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It is well known that fundamental linear higher-spin (≥ 2) fields are
unphysical: they cannot be a a source of gravity, i.e. their dynamics is
inconsistent unless they exist as test fields in an empty space. A certain
kind of nonlinear spin-2 field arises from vacuum nonlinear metric gravity
theories (Lagrangian being any smooth scalar function of Ricci tensor) as a
component of a multiplet of tensor fields describing gravity. These theories
can be reformulated as Einstein gravity theory with gravity described by
the metric field alone and the other fields contained in the multiplet acting
as a “matter” source in Einstein field equations. This framework provides a
consistent gravitational interaction for the spin-2 field. A number of open
problems still remains. This paper is a progress report on a joint work done
by Guido Magnano and myself.

PACS numbers: 04.20. Cv, 04.50. +h

1. Introduction

From the experimental point of view there is no necessity to construct a
theoretical description of a spin-2 field which acts as a source of gravity since
up to now we know no other elementary particle carrying spin two besides the
hypothetical graviton. Nevertheless there are various reasons for studying
linear higher-spin (s > 1 integer) fields in classical field theory [1]. Further-
more, in the last decade it was realized that certain spin-0 and spin-2 fields
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minimally coupled to a spacetime metric are generated in a natural way as
components of a multiplet of fields describing gravity in some extensions of
Einstein’s gravity theory. These extensions consisting in replacing Einstein–
Hilbert Lagrangian for vacuum gravity by a Lagrangian being any smooth
scalar function of Ricci and Weyl tensors are named metric nonlinear grav-
ity (NLG) theories or higher-order gravity. Impulses for investigating these
theories have recently come from various directions. In the low-energy field-
theory limit of superstring effective actions one recovers Einstein–Hilbert
Lagrangian plus higher order corrections in Riemann tensor [2]. Moreover
quantum theory suggests that a renormalizable quantum gravity necessitates
a quadratic Lagrangian having a classical limit more complicated than gen-
eral relativity. Last but not least, quadratic and higher-order in Riemann
curvature Lagrangians are possible candidates for a gravity theory avoiding
spacetime singularities [3].

Structure of a spin-2 field theory is quite different in the two cases: of
the massive linear field and the massive nonlinear field generated by an NLG
theory. In the first case the inconsistency of gravitational interactions of the
field is well known and I briefly present it in section 2 merely to stress the
difference to the other case. The nonlinear spin-2 field is described in section
3 where I report on progress on the subject made recently by G. Magnano
and myself.

2. Linear massive spin-2 field as a test field in empty space

A spin-2 field is usually described by a symmetric tensor field ψµν . A
free field theory in flat spacetime is first constructed for a massless field
and the guiding principle is the postulate of a gauge invariance [1]; then an
appropriate mass term is added to the Lagrangian. In the next step one
introduces an interaction of the field with itself or other matter. The last
step, different from the previous one, consists in coupling of the field to
gravity.

The free field theory is consistent; inconsistency problems appear for in-
teractions. The problems arise since for spin ≥ 1 the number of algebraically
independent components of the tensor field is larger than the number of dy-
namical degrees of freedom (for spin two there are 10 components of ψµν ver-
sus 5 physical degrees of freedom in the massive case) and some components
are redundant (represent a “pure gauge”). Then Lagrange equations of mo-
tion form a degenerate system, i.e. some of them are first-order constraints
on the initial data rather than being hyperbolic propagation equations. The
problem already arises for Maxwell electrodynamics and a massive vector
(Proca) field; for a free field one deals with it in an analogous way for all
spins ≥ 1.
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As we are interested in gravitational interactions of a massive spin-2 field,
we omit the free field theory and construct a Lagrangian for ψµν in a curved
spacetime. To this aim we use a gravitational perturbation analogy [4]. One
takes any spacetime metric and perturbs it, gµν → gµν + δgµν . The second
variation of Einstein–Hilbert action S[g] =

∫

d4x
√−gR evaluated at the

“background” metric gµν is a functional quadratic in the metric fluctuations
and if one identifies δgµν with ψµν the functional provides an action giving
rise to linear Lagrange equations for the field. Actually ψµν can be defined
as a linear function of δgµν , e.g. as δ(

√−ggµν). Here we make the simplest
choice ψµν = δgµν (which however leads to field equations which are not the
simplest possible; other choices provide equivalent theories) and the action is
defined as S[ψ] ≡ −2δ2S[g]. Next one assumes that ψµν is a non-geometric
massive tensor field which interacts with gravity. In other terms from now on
gµν is not regarded as a fixed background metric but rather as a dynamical
field coupled to ψµν . (This means that the equations of motion for the
fields are not perturbation equations of a given solution for pure gravity.)
To assign a mass to ψµν one puts in the Lagrangian by hand a mass term
which is appropriately chosen to avoid any additional scalar field. Finally the
second order action for ψµν reads (the action is linear in second derivatives)

