10−32cm [3].
Since this length scale is extremely small, the problem is not very serious for
present-day physics. The other unsatisfactory property which has received
much attention is of an esthetical nature. Since all elementary-particle forces
known so far are mediated by local gauge fields, one would like to describe
also the geometric theory of gravity as a local Poincaré gauge symmetry.
This would naturally introduce torsion into the geometry [4–7], thus extend-
ing Riemann spacetime of the Einstein theory to Riemann-Cartan spacetime.
Therein parallelograms exhibit both an angular and a closure failure due to
curvature and torsion, respectively. So far, such spacetimes have only found
applications in the theory of plastic flow and material fatigue [7–12], where
curvature and torsion are produced by disclinations and dislocations.

The last two decades have seen a detailed elaboration of the gauge-
theoretic formulations of gravity in spacetimes with torsion, most notably
the Einstein–Cartan theory [6,13]. The latter has the appealing feature that
Einstein’s equation stating the proportionality between curvature and energy
momentum tensor of matter is extended by a corresponding one involving
torsion and spin density. In this theory spinless particles do not create
torsion, and since usually only particles which are sources of a field can also
be influenced by this field, it has generally been believed that trajectories of
spinless particles are not affected by torsion in spacetime, i.e., that spinless
point particles move along geodesics, the shortest curves in the spacetime.
With this bias the relativity community happily embraced Hehl’s derivation
[14] of such trajectories from hitherto accepted gravitational field equations
as has been recently reviewed in [15].

This belief and its field theoretic derivation have recently been chal-
lenged by one of us [16–23]. It was pointed out that the invariance under
general coordinate transformations of general relativity used by Einstein to
find the laws of nature in a curved geometry may be replaced by a more
efficient nonholonomic mapping principle, which is moreover predicitve for
spacetimes with torsion. This new principle was originally discovered for
the purpose of transforming nonrelativistic path integrals correctly from flat
space to spaces with torsion [18], where it played the role of a quantum

equivalence principle. Evidence for its correctness was derived from its es-
sential role in solving the path integral of the hydrogen atom, where the
nonholonomic Kustaanheimo-Stiefel transformation was used [18].
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Applying the nonholonomic mapping principle to the variational proce-
dure has the important consequence that the Euler-Lagrange equations of
spinless point particles receive an additional force which depends on the tor-
sion tensor S λ

µν (q) [21]. If τ denotes an arbitrary parameter of the trajectory

qλ(τ), the modified Euler-Lagrange equations read

d

dτ

∂L

∂q̇λ(τ)
−

∂L

∂qλ(τ)
= −2S ν

λµ (q(τ)) q̇µ(τ)
∂L

∂q̇ν(τ)
. (1)

The modification on the right-hand side has its origin in the closure failure
of parallelograms in spacetimes with torsion, which can be accounted for
by a noncommutativity of nonholonomic variations δ̄ with the parameter
derivative dτ = d/dτ of the trajectory qλ(τ) [21]:

δ̄dτ qλ(τ) − dτ δ̄qλ(τ) = 2S λ
µν (q(τ))q̇µ(τ) δ̄qν(τ) . (2)

For the free-particle Lagrangian [24]

L(qλ, q̇λ) = −Mc
√

gλµ(q)q̇λq̇µ (3)

with the proper time

ds(τ) =
√

gλµ(q(τ))dqλ(τ)dqµ(τ) , (4)

the modified Euler-Lagrange equation (1) becomes explicitly

q̈λ(s) + gλκ(q(s))

[

∂µgνκ(q(s)) −
1

2
∂κgµν(q(s))

]

q̇µ(s)q̇ν(s)

= −2S λ
µν (q(s))q̇µ(s)q̇ν(s) . (5)

Here we can use the decomposition of the affine connection Γ λ
µν (q) in a

Riemann-Cartan spacetime [25]

Γ λ
µν (q) = Γ

λ

µν (q) + K λ
µν (q) , (6)

where the first term is the Christoffel connection

Γ
λ

µν (q) =
1

2
gλκ(q)

[

∂µgνκ(q) + ∂νgκµ(q) − ∂κgµν(q)
]

(7)

depending only on the metric gµν(q), while the second one is the contortion
tensor

K λ
µν (q) = S λ

µν (q) − S λ
ν µ(q) + Sλ

µν(q) (8)
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representing a combination of the torsion tensor S λ
µν (q). Then (5) reduces

to the straightest lines or autoparallels in a Riemann-Cartan spacetime:

q̈λ(s) + Γ λ
µν (q(s))q̇µ(s)q̇ν(s) = 0 . (9)

