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The lecture explains the geometric basis for the recently-discovered
nonholonomic mapping principle which specifies certain laws of nature in
spacetimes with curvature and torsion from those in flat spacetime, thus
replacing and extending Einstein’s equivalence principle. An important
consequence is a new action principle for determining the equation of mo-
tion of a free spinless point particle in such spacetimes. Surprisingly, this
equation contains a torsion force, although the action involves only the
metric. This force changes geodesic into autoparallel trajectories, which
are a direct manifestation of inertia. The geometric origin of the torsion
force is a closure failure of parallelograms. The torsion force changes the
covariant conservation law of the energy-momentum tensor whose new form
is derived.

PACS numbers: 03.20. +i, 04.20. Fy, 02.40. +m

1. Introduction
According to Einstein’s equivalence principle, gravitational forces in a
small region of spacetime labeled by coordinates ¢* (u = 0,1,2,3) can be
removed by going into locally accelerated coordinates z® (a = 0,1,2,3)
by means of a general coordinate transformation z* = z%(q), such as a
freely falling elevator. A mass point lying at the center of mass of the
elevator does not feel any force. It undergoes no acceleration satisfying the

* Presented at the Workshop on Gauge Theories of Gravitation, Jadwisin, Poland,
September 4-10, 1997.
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Newton-Einstein equation of motion #* = 0 (a = 0,1,2,3), where the dot
denotes the derivative with respect to the proper time o. This observation
has enabled Einstein to find the physical laws in curved spacetimes knowing
those in flat spacetime. He simply transformed equations of motion from the
locally Minkowskian coordinates x® to the original curvilinear coordinates
q", and postulated the resulting equations to describe correctly the motion
in a spacetime with gravitational forces.

In this procedure, the elimination of forces is not perfect: it holds only
at a single point, the center of mass of the elevator, not in its neighborhood,
which is affected by tidal forces that cannot be removed in this way.

Mathematically, however, it is possible to remove the tidal forces with the
help of a coordinate transformations 2* = 2%(q) whose derivatives d,,2%(q)
do not satisfy the Schwarz integrability criterion, i.e., they do not possess
commuting derivatives. Such transformations cannot be performed in the
laboratory, since the corresponding falling elevator would not exist. The
spacetime formed by the image coordinates x® would have defects, as we
shall see below, but it could be chosen to be free of tidal forces in the
neighborhood of the center of mass. If we admit such mathematical trans-
formations, Einstein’s equivalence principle can be formulated as a mapping
principle: The correct equations of motion in the presence of gravitational
forces can be obtained by finding in an entire small neighborhood of a point
g" a local set of coordinates z* with the above non-Schwarzian property and
a complete absence of forces, and by simply mapping the force-free trajec-
tories in these coordinates back into the original spacetime ¢*.

This mathematical procedure opens up the possibility for discovering
the form of physical laws in more general spacetimes. For instance, we may
assume the existence of gravitational forces, which can only be removed by
transformations z% = z(¢q) whose derivatives do not commute. Such forces
are outside of Einstein’s theory. In fact, such transformations can be used to
remove forces in an equation of motion, which appear in an Einstein-Cartan
spacetime with torsion. By postulating that the images of the force-free
trajectories in x%-spacetime are the correct trajectories in g”-spacetime we
obtain the equations for the straightest lines or autoparallels in g-spacetime,
thus contradicting present theories which find shortest lines or geodesics for
the particle trajectories.

Physically, autoparallel trajectories may be interpreted as a manifesta-
tion of inertia, which makes particles run along the straightest lines rather
than the shortest ones as generally believed [1-5]. In the absence of torsion,
the two lines happen to be the same, but in the presence of torsion it is hard
to conceive, how a particle should know where to go to make the trajectory
to a distant point the shortest curve. This seems to contradict our concepts
of locality.
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Nonholonomic mappings have been of great use in the physics of vortices
and defects in superfluids and crystals [6-12]|. They are also essential for solv-
ing the path integral of the hydrogen atom [13] via the Kustaanheimo-Stiefel
transformation [14]. In my lecture, I have first shown how multivalued gauge
transformations can be used to generate magnetic fields and their minimal
coupling to charged particles [15-17|. This part is omitted in these printed
notes to comply with page limitations [18]. These multivalued gauge trans-
formations carry over to geometry by introducing multivalued infinitesimal
local coordinate transformations producing infinitesimal curvature and tor-
sion in a flat background spacetime.

