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In recent numerical simulations of spherically symmetric gravitational
collapse a new type of critical behaviour, dominated by a sphaleron so-
lution, has been found. In contrast to the previously studied models, in
this case there is a finite gap in the spectrum of black-hole masses which
is reminiscent of a first order phase transition. We briefly summarize the
essential features of this phase transition and describe the basic heuristic
picture underlying the numerical phenomenology.
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One of the main open problems in classical general relativity is the is-
sue of global dynamics of solutions of Einstein’s equations. The presently
achievable mathematical techniques appear to be insufficient to address this
problem in full generality, so most researchers have focused their attention
on a more tractable case of spherical symmetry. In particular, in a remark-
able series of papers (see [1, 2] and references therein) Christodoulou has
analysed the evolution of regular initial data for the spherically symmetric
Einstein–Klein–Gordon equations. He showed that for “weak” initial data
there exists a unique global solution which asymptotes to the Minkowski
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spacetime, whereas “strong” initial data form a singularity, which, in accord
with weak cosmic censorship hypothesis, is surrounded by an event horizon
(here “weak” and “strong” have well defined meaning in terms of a certain
function norm). These results suggested that there is a “critical surface” in
the phase space which separates the two kinds of initial data. The initial
data lying on this critical surface are at the treshold of black hole formation.
A natural question is: what is the mass of a black hole at the treshold? Does
it continuously decrease to zero, or is there a finite lower bound (mass gap)?
These two possibilities will be referred to as second and first order phase
transitions, respectively.

The pioneering numerical investigations of this problem were carried out
by Choptuik who analysed the evolution of one-parameter families of initial
data crossing the critical surface [3]. For each family, labelled by a param-
eter p, Choptuik found a critical value p⋆ such that the data with p > p⋆

form a black hole, while the data with p < p⋆ do not. It turned out that
the marginally supercritical data form black holes with masses satisfying
the power law MBH ≃ C(p−p⋆)γ with a universal (i.e. family independent)
critical exponent γ. Therefore, as p → p⋆, the black hole mass decreases
continuously to zero which is reminiscent of the second order phase tran-
sition. Morever, Choptuik discovered that in the intermediate asymptotics
(i.e. before a solution “decides” whether to collapse or not) all near-critical
solutions approach a universal attractor. This attractor, called the critical
solution, has an unusual symmetry of discrete self-similarity.

Quickly after Choptuik’s discovery similar critical effects have been ob-
served in other models of gravitational collapse [4–6]. In all cases the overall
picture of criticality was qualitatively the same as in the scalar field col-
lapse, possibly with one difference: in certain models the critical solution
was continuously (rather than discretly) self-similar. These studies provided
convincing evidence that such features as universality, black-hole mass scal-
ing, and self-similarity (discrete or continuous) are the robust properties
of second order phase transitions in gravitational collapse. Although none
of these properties have been proven rigorously, a substantial progress has
been made on a heuristic level. In particular, at present we have a con-
vincing picture of the origin of universality and scaling (see [7] for a recent
review).

None of the first studied models had a mass/length scale, in analogy to
the vacuum Einstein’s equations. This raises the question: which features of
the critical colapse are inherently related to the scale invariance, or, putting
this differently, how does the presence of length/mass scale affect the sce-
nario of critical behaviour? It follows from dimensional analysis that, under
the assumption of universality, the lack of scale implies that the mass gap
must be zero. However, the converse is not true, as was already noticed by
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Choptuik in his studies of self-interacting scalar field. It seems that what
matters in the evolution is not the scale itself but rather the presence of non-
singular stationary solutions (which are of course excluded for scale invariant
equations).

In order to understand better the role of scale and stationary solutions
in the dynamics of Einstein’s equations, we have recently investigated two
models: Einstein–Yang–Mills (in collaboration with Matt Choptuik [8]) and
Einstein–Skyrme [9]. Both these models possess a mass/length scale (actu-
ally the ES model has two scales) and static regular solutions.