The coupling of spinless point particles to torsion in (9) has a single geo-
metrical interpretation. To this end we observe that the natural covariant
derivative of an arbitrary vector field V λ(q)

DµV λ(q) = ∂µV λ(q) + Γµν
λ(q)V ν(q) (10)

contains the full affine connection (6) rather then the Christoffel connection
(7). Thus we may define a covariant derivative of V λ(q(s)) with respect to
the proper time s as

D

Ds
V λ(q(s)) =

d

ds
V λ(q(s)) + Γ λ

µν (q(s))q̇µ(s)V ν(q(s)) , (11)

so that the autoparallel equation (9) reads simply [26]

D

Ds
q̇λ(s) = 0 . (12)

Therefore the transition from the Minkowski to the Riemann-Cartan space-
time corresponds to the substitution of the total derivative with respect to
the proper time d/ds by the covariant one D/Ds. This means that the free
spinless point particle is minimally coupled to the gravitational field in a
Riemann-Cartan spacetime.

2. Novel type of geometric gauge invariance

We now turn to the essential point of our lecture that the new variational
procedure [21] implies a novel kind of geometric gauge invariance of the au-
toparallel trajectories although the action is not invariant. It turns out that
a change in the action can be compensated by a corresponding change in the
closure failure at the endpoints of the paths. This gauge invariance is based
on transformations which were introduced in 1982 by two research groups
in a different context [27, 28]. Following their notation, we transform met-
ric and torsion simultaneously, the first conformally, the second by adding
a gradient term. The Riemann–Cartan curvature tensor remains invariant
under this transformation which merely shifts part of the geometry from the
Riemann to the torsion part. We shall demonstrate that although the par-
ticle action changes under this transformation, initial and final actions yield
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the same autoparallel particle trajectory, thus making the two geometries
indistinguishable from each other by any measuring process involving spin-
less point-like test particles. In particular the gauge invariance will allow us
to relate the action of point particles in a specific family of Riemann-Cartan
spacetimes in which torsion arises from the gradient of a scalar field to that
in a Riemann spacetime. In the transformed action, the scalar field plays
the role of a nongeometric external field, and particle trajectories can be
derived via the traditional action principle, yielding the same autoparallels
as in the initial spacetime with gradient torsion via the new action principle.

2.1. Geometry transformations

In a Riemann-Cartan geometry [25, 26], the metric gµν(q) and the affine
connection Γ λ

µν (q) are not independent of each other. The decomposition
(6)–(8) implies that they must satisfy the metricity condition

Dλgµν(q) = ∂λgµν(q) − Γ κ
λµ (q)gκν(q) − Γ κ

λν (q)gµκ(q) = 0 . (13)

The metric gµν(q) and the torsion tensor S λ
µν (q), however, represent inde-

pendent quantities characterizing the Riemann-Cartan geometry.
The fundamental gauge invariance of a Riemann-Cartan geometry con-

tains two ingredients [27, 28]. Following Weyl [29], who postulated that no
physical phenomenon should depend on the choice of dimensional units, we
transform the metric conformally to

g̃µν(q) = e2σ(q)gµν(q) (14)

with an arbitrary scalar function σ(q). We supplement this transformation
by a change of the torsion tensor according to

S̃µν
λ(q) = Sµν

λ(q) +
1

2

[

δ λ
ν ∂µσ(q) − δ λ

µ ∂νσ(q)
]

. (15)

For the Christoffel connection (7) and the contortion tensor (8), these trans-
formations imply

Γ̃ µν
λ(q) = Γµν

λ(q) + δ λ
ν ∂µσ(q) + δ λ

µ ∂νσ(q) − gµν(q)gλκ(q)∂κσ(q), (16)

K̃µν
λ(q) = Kµν

λ(q) − δ λ
µ ∂νσ(q) + gµν(q)gλκ(q)∂κσ(q), (17)

respectively. In the affine connection (6), the transformations (16), (17)
almost compensate each other, resulting only in an additional gradient term:

Γ̃µν
λ(q) = Γµν

λ(q) + δ λ
ν ∂µσ(q) . (18)
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In the Riemann-Cartan geometry, this leaves the curvature tensor