2. Nonholonomic mapping principle

Let dg" be a small increment of coordinates in the physical spacetime.
This is mapped into a coordinate increment dx® via a transformation
[13,19-21]

dz® = e%\(q)dq”, (1)

whose matrix elements e (q) are multivalued tetrads. The transformation
can be chosen such that the length of dz® is measured by the Minkowski
metric 7qp, so that the metric g, (¢) in the spacetime ¢* is given by

9ni(@) = e Qe (@na,  e\(g) = 02°(q)/0g™. (2)

Parallel transport in g-spacetime is performed with an affine connection

Tua) = e (@)9u e’ (q) = —e%(q) dues (), (3)

where e (q) are reciprocal multivalued tetrads. Its antisymmetric part is

the torsion tensor [22]

Su@) = 5 [T @) - T (@) @

and its covariant curl the curvature tensor
RW)\K(Q) = eaﬁ(Q) (auav - al/au) eaA(Q)
= 8ﬂFV)\H — &,FM)\K — M)\UFJ,/K + FVAUFU“H. (5)

Note that if we were to live in z-spacetime, we would register Sﬂ,,)‘(q) as
an object of anholonomity. In the coordinate system ¢, however, SWA(q) is
observable as a torsion.
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K

Recall the way in which the affine connection I',,” serves to define a

covariant derivative of vector fields v,(q), v*(q):

Du”u(Q) = aﬂ”tl(@)_FwA(Q)UA(Q), DuUA(Q) = auUA(Q)+FuVA(Q)UV(C])-

(6)
If we lower the last index of the affine connection by a contraction, I',,\ =
910", there exists the decomposition

F,ul/n = F,uwi + K,uum (7)

where I, is the Riemann connection, symmetric in pv,

_ 1
F;u/)\ = {MV, >‘} = 5 (8;Lgu)\ + al/g)\u - aAguu) s (8)

and

KMV,‘Q = Suw@ - Sunu + Snuu (9)

is an antisymmetric tensor in vk, called the contortion tensor [22], formed
from the torsion tensor by lowering the last index S, = gx2S W)‘. With the
help of the Riemann connection, we may define another covariant derivative

Dyvu(q) = 0uvu(q) = Tw™Mq)valg),  Duv*(q) = 0™ (q) +1, uuA(Q)v”(Q)(-m)

3. Application to particle trajectories

As an illustration for nonholonomic mappings to spacetimes with curva-
ture and torsion we use the analogy with defect physics [6-11].

We consider two types of special plastic deformations in crystals, by
which one produces a single topological defect called a disclination (a defect
of rotations) and a dislocation (a defect of translations) (see Fig. 1). Just
as crystals with dislocations, spacetimes with torsion have a closure failure,
implying that parallelograms do not close. As a consequence, variations
dq* (1) of particle trajectories parametrized arbitrarily by 7 which in the
absence of torsion form closed paths, cannot be zero at both the initial and
the final point, but must be open at the endpoint of the trajectory [23,24],
as illustrated in Fig. 2. As a consequence, the Euler-Lagrange equation of
spinless point particles receives a torsion force. This is quite surprising since
the Lagrangian of a trajectory ¢*(7),

L= ~M\Jg )i ()i (7). (1)

(we use natural units with light velocity ¢ = 1) contains only the metric [24].
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Fig. 1. Crystal with dislocation and disclination generated by nonholonomic coor-
dinate transformations from an ideal crystal. Geometrically, the former transfor-
mation introduces torsion and no curvature, the latter curvature and no torsion.
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Fig. 2. Images under a holonomic and a nonholonomic mapping of a fundamental
path variation. In the holonomic case, the paths z%(7) and z%(7) 4+ dz%(7) in (a)
turn into the paths ¢#(7) and ¢*(7) + d¢*(7) in (b). In the nonholonomic case
with S,,,* # 0, they go over into ¢*(7) and ¢"(7) + §%¢*(7) shown in (c) with a
closure failure §°g, = b at 75 analogous to the Burgers vector b* in a solid with
dislocations.
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The new Euler-Lagrange equation reads

oL  d oL )

