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As is well-known, Newton’s gravitational theory can be formulated as
a four-dimensional space-time theory and follows as singular limit from
Einstein’s theory, if the velocity of light tends to the infinity. Here ’singu-
lar’ stands for the fact, that the limiting geometrical structure differs from
a regular Riemannian space-time. Geometrically, the transition Einstein
→ Newton can be viewed as an ’opening’ of the light cones. This pic-
ture suggests that there might be other singular limits of Einstein’s theory:
Let all light cones shrink and ultimately become part of a congruence of
singular world lines. The limiting structure may be considered as a nullhy-
persurface embedded in a five-dimensional spacetime. While the velocity
of light tends to zero here, all other velocities tend to the velocity of light.
Thus one may speak of an ultrarelativistic limit of General Relativity. The
resulting theory is as simple as Newton’s gravitational theory, with the
basic difference, that Newton’s elliptic differential equation is replaced by
essentially ordinary differential equations, with derivatives tangent to the
generators of the singular congruence. The Galilei group is replaced by the
Carroll group introduced by Lévy-Leblond. We suggest to study near ul-
trarelativistic situations with a perturbational approach starting from the
singular structure, similar to post-Newtonian expansions in the c → ∞
case.
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1. Introduction

General Relativity (GR) not only governs the gravitational interactions
between bodies, it also dictates the causality structure of spacetime. This
latter property is most interesting, if the gravitational fields become strong
and develop singularities. In a limit, when the whole spacetime becomes
singular or nearly singular, the causality structure should strongly deviate
from that of a near-Minkowskian geometry. It is one of the virtues of GR,
that the theory covers - if properly interpretet - even such extreme situations.

A well-known example is Newton’s theory of gravity. Its four-dimensional
formulation requires a spacetime structure, which is singular from the view-
point of Riemannian geometry [1]. Using Einstein’s field equations, this
singular structure is obtained, if the velocity of light is taken to tend to
infinity [7]. Geometrically, the transition Einstein → Newton can be viewed
as an opening of the light cones. In the limit c → ∞, the cones become the
spacelike hypersurfaces of Newton’s absolute time. In spite of Kuhns claims
about the incommensurability of concepts of successive theories, both New-
ton’s and Einstein’s theory can be covered by a common spacetime theory [6].
Nevertheless, the causality structure of Newton’s theory is radically different
from that of Einstein’s: Interactions occur simultanously on the hypersur-
faces of constant Newtonian time ("action at a distance"). This is reflected
by the existence of an elliptic differential equation for the Newtonian po-
tential, as compared to hyperbolic differential equations for time-dependent
situations in GR. Closely related is the fact that the Poincaré group is re-
placed by the Galilei group.

The visualization of the transition Einstein → Newton suggests immedi-
ately, that Newton’s theory may not be the only singular limit of Einstein’s
theory. We here discuss a situation, which is in some sense opposite to the
Newtonian case. Let all light cones shrink and ultimately become part of
a congruence of singular world lines. Geometrically, this limiting structure

may be considered as a four-dimensional nullhypersurface V
(1)
4 embedded in

a five-dimensional spacetime. While the light velocity tends to zero here,
all other velocities tend to the velocity of light. One may therefore speak
of an ultrarelativistic limit of GR (see [4], [9], [10] for previous discussions).
Again, the causality structure in the limit is different: Instead of the hy-
perbolic differential equations of GR and elliptic differential equations of
Newton’s theory, we have now essentially ordinary differential equations,
with derivatives tangent to the generators of the singular congruence. There
are almost no interactions between spatially separated events, and no true
motion occurs in the limit, except for tachyonic motion. However, the iso-
lated and immobile physical objects show evolution. A situation of this type
has sometimes been called "Carroll causality" [9], after Louis Carroll’s tale
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Alice in Wonderland. It may also be characterized as ultralocal approxima-
tion, which is perhaps a better notation than ultrarelativistic. While the
Newtonian limit is governed by the Galilei group, the invariance group in
the ultrarelativistic limit is another degenerate limit of the Poincaré group,
the Carroll group, introduced by Lévy–Leblonc, who also first discussed its
representations and its Lie algebra [10].

One expects, that an ultrarelativistic approximation procedure, starting
from the singular spacetime and similar to the method considered in the
opposite Newtonian case [5], might be useful for situations of strong gravity.
It is encouraging that the field equations in the ultrarelativistic limit are as
simple as in Newton’s theory.