S[ψ] =

∫

d4x
√−g

[

ψµνGL
µν +

1

2
ψψµνGµν +

m2

2
(ψµνψ

µν − ψ2)

]

(1) ,

where ψ = gµνψµν and GL
µν is the linear in ψµν part of Einstein tensor,

Gµν(g + ψ) = Gµν(g) +GL
µν(g, ψ) + . . . ,

GL
µν(g, ψ) ≡ 1

2
(−2ψµν + ψµα;ν

;α + ψνα;µ
;α − ψ;µν − gµνψ

αβ
;αβ + gµν2ψ

+gµνψ
αβRαβ − ψµνR) . (2)

Adding Einstein–Hilbert action S[g] to S[ψ] one derives the full system of
equations of motion consisting of Einstein’s field equations Gµν = Tµν(g, ψ)
(we set 8πG = c = ~ = 1) where Tµν is the variational energy-momentum
tensor following from (1) and Lagrange equations

Eµν ≡ GL
µν(g, ψ) +

1

2
Gµν(g)ψ − m2

2
(gµνψ − ψµν) = 0. (3)

The latter form a degenerate system: only 6 out of 10 equations Eµν = 0 are
hyperbolic propagation ones for ψµν , four equations E0µ(g, ψ) = 0 do not
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contain second time derivatives of the field and form so-called primary con-
straints on the initial Cauchy data. To get a consistent dynamics one should
replace the primary constraints by other constraints which allow to trans-
form the primary ones in four missing propagation equations. To this aim
one proceeds as in the massive case in flat spacetime. By taking divergence
of (3) one gets four secondary constraints on the initial data [5],

∇νEµν(g, ψ) ≡ Qµ(g, ψ) = ∇ν(ψ
ναGµα)+

1

2
ψαβ

;µGαβ−
m2

2
(ψ;µ−ψ ;α

µα ) = 0,

(4)
where one has applied the linearized Bianchi identity

∇νGL
µν(g, ψ) ≡ ∇ν(ψ

ναGµα) +
1

2
ψαβ

;µGαβ − 1

2
ψ;αG

α
µ. (5)

However the constraints Qµ = 0 are defective in the following sense. It is
natural to view them as first order differential constraints on the initial data
for ψµν at t = 0. But then replacing Gµν by Tµν one arrives at the following
equations of motion:

E′

µν = GL
µν(g, ψ) +

1

2
Tµν(g)ψ − m2

2
(gµνψ − ψµν) = 0 , (6a)

Q′

µ = ∇ν(ψ
ναTµα) +

1

2
ψαβ

;µTαβ − m2

2
(ψ;µ − ψµα

;α) = 0 . (6b)

The expression for Tµν is extremely complicated and contains ψµν;αβ [4],
hence (6b) are four nonlinear third order propagation equations. The com-
ponents T0µ contain ψαβ,00 what implies that E′

0µ = 0 are no more con-
straints. As a consequence there are no constraints imposed on ψµν which
are preserved in time and which decouple the unphysical modes ensuring the
existence of the correct number (five) of degrees of freedom.

The opposite possibility is to consider ψµν as a test field on a fixed back-
ground determined by Einstein’s equations Gµν = tµν(φ) with tµν being the
stress tensor for some matter φ. Then E0µ = 0 and Qµ = 0 are constraints
on initial values of ψµν . The necessary condition for having a consistent
dynamics for ψµν is that both primary and secondary constraints are pre-
served in time. This can be shown only for very special cases [6]. In general
there is no consistent dynamical description of spin-2 field on a given curved
spacetime.

The third possibility is to regard Qµ = 0 as restrictions on the spacetime
metric. Writing them as

Qµ =

[(

Gµαδ
σ
β +

1

2
Gαβδ

σ
µ

)

∇σ +Gµα;β

]

ψαβ − m2

2
(ψ;µ − ψ ;α

µα ) = 0 (7)
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one sees that they contain third time derivatives of the metric and thus
restrict it in the whole spacetime. An admissible solution (though there is
no rigorous proof) is Gµν = 0. Then the secondary constraints reduce to

ψ ;ν
µν − ψ;µ = 0. (8)

Their divergence is
ψµν

;µν − ψ ;µ
;µ = 0. (9)

On the other hand the trace of (3) is

gµνEµν = ψ ;µ
;µ − ψµν

;µν − 3

2
m2ψ = 0. (10)

Adding (9) to (10) one finds that ψµν is traceless, gµνψµν ≡ ψ = 0, which in
turn reduces (8) to ψµν