- _ - 12

agr —droge M o (12)

differing from the standard equation by the extra force on the right-hand

side involving the torsion tensor SW)‘. This extra force changes geodesic
trajectories into autoparallel ones, whose equation of motion is

% .V(O-) = (-1-1/(0_) + F)\HV(Q(O'))(].)\(O')Q%(J) =0, (13)

where o is the proper time defined by do = /gu.dg*dq”. The geodesic
equation without the extra force would contain only the Riemann part of
the connection and reads

% .V(O-) = (jy(o-) + F)\HV(Q(U))(].)\(O')Q'“(J) = 0. (14)

A simple variational principle to derive the equation of motion (12) is
based on the introduction of an auziliary nonholonomic variation 6g* (1) of
a particle trajectory ¢(7) which has the novel property of not commuting
with the 7-derivative d, = d/dr [24]:

§dq"(1) — dr 8¢*(1) = 2S,)\*¢" (1) 8¢ (7). (15)
Then (12) is a direct consequence of the new action principle [23,24]
JA=0. (16)

An important consistency check for the correct equations of motion
is based on their rederivation from the covariant conservation law for the
energy-momentum tensor which, in turn, is a general property of any field
theory invariant under arbitrary (singlevalued) coordinate transformations.

4. New covariant conservation law for energy-momentum tensor

To derive this law, we study the behavior of the relativistic action

A= =M [ dr\ [ o) (O () (a7)

under the infinitesimal versions of general coordinate transformations
oq'*
ol

/ v 2 8q/ﬂ
dg, — dq'y, = a,”dqy; a,’ = 90
v

dg" — dq'* = o, dq"; at, = (18)

(19)
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We shall write them as local translations

" — q"(q) = ¢ - "(q), (20)

considering from now on only linear terms in the small quantities £.
Inserting (20) into (18) and (19), we have

ary(q) = 6 — 0,6Mq), () = 6 + 0,8 (a), (21)
and find from

_a¢" g’ 0q'" 0q”

() = 50 €)= 50 = g owe — ¥ v(@e’(@) (22)
a ox® a ox® 0q” 0x® vis G
€ H(Q) = B—(JN — ¢ H(q/) = @ = dq'" D = Qy (g)e"v(q)

the infinitesimal changes of the multivalued tetrads e,*(q) and e*,(q):

Spea(q) = €a"(q) — ea™ (@) = EMNq)Orea"(q) — ONE*(Q)ea(q),  (23)
Speu(q) = €u(q) — € (@) = ENQ)ne"u(q) + 0N @)e A (a).  (24)

The subscript of §g indicates that these changes are caused by the infinites-
imal versions of the general coordinate transformations introduced by Ein-
stein.

To save parentheses, differential operators are supposed to act only on
the expression after it. Inserting (24) into (2), we obtain the corresponding
transformation law for the metric tensor

589u(0) = ENQ)guw (@) + 0N D) grw (@) + 0u€NQ) gur ()- (25)

With the help of the covariant derivative (10), this can be rewritten as

5E9;u/(¢]) = D,ugu(Q) + Du&u(‘])' (26)

For the coordinates ¢g* themselves, the infinitesimal transformation is

opq" = —€"(q), (27)

which is just the initial transformation (20) in this notation.
We now calculate the change of the action (17) under infinitesimal Ein-
stein transformations:

A A
opA= /d4qW5E9uu(Q)+/d75qu(7)51‘3q“(7—)' (28)




1040 H. KLEINERT

The functional derivative 6.4/, (q) is the general definition of the energy-
momentum tensor of a system:

A = V@ T ). (29)