In Section 2 the geometry of a stand-alone singular spacetime V
(1)
4 is

considered, independently of the limiting procedure and of its embedding
into higher-dimensional spaces. A Riemannian curvature tensor based on
second-order derivatives of the metric is not a genuine geometrical construc-
tion here, since no uniquely defined intrinsic connection exists. However,
Ricci rotation coefficients can be introduced. The use of adapted coordinates
simplifies the relations. Section 3 considers a family gµν(xµ, ε) of metrics,
satisfying the general-relativistic field equations and tending for ε (= c2) → 0
to the singular spacetime introduced in the previous section. The resulting
ultrarelativistic field structures depend on the type and behaviour of matter
fields for ε → 0, which are present together with the gravitational field. In
Section 4 some solutions of the ultrarelativistic field equations are discussed,
including pure vacuum gravitational fields and dust matter.

Many problems remain open. The limit discussed here can be considered
for any general-relativistic field theory. It is straightforward to set up a post-
ultrarelativistic expansion and thus to re-introduce the velocities which have
disappeared in the limit. Another open question is the relation of solutions
of the ultrarelativistic equations to those general-relativistic solutions, which
admit an ultrarelativistic limit.

2. Differential geometry of singular Riemannian spaces V
(1)
4

A degenerate Riemannian space V
(m)
n may be defined as a n-dimensional

Riemannian space equipped with a covariant metric tensor γµν of matrix
rank 0 < m < n [3]. Well-known examples are the usual nullhypersurfaces
with n = 3 and m = 1 (see, e.g., [2]). We are interested in the case n =
4,m = 1. At any given point the metric tensor can be reduced to γ0µ =
0, γik = δik by means of suitable coordinate transformations. The values are
preserved under the transformation x′0 = g(x0), x′i = Ri

kx
k + Si, where Ri

k
is a 3-rotation and g an arbitrary function of x0. The linear subgroup of
this transformation group is the 10-parameter Carroll group [10]. Returning
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to a general coordinate system, at every point there exists a contravariant
vector field kµ (µ = 0, ...3) which is a nonvanishing solution of

γµνkν = 0, (1)

defined up to an arbitrary factor. Furthermore, there exists a congruence

of curves xµ = xµ(ξi, v), i = 1, 2, 3, called generators of V
(1)
4 , to which the

directions kµ are tangent, as solutions to the differential equation

kµ(xµ) =
∂xµ

∂v
. (2)

The three quantities ξi fix a generator, and the parameter v along a gen-
erator is determined up to a transformation v′ = v′(v, ξi), ∂v′

∂v 6= 0. kµ is
complemented by three other contravariant vectors lµ(i) such that γµν lνi 6= 0

and
γµν lµ(i)l

ν
(k) = δik. (3)

The four vectors (kµ, lµ(i)) form a contravariant tetrad, spanning the tangent

space at every point of the V
(1)
4 . The cotangent space is spanned by the

three vectors
lµ(i) = γµν lν(i) 6= 0, (4)

and

kµ =
εµνρσlν(1)l

ρ
(2)l

σ
(3)

εαβγδkαlβ(1)l
γ
(2)l

δ
(3)

, (5)

where εµνρσ is the Levi-Civita density. Note

lµ(i)lµ(k) = δik, kµlµ(i) = 0, (6)

lµ(i)kµ = 0, kµkµ = 1. (7)

The metric is written as γµν = lµ(i)lν(i), and the tetrad is determined up to
the generalized four-dimensional null rotations

l′µ(i) = Ak
i l

µ
(k) + Bik

µ, (8)

k′µ = Ckµ, (9)

which form a 7-parameter group, the coefficients Ak
i represent a 3-rotation.