R λ
µνκ (q) = ∂µΓ λ

νκ (q)−∂νΓ λ
µκ (q)+Γ ρ

νκ (q)Γ λ
µρ (q)−Γ ρ

µκ (q)Γ λ
νρ (q) (19)

invariant:

R̃µνκ
λ(q) = Rµνκ

λ(q). (20)

The associated curvature scalar,

R(q) = gνκ(q)R µ
µνκ (q), (21)

however, is changed by a conformal transformation of the inverse metric
following from (14), so one obtains

R̃(q) = e−2σ(q)R(q) . (22)

Due to (18), the geometry transformations (14), (15) change covariant deriva-
tives of the metric by a conformal factor

D̃λg̃µν(q) = e2σ(q) Dλgµν(q) . (23)

As a consequence, covariant derivatives with respect to general coordinate
transformations also remain covariant under the geometry tranformations.
For this reason, the metricity condition (13) holds also after a geometry
transformation

D̃λg̃µν(q) = 0 , (24)

guaranteeing the gauge invariance of the Riemann-Cartan geometry.

2.2. Application to autoparallel particle trajectories

We now prove our principal result that the pair of geometry transfor-
mations (14) and (15) between different Riemann-Cartan spacetimes leaves
trajectories of spinless point particles invariant. To this end we start with
the Lagrangian

L̃(qλ, q̇λ) = −Mc
√

g̃λµ(q)q̇λq̇µ (25)

and with the torsion tensor S̃µν
λ(q), where the new action principle leads to

a modified Euler-Lagrange equation like (1):

d

dτ

∂L̃

∂q̇λ(τ)
−

∂L̃

∂qλ(τ)
= −2S̃λµ

ν (q(τ)) q̇µ(τ)
∂L̃

∂q̇ν(τ)
. (26)
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Inserting (25) in (26) and defining the proper time s̃ in analogy to (4)

ds̃(τ) =
√

g̃λµ(q(τ))dqλ(τ)dqµ(τ) , (27)

we obtain the autoparallel equation associated with the affine connection
Γ̃ λ

µν (q)

q̈λ(s̃) + Γ̃ λ
µν (q(s̃))q̇µ(s̃)q̇ν(s̃) = 0 . (28)

After reexpressing this equation in terms of the original affine connection
Γµν

λ(q) with (18) and defining the proper time s via the relation

ds

ds̃
= e−σ(q) (29)

due to (4), (14) and (27), we finally get the autoparallel equation (9). Let
us remark that nonintegrable time transformations of the type (29) have
been extensively used in solving various classical, quantum mechanical, and
stochastic problems [18, 30–35].

Alternatively we could have also derived this result by rewriting the
Lagrangian (25) according to (14):

L̃(qλ, q̇λ) = −Mceσ(q)
√

gλµ(q)q̇λq̇µ. (30)

Inserting (15) and (30) in (26), all terms involving the scalar function σ(q)
cancel each other, thus leading again to the autoparallel equation (9).

An important insight is gained by considering the special case of a
Riemann-Cartan spacetime where the entire torsion tensor arises from the
gradient of a scalar field σ(q):

Sµν
λ(q) = 1

2

[

δ λ
µ ∂νσ(q) − δ λ

ν ∂µσ(q)
]

. (31)

From the new action principle then follows the autoparallel equation

q̈λ(s)+Γ λ
µν (q(s))q̇µ(s)q̇ν(s) = −σ̇(q(s))q̇λ(s)+gλκ(q(s))∂κσ(q(s)) . (32)

However, after performing the geometric gauge transformation to a purely
Riemannian spacetime, the torsion scalar σ(q) appears as a nongeometric
external field in the modified Lagrangian (30), so that we find precisely the
same equation of motion via the usual action principle.
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3. Conclusion and outlook

We showed that the local geometry transformations (14), (15) with the
property (18) induce mappings between the autoparallel trajectories in dif-
ferent Riemann-Cartan spacetimes. This represents an unusual type of sym-
metry since the equations of motion remain invariant whereas the respective
actions change. The different terms in the actions are compensated by cor-
responding contributions from the endpoints of the paths which take into
account the closure failure in the presence of torsion. We consider this novel
gauge invariance as an interesting property of autoparallel trajectories which
should help giving us hints on how to construct the proper field equations
of a theory of gravitation with torsion.

We are grateful to Drs. G. Barnich, H. von Borzeskowski, A. Scha-
kel, S.V. Shabanov and to the graduate student C. Maulbetsch for many
stimulating discussions.
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