59#!/ (Q)

where —g is the determinant of —g,,,,. For the spinless particle at hand, the
energy-momentum tensor becomes

e :—M [ do (@) ()5 a - a(o)) (30)

where o is the proper time. Equation (30) and the explicit variations (26)
and (27), bring (28) to the form

0A
6qﬂ(7)§“(q(7))-
(31)

A partial integration of the derivatives yields (neglecting boundary terms at
infinity and using the symmetry of T#")

spd = [ g {ayw——gw”(q)]+¢——gfyw<q>TA”<q>} &u(0)

- [arsise. (32)

Because of the manifest invariance of the action under general coordinate
transformations, the left-hand side has to vanish for arbitrary (infinitesimal)
functions &#(7). We therefore obtain

{0, V=9T" (@) + V=gT\"T™ () } €u(0)
- [ s a-atrer) <o (33)

spA= 1 [ B/ =sT D60 + Dutala) - [ dn

To find the physical content of this equation we consider first a space without
torsion. On a particle trajectory, the action is extremal, so that the second
term vanishes, and we obtain the covariant conservation law:

0, V=9 ()] + vV=gL\" ()T (g) = 0. (39)
Inserting (30), this becomes

M / ds [§(0)¢" ()9,5D(q — 4(0)) + T (@)d" (0)d (0) 6D (q — ¢(0))] = 0.
(35)
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A partial integration turns this into
M [ do #(0) + T @ @)@ 6V a - al0)) =0. (30)

Integrating this over a small volume around any trajectory point ¢* (o), we
obtain Eq. (14) for a geodesic trajectory.

A similar calculation was used by Hehl [5] in his derivation of particle
trajectories in the presence of torsion. Since torsion does not appear in the
action, he found that the trajectories to be geodesic.

The conservation law (34) can be written more covariantly as

D, T"(q) = 0. (37)
This follow directly from the identity
1
V=9
and is a consequence of the rule of partial integration applied to (31), ac-
cording to which a covariant derivative can be treated in a volume integral
[d*q/=9f(q)Dg(q) just like an ordinary derivative in an euclidean inte-

gral [ d*zf(z)0.g(x) After a partial integration neglecting surface terms,
Eq. (31) goes over into

1 _
a1/\/ -9 = 59)\.%6119)\5 = V)\)\a (38)

oA
dqt(T)

§H(q(1)).

(39)
whose vanishing for all £#(q) yields directly (37), if the action is extremal
under ordinary variations of the orbit.

Our theory does not lead to this conservation law. In the presence of
torsion, the particle trajectory does not satisfy 6.4/d¢" () = 0, but according
to (12):

spA=y [P0V DI @6l) + D (@) o)) [ dr

0A 9L dOL _ . r,0L
Sqi(r)  agr  drage w4 gn

the right-hand side being equal to —M QSMV)\QV(J)q')‘(U) if we choose 7 to be
the proper time o. Inserting this into (33), equation (36) receives an extra
term and becomes

M [ do {#0) + [T + 25" (@) (@) (@)} 5(a ~ g(o)) =0,
(a1)

(40)

thus yielding the correct autoparallel trajectories (13) for spinless point par-
ticles.
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Observe that the extra term in (39) can be expressed via (40) in terms
of the energy-momentum tensor (30) as

/ d4qv/ =5 25" o ()T (9, (a). (42)

We may therefore rewrite the change of the action (31) as

1 _ _
A= =5 [ Fav=I T @D,60) + Do) 19N wbr@) (43)
The quantity in brackets will be denoted by §rg..(q), and is equal to

SEguu(Q) = Dugu(Q) + DVSN(‘J)? (44)

where D, is the covariant derivative (6) involving the full affine connection.
Thus we have

SpA = — / g/ =g T () Dytuq). (45)

Integrals over invariant expressions containing the covariant derivative D,
can be integrated by parts according to a rule very similar to that for the
Riemann covariant derivative D,, (which is derived in Appendix A of [18]).
After neglecting surface terms we find

SpA = / diqy/=g DT (q)€,(q), (46)

where D} = D, + 25,,*. Thus, due to the closure failure in spacetimes
with torsion, the energy-momentum tensor of a free spinless point particle
satisfies the conservation law

DETH (q) = 0. (47)

This is to be contrasted with the conservation law (37). The difference
between the two laws can best be seen by rewriting (37) as

DETH (q) + 28,1 (9)T" (q) = 0. (48)

This is the form in which the conservation law has usually been stated in
the literature [1-4,7]. When written in the form (37) it is obvious that it is
satisfied only by geodesic trajectories.