To make this paper self-contained, we first present the general setting
for the spherically symmetric evolution. Studying a spherically symmetric
Einstein-matter system it is convenient to use the following ansatz for the
metric

ds2 = −e−2δNdt2 + N−1dr2 + r2dΩ2, (1)

where dΩ2 is the standard metric on the unit 2-sphere and δ,N are functions
of (t, r). Although this coordinate system cannot penetrate an event horizon,
this is not a serious disadvantage, as Choptuik emphasized, in studying the
formation of horizons. The main advantage of the choice (1) is that the
Einstein’s equations simplify considerably in terms of the metric functions
N and δ

N ′ =
1 − N

r
− 8πGr T00, (2)

Ṅ = −8πGre−δN T01, (3)

δ′ = −4πGrN−1(T00 + T11), (4)

where overdots and primes denote ∂/∂t and ∂/∂r, respectively, and the com-
ponents of the stress-energy tensor of matter Tab are expressed in the or-
thonormal frame determined by the metric (1) (e0 =eδN−1/2∂t,e1 =N1/2∂r).

The full system of evolution equations consists of Eqs. (2)–(4) and evo-
lution equations for a matter field1. For the sake of simplicity let us as-
sume that matter is described by one scalar function F (r, t) which satis-
fies a nonlinear wave equation (this is a typical situation). As a conse-
quence of Birkhoff’s theorem the essential dynamics of the system resides
in F (r, t). In order to solve the evolution equations we need to supplement
them with boundary and initial conditions. To ensure regularity we require
that the components of the stress-energy tensor are bounded for all (t, r) and

1 As it is well known, in many cases the evolution equations for matter are implicitly
contained in the Einstein equations. In particular, for the two models discussed below
the consistency condition for the Eqs. (2) and (3) is equivalent to the wave equation
for a matter field.
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that N(0, t) = 1 + O(r2) at the center. Asymptotic flatness requires that
N(r, t) = 1+ O(1/r2) for r → ∞. The time coordinate is normalized by the
boundary condition δ(∞, t) = 0 (so t is the proper time at spatial infinity).
The initial value problem for the above equations is solved as follows. At
t = 0 one takes asymptotically flat regular initial data for the matter field
F (r, 0) and Ḟ (r, 0). Then the elliptic Eqs. (2) and (4) are solved yielding
initial metric functions N(r, 0) and δ(r, 0). Once a full set of initial data is
constructed, it is evolved using Eq. (3) and the hyperbolic evolution equa-
tion for F . The function δ is updated at each subsequent moment of time
using Eq. (4). This scheme is called the free evolution, as opposed to the
alternative scheme of fully constrained evolution in which the hamiltonian
constraint (2), rather than Eq. (3), is used to compute the function N .

We are now ready to discuss critical phenomena in the evolution. Here
we focus our attention exclusively on the first order phase transitions. In
passing, we remark that, from the theoretical perspective, second order phase
transitions are much more interesting because of their bearing on the cosmic
censorship hypothesis. On the other hand, first order phase transitions might
be more important in the astrophysical context.

To make this presentation consize we first describe the basic scenario in a
model-independent manner and then illustrate it with concrete models. For
a first order transition to occur in a spherically-symmetric Einstein-matter
system, we need to make two assumptions2:

Assumption 1. There exists a static regular asymptotically flat solution
with one linearly unstable eigenmode (in field theory such solution is referred
to as a sphaleron). Let us denote this solution by Xu with X standing
for (F,N, δ). The uniqueness of the unstable eigenmode means that the
linear evolution of an initially small spherical perturbation about Xu can be
decomposed into the sum

δXu(r, t) = Ceλtξλ(r) +
∞
∑

i=1

Cie
µitξµi

(r) (5)

of the single growing mode with a positive eigenvalue λ and the decaying
modes with Re(µi) < 0. Physically the damping of non-growing modes is
due to the loss of energy by radiation. Mathematically this is reflected in
non-self-adjointness of the eigenvalue problem.

Assumption 2. The ultimate fate of the perturbation (5) depends only
on the sign of the amplitude C. For one sign of C, say C > 0, a black hole
forms, while for C < 0 there exists a global in time regular evolution. In the

2 The importance and consequences of the analogous assumptions in the context of
second order phase transitions in critical collapse were first spelt out by Koike, Hara,
and Adachi [10].



First Order Phase Transitions in Gravitational Collapse 1075

latter case the final state depends on the details of a model — it might be
the Minkowski spacetime (this case is usually referred to as dispersion), or
some stable regular solution.