There exists no contravariant metric tensor εµν satisfying εµργνρ = δµ
ν , how-

ever γµργνσερσ = γµν has solutions. The simplest one is given by

εµν = lµ(i)l
ν
(i), (10)
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but depends on the choice of the tetrad. One can also easily show, that in
general there exists no connection Γ ρ

µν , satisfying the Ricci lemma γµν;ρ = 0
and depending only on the metric and its first derivatives. Instead, one may
define tetrad-dependent affine connections by

Γ ρ
µν = 1

2kρ(kµ,ν + kν,µ) + ερσΓµνσ (11)

with
Γµνρ = 1

2 (γρµ,ν + γρν,µ − γµν,ρ). (12)

The affine connection (11) also does not in general satisfy the Ricci lemma
γµν;ρ = 0, one obtains instead

γµν;ρ = hµρkν + hνρkµ, (13)

where the tensor
hµν = Γµνρk

ρ (14)

is (up to a factor 1
2) the Lie derivative of the metric in the direction kρ. The

Γ ρ
µν transform as an affine connection with respect to coordinate transforma-

tions, thus the four-dimensional Ricci and Riemann tensors formed with the
connection are indeed tensors. They have nevertheless no geometrical mean-
ing in general, since they depend on the choice of tetrad, and are therefore to
an large extent arbitrary. The situation can be different for nullhypersurfaces

V
(1)
3 embedded in a Riemannian V4. Here a rigging of the surfaces would

allow us to fix the affine connection and to introduce tensorial curvature
measures (for different geometries on nullhypersurfaces, see [2] and [11]). A

way to obtain true geometrical statements in V
(1)
4 is the introduction of Ricci

rotation coefficients, which are obtained by expressing the derivatives of the
tetrad (kµ, lµ(i)) in terms of tetrad [3]. The rotation coefficients are scalars

with respect to coordinate transformations, but transform under a tetrad
change. Geometrically relevant propositions may be formulated as tetrad-
invariant statements on the rotation coefficients. For instance, differential

invariants of the V
(1)
4 may be given as suitable functions of the rotation

coefficients and their derivatives. Contrary to nonsingular Riemannian ge-
ometries, invariants depending only on the metric and its first derivatives

exist here, six for the V
(1)
4 , one for the V

(1)
3 . It is possible to write down

the invariants and field equations in the V
(1)
4 in a manifestly covariant man-

ner. However, as in Newtonian theory, the existence of intrinsic geometrical
structures allows the introduction of adapted coordinates, here ξi and v.
Since adapted coordinates simplify many relations considerably, they will
be used throughout subsequently. Note that they are determined up to the
transformations v′ = v′(v, ξi), ξ′i = ξ′i(ξi).
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3. The transition c → 0

We assume that the singular space V
(1)
4 arises as the limit ε → 0 of a fam-

ily of normal-hyperbolic Riemannian spacetimes, with the metric gµν(xµ, ε),
satisfying the Einstein field equations for ε > 0. ε is taken as the square of
the velocity of light, ε = c2. A mathematically rigourous approach should
employ Geroch’s technique of embedding in a 5-manifold [8]. Instead, we
use for simplicity asympotic representations for the metric, writing down an
expansion of the type

gµν(xµ, ε) = γµν(xµ) + g(1)µν(xµ)ε + g(2)µν(xµ)ε2 + o(ε3) . (15)

Assuming g(1)µνkµkν 6= 0, the contravariant components of the metric may
be represented asymptotically as

gµν(xµ, ε) =
1

ε
fkµkν + gµν

(0)(x
µ) + gµν

(1)(x
µ)ε + o(ε2), (16)

where f(xµ) is a scalar function. In adapted coordinates we put kµ = δµ
0 .

The relations between the co- and contravariant metric components give

g(1)00 = 1/f, g(1)0k = −γikg
0i
(0)/f, gik

(0) = γik (17)

(γik is inverse to γik). It is useful to expand also the coordinate transforma-
tion as a series in ε:

x′µ(xρ) = xµ
(0)

(xρ) + εxµ
(1)

(xρ) + o(ε2). (18)

Putting xµ
(0) = xµ, the next order xµ

(1) can be considered as gauge. From

g′0i
(0) = g0i

(0) + f
∂x′i

1

∂v
, (19)

g′00(0) = g00
(0) + 2f

∂x′0
1

∂v
, (20)

g′ik(0) = γik (21)

it is evident, that g0i
(0) and g00

(0) may be transformed to zero. This simplifies

the field equations considerably. If we calculate the Ricci tensor with the
series (15),(16), singular terms proportional to ε−2 and ε−1 arise. A closer
inspection shows that R(−)2µν = limε→0(ε

2Rµν) reduces to zero. We use the

field equation with a matter tensor Tµν . The product of Tµν with κ = 8πG
c2

is assumed to have for ε → 0 a finite limit t0µν , which allows us to write

κTµν(xµ, ε) = t(0)µν + t(1)µνε + o(ε2). (22)
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It is not difficult to show that these assumptions are compatible with, e.g.,
dust matter. Then the field equations start with

R(−1)µν = −1
2g(0)µν t(0)00f, (23)

R(0)µν = t(0)µν − 1
2g(1)µν t(0)00f

−1
2g(0)µν(t(0)αβg(0)αβ + t(1)00f) . (24)

From equation (23) only the pure spatial components survive. The ultra-
relativistic field equations are obtained from (23) (see below (27) and (32))
and from the time-time and time-space components of (24) (below (25),(26)
and (33)). The space-space components of (24) introduce already post-
ultrarelativistic corrections, which are not discussed here.