Note that the variation &ggu.(q) plays a similar role in deriving the
new conservation law (48) as the nonholonomic variation &¢#(7) with the
noncommutative property (15) does in deriving equations of motion for point
particles. Indeed, we may rewrite the transformation (28) formally as

0A A
SEA:/d“qiSEqu +/d¢—6Eqﬂr. 49
5guu(Q) K ( ) 5q“(7') ( ) ( )
Now the last term vanishes according to the new action principle (16), from
which we derived the autoparallel trajectory (13).
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5. Consequences for field theory of gravitation with torsion

The question arises whether the new conservation law (47) allows for the
construction of an extension of Einstein’s field equation

GM = xTH (50)

to spacetimes with torsion, where G* = RW — %gu,,Ro(’ is the Einstein

A in Riemannian spacetime

tensor formed from the Ricci tensor RW = Ryw
[R,," being the same covariant curl of I,,* as R,,,\" is of I},,* in Eq. (5)].

The standard extension of (50) to spacetimes with torsion [1-4,7| replaces
the left-hand side by the Einstein-Cartan tensor G = R* — % g* R,° and
becomes

GH = KTH (51)

The Einstein-Cartan tensor G*¥ satisfies a Bianchi identity
DG, + 253, G — LN VR 5 = 2
v + Ap Kk 5 K urx  — 0, (5 )

where S, is the Palatini tensor defined by
Sae’l = Q(SA,@V + 00\ Sko? — 5,@”5)\00). (53)

It is then concluded that the energy-momentum tensor satisfies the conser-
vation law

IR
DT, + 28\, T — %SAKWRW“ = 0. (54)

For standard field theories of matter, this is indeed true if the Palatini tensor
satisfies the second Einstein-Cartan field equation

S)\R;l/ — KZAR;V, (55)

where XM is the canonical spin density of the matter fields. A spinless
point particle contributes only to the first two terms in (54), in accordance
with (48).

Which tensor will stand on the left-hand side of the field equation (51) if
the energy-momentum tensor satisfies the conservation law (47) instead of
(48)7 At present, we can give an answer only for the case of a pure gradient

torsion [25]

1
Sy = 5[5“&9”0 —6,70,0]. (56)

Then we may simply replace (51) by

e?G" = kTH. (57)
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Note that for gradient torsion, G** is symmetric as can be deduced from
the fundamental identity (which expresses merely the fact that the Einstein-
Cartan curvature tensor R, " is the covariant curl of the affine connection)

D*\Su™ = Gy — Gy, (58)
Indeed, inserting (56) into (53), we find the Palatini tensor
Sxe'™ = —2[0x"0u0 — 6, 0x0]. (59)
This has a vanishing covariant derivative
D58, = =2[D}0,0— D}0,0] = 2[S,u 060 — 28,2 0,0+25,,* 9,01, (60)

since the terms on the right-hand side cancel after using (56) and Sﬂ)\)‘ =
S, = —39,0. Now we insert (56) into the Bianchi identity (52), with the
result

D;G)\V + O\c G — 0,0G\Y +20,0R)" = 0. (61)

Inserting here Ry, = Gyx — %gMGV”, this becomes
D}G\Y + 0,0G," = 0. (62)
Thus we find for the gradient torsion (56) the Bianchi identity
D} (e?Gy") = 0. (63)

This makes the left-hand side of the new field equation (57) compatible with
the covariant new conservation law (47), just as in Einstein’s theory.
The field equation for the o-field and thus for the torsion is still unknown.

I am grateful to Dr. A. Pelster for many stimulating discussions and to
Drs. G. Barnich, H. von Borzeskowski, S.V. Shabanov for useful comments.
My graduate student C. Maulbetsch contributed with many good questions.
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