Assumption 1 means that that the stable manifold WS of the solution
Xu has codimension one. Assumption 2 means that WS is a “critical” surface
in the sense of dividing (locally) the phase space into collapsing and non-
collapsing initial data.

Now, consider a one-parameter family of initial data Φ(r, p), where p is
a parameter, which intersects WS at some parameter value p = p⋆. Let
Xp(r, t) denote the solution corresponding to these initial data. The critical
initial data are attracted along WS towards the solution Xu. A near-critical
solution, by continuity, remains close to WS and, once it gets close to Xu,
can be approximated by the linearization (5) around Xu with the amplitudes
C and Ci depending on the initial data. Since by definition C(p⋆) = 0, we
have

Xp(r, t) = Xu(r) + A(p − p⋆) eλtξλ(r) + decaying modes, (6)

where A = dC
dp (p⋆). The range of t for which this linear approximation

is valid is called the intermediate asymptotics. In this asymptotics, the
solution Xp(r, t) initially approaches Xu but later the growing mode becomes
dominant and the solution is repelled from WS along the unstable manifold
of Xu. Because of this behaviour the solution Xu is sometimes called the
intermediate attractor. The duration of the intermediate asymptotics is
determined by the time T in which the unstable mode grows to a finite size
|p − p⋆|eλT ∼ O(1), which gives T ∼ −λ−1 ln |p − p⋆|. Thus, the larger λ,
the better fine-tuning is required to see the solution Xu clearly pronounced
as the intermediate attractor.

The scenario of critical collapse summarized above naturally explains the
universality (that is family-independence) of this phenomenon — it simply
follows from the fact that the evolution of all near-critical data is governed
by the same unstable mode around the intermediate attractor. Within this
framework we also see why it is essential that the solution Xu has exactly
one unstable mode. If it was linearly stable (that is if it had no unstable
modes), then it would be an attractor of an open set of initial data and it
would not be related to any critical behaviour. On the other hand if Xu

had two or more unstable modes then a generic one-parameter family of
initial data would not intersect its stable manifold and eo ipso the critical
behaviour would not be generic.

By Assumption 2 all solutions starting with initial data Xu(r) + εξλ(r)
with some small positive amplitude ε form black holes. As follows from (6),
for any ε, such initial data can be extracted from the evolution of super-
critical solutions with sufficiently small p − p⋆ at some time tp satisfying
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A(p − p⋆)eλtp = ε. Although the time tp depends on p, the evolution for
t > tp is independent of p [7]. Denoting the mass of a resulting black hole
by mBH(ε), we can define the mass gap as m⋆ = limε→0 mBH(ε). The mass
gap m⋆ is bounded from above by the mass mu of the solution Xu. The
difference mu − m⋆ can be interpreted as the total energy radiated away to
infinity during the critical collapse.

Now we substantiate the general picture presented above with two models
in which the first order phase transitions were observed: Einstein–Yang–
Mills (EYM) and Einstein–Skyrme (ES).

EYM: We assume the following ansatz for the SU(2)-YM field

eF = dw ∧ (τ1dϑ + τ2 sin ϑdϕ) − (1 − w2)τ3dϑ ∧ sinϑdϕ, (7)

where e is the coupling constant, τi are the Pauli matrices, and the YM
potential w is a function of (r, t). The evolution equation for w(r, t) is

−(eδN−1ẇ)˙ + (e−δNw′)′ +
1

r2
e−δw(1 − w2) = 0, (8)

while the Einstein equations have the form (2)-(4) with the stress-energy
tensor

T00 =
1

4πe2r2

(

Nw′2 + e2δN−1ẇ2 +
(1 − w2)2

2r2

)

, (9)

T11 =
1

4πe2r2

(

Nw′2 + e2δN−1ẇ2 − (1 − w2)2

2r2

)

, (10)

T01 =
1

2πe2r2
eδẇw′. (11)

The EYM equations have a countable family of static asymptotically flat
regular solutions Xn (n ∈ N) discovered numerically by Bartnik and McKin-
non [11] and later proven rigorously to exist by Smoller and Wassermann [12].
Within the ansatz (7) the solution Xn has n unstable modes, hence the first
Bartnik-McKinnon solution X1 satisfies the Assumption 1 [13]. Morever,
the nonlinear instability analysis of this solution performed by Zhou and
Straumann [14] strongly suggested that the Assumption 2 is also true. In
fact, Choptuik and the present authors showed that for some initial data the
solution X1 acts as the intermediate attractor and controls the first order
phase transition [8]. Since vacuum is the only stable solution, the subcritical
solutions disperse. For supercritical solutions the mass gap was found to be
equal (up to 0.1%) to the mass of X1 (the mass scale is given by 1/(e

√
G)).