4. Some solutions

The vacuum field equations can be written with f = −e−H

γ̇ikγ̇
ik + (γ̇ikγ

ik)2 = 0, (25)

γklγ̇kl|i − γklγ̇il|k − 1
2H,iγ

klγ̇kl = 0 (26)

and
γ̈ik + 1

2 γ̇ik(γ
lmγ̇lm − Ḣ) − γ̇ilγ̇kmγlm = 0, (27)

where a stroke denotes the covariant derivative with respect to the 3-metric
γik, a dot means ∂/∂v (’time’-derivative). These equations should describe
the motion of gravitational waves in the ultrarelativistic limit. One recog-
nizes an initial value problem with (25),(26) as initial conditions and (27) as
propagation equation. Equation (25) (which signifies the vanishing of one

of the first-order invariants of the V
(1)
4 mentioned above) is preserved under

(27), but (26) leads to the additional constraint

γ̇ikγ
klḢ,l = 0. (28)

Hence, considering only the general case det |γ̇ikγ
kl| 6= 0, H is given by

H = h(v) + hh(ξi), (29)

where hh(ξi) enters the initial conditions (26) and h(v) influences the prop-
agation equation (27). As an example consider the vacuum solution

γik = diag(γ1, γ2, γ2), H = −4ln(a + bv) + hh(ξ1) (30)

with
γ1 = a + bv, γ2γ3 = c(ξ2, ξ3)e−hh(ξ1). (31)
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Time-dependent solutions of this type may be considered as the ultrarela-
tivistic limit of gravitational waves. It is seen that caustics of the congruence
may occur at v = −a/b in the example.

The case of dust matter is only slightly more complicated. The propaga-
tion equation for the 3-metric attains a source term (writing ρ for the c → 0
limit of the matter density)

γ̈ik + 1
2 γ̇ik(γ

lmγ̇lm − Ḣ) − γ̇ilγ̇kmγlm = 8πGρeHγik. (32)

A source term is also present in the first (scalar) initial equation

γ̇ikγ̇
ik + (γ̇ikγ

ik)2 = 64πGρeH . (33)

The second (vectorial) initial equation (26) remains unchanged. The scalar
constraint (33) is preserved in time, if the matter density ρ changes as

ρ̇

ρ
= −1

2 γ̇ikγ
ik. (34)

The latter relation is equivalent to ρ ∼ (det|γik|)
−1/2, which corresponds

to matter conservation in comoving coordinates (note that ρ can vary ar-
bitrarily as a function of ξi). The vectorial constraint equation (26) is not
preserved in time, but leads to the relation

γ̇ikγ
klḢ,l + 3

8H,i(γ̇klγ̇
kl + (γ̇klγ

kl)2) = 0. (35)

Again, the integration of these equations is much simpler than the corre-
sponding general relativistic equations. Consider the general case of an
isotropic expansion, defined by

γ̇ik = φ(ξi, v)γik. (36)

The solution can be written in terms of an arbitrary function λ(v) as

φ(ξi, v) =
λ

r3
0(1 + 9

4r3

0

∫ v
v0

λdv)
. (37)

The arbitrariness of λ(v) reflects the fact, that no affine parameter along the
generators is singled out, all parameters v′ = v′(v) are at the same footing.
r0 is a spatially varying length scale: Assuming an initial density ρ0(ξ

i) at
v = v0, we define this scale by

r0(ξ
i) = (

3

32πGρ0(ξi)
)1/2. (38)
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The matter density as a function of v is then given by

ρ(ξi, v) =
ρ0(ξ

i)

(1 + 9
4r3

0

∫ v
v0

λdv)2/3
, (39)

and H can be found from eH = 3φ2/(32πGρ). It is interesting, that a
singular origin of the expanding matter distribution is as inevitable as in
GR.
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