ES: In this model matter is described an SU(2)-valued scalar function U
(called a chiral field). In spherical symmetry U = exp(i~τ · r̂F (r, t)) with the
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dynamics of F (r, t) governed by the equation

− (ueδN−1Ḟ )˙ + (ue−δNF ′)′ = sin(2F )e−δ

×
(

f2 +
1

e2
(
sin2 F

e2r2
+ NF ′2 − e2δN−1Ḟ 2)

)

, (12)

where u = f2r2 + 2e2 sin2 F , and f and e are coupling constants. The
components of stress-energy tensor in the Einstein equations (2)–(4) are

T00 =
u

2r2
(NF ′2 + N−1e−2δḞ 2) +

sin2 F

r2

(

f2 +
sin2 F

2e2r2

)

, (13)

T11 =
u

2r2
(NF ′2 + N−1e−2δḞ 2) − sin2 F

r2

(

f2 +
sin2 F

2e2r2

)

, (14)

T01 =
u

r2
eδḞF ′ . (15)

Regularity at the center requires that F (0, t) = 0, while asymptotic flatness
requires that F (∞, t) = Bπ, where an integer B, called the baryon number,
is equal to the topological degree of the chiral field. As long as no horizon
forms, the baryon number is conserved during the evolution, so we have
topological selection rules for the possible end states of given initial data.
The number of static regular solutions of the ES equations depends on the
dimensionless parameter α = 4πGf2 (this parameter is the square of the

ratio of two length scales
√

G/e and 1/
√

4πef). For large values of α there
are no regular static solutions. As α decreases, in each topological sector
there is a countable sequence of bifurcations at which there appear pairs of
static regular solutions [15]. Here we briefly summarize our results in the
topological sectors of baryon number zero and one (see [9] for the details).

In the B = 0 sector for α < α0 ≃ 0.00147 there exists a static regular
solution satisfying the Assumptions 1 and 2 which plays the role of an inter-
mediate attractor in the critical collapse of specially prepared initial data.
Since the vacuum (i.e. the Minkowski spacetime) is the only regular stable
B = 0 solution, the subcritical solutions disperse, as in the EYM case. The
case B = 1 is more interesting. Here, for α < α1 ≃ 0.040378, there is a pair
of regular static solutions Xs and Xu. The solution Xs is linearly stable
while Xu has one unstable mode [15, 16]. In the limit α → 0 the solution
Xs tends to the flat space skyrmion while Xu has no regular limit. Again,
the solution Xu satisfies the Assumption 2 and plays the role of an inter-
mediate attractor. However, now the dispersion is topologically forbidden,
and instead the subcritical solutions decay into the stable solution Xs (this
was observed previously in [17]). The solution Xu has larger mass than Xs

so during its decay the excess energy has to be radiated away to infinity.
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The process of settling down to Xs has the form of damped oscillations
(quasinormal ringing). The relaxation time increases with α and tends to
infinity as α → α1, where the solutions Xs and Xu coalesce. The evolution
of supercitical solutions also depends on the baryon number. For B = 1
almost no energy is lost during the critical collapse, hence the mass gap
is equal to the mass of Xu, in analogy to the EYM case. In contrast, for
B = 0 supercritical data a substantial amount of energy is radiated away,
and consequently the mass gap is smaller than the mass of the unstable
solution. For example, m⋆ ≃ 0.76mu when α = 0.00145.

In conclusion, the numerical results in the EYM and ES models (and also
the results of [18]) give strong evidence that our understanding of first order
phase transitions in gravitational collapse based on the Assumptions 1 and
2 is correct. In particular, in both cases the formula (6) was shown to ap-
proximate very well the evolution in the intermediate asymptotics. Actually,
this formula was used to reproduce with good accuracy the results of linear
stability analysis. Let us close with the discouraging remark that a rigorous
description of the phenomenon described in this paper does not seem feasi-
ble to us, because it would require to overcome a number of mathematical
problems which have not been solved even for much simpler systems.
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