;ν = 0. These are five secondary constraints ensuring
the purely spin-2 nature of the field. The constraints considerably simplify
Lagrange equations (3) to

(2 −m2)ψµν + 2ψαβRµανβ = 0, (11)

where Rµν = 0 has been used. These form a nondegenerate system of 10 hy-
perbolic propagation equations. As a final step in constructing a consistent
dynamics one proves the proposition [6]:
if the equations of motion (11) hold throughout an empty spacetime and
the following constraints restrict the initial data at t = 0: E0µ = 0 and
ψ = ψ;0 = ψµν

;ν = 0, then all the constraints, ψµν
;ν = 0 = ψ and E0µ = 0

are preserved in time.
Here one must assume an additional initial data constraint ψ;0 = 0 at t = 0
to ensure vanishing of ψ in the spacetime. The final conclusion is [4, 5]:
massive linear spin-2 field is consistent only if it is a test field in an empty
spacetime; then in the limit of vanishing mass it coincides with small grav-
itational fluctuations. The same argument applies to the massless field.
Inclusion of any non-minimal coupling to gravity cannot help [5]. A linear
spin-2 field cannot be a source of gravity and in this sense it is unphysical.

3. Consistent nonlinear spin-2 field in a curved spacetime

Dynamical evolution of a Lorentzian manifold (M,ψµν) is determined in
the framework of a generic NLG theory by the Lagrangian
L =

√−ψf(ψµν , R̄αβ(ψµν)) where a scalar function f may also depend on
the conformal tensor (in this section ψ = det(ψµν)). In general Lagrange
equations of motion are of fourth order. Such a theory gives rise to a mas-
sive nonlinear spin-2 field (and a massive scalar field) in two ways. Firstly,
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one can both lower the order of the equations of motion and generate ad-
ditional fields describing gravity in a way analogous to replacing Lagrange
formalism by canonical one in classical mechanics. One introduces “canon-
ical momenta” conjugate to Christoffel connection for ψµν using Legendre
transformations with respect to the irreducible parts of Ricci tensor [7]:

√

−ψπµν =
∂L

∂Sµν
and

√

−ψφ =
∂L

∂R̄
, (12)

where Sµν ≡ R̄µν − 1
4R̄ψµν . The fields πµν and φ turn out to be massive

and carry spin two and zero respectively. The original Lagrangian L is
then replaced by a Helmholtz Lagrangian LH generating second order field
equations for the triplet of the fields [7]. It is remarkable that for ψµν one
gets exactly Einstein’s field equations Ḡµν(ψ) = Tµν(ψ, π, φ) with a stress
tensor for the nongeometric part of the triplet which is however indefinite
[6]. In a weak-field limit one recovers the well known Stelle’s results for a
quadratic L [8].

The second approach is more sophisticated. One assumes that the field
ψµν appearing in L is a kind of a unifying field and does not coincide with
the physical spacetime metric (the Lagrangian may possibly come from a
more fundamental theory and ψµν is not a geometric quantity). The genuine
measurable metric should be recovered from L via a Legendre transformation
[9, 10]

gµν ≡
∣

∣

∣

∣

∣

det

(

∂L

∂R̄αβ

)

∣

∣

∣

∣

∣

−1/2
∂L

∂R̄µν
. (13)

If this transformation can be inverted one expresses the canonical “veloc-
ity” R̄µν in terms of the “positions and momenta”, R̄µν(ψ) = rµν(gαβ , ψαβ).
To view gµν as a spacetime metric one assumes that it is nonsingular, i.e.
det(∂f/∂R̄µν) 6= 0 and gµν is its inverse. In other terms one maps (M,ψµν)
onto (M,gµν) and from now on one treats ψµν as some tensor field on the
spacetime (M,gµν). As in classical mechanics one replaces the Lagrangian
by the Hamiltonian,

H(g, ψ) ≡ √−ggµνrµν(g, ψ) − (− detψ)
1

2 f(ψµν , rµν) (14)

and then the latter by a Helmholtz Lagrangian

LH(g, ψ) ≡ √−ggµνR̄µν(ψ) −H(g, ψ). (15)

The Helmholtz action SH =
∫

d4xLH generates Hamilton equations for gµν

and ψµν as variational Lagrange equations and these are of second order .
Introducing a tensor being the difference of the Christoffel connections for
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the two tensors, Qα
µν ≡ Γ̄α

µν(ψ)−Γα
µν(g), and applying the following identity

valid for any two nonsingular tensor fields [9],

R̄µν(ψ) −Rµν(g) = ∇αQ
α
µν −∇(µQ

α
ν)α +Qα

µνQ
β
αβ −Qα

µβQ
β
να, (16)

where ∇αT ≡ T;α is the covariant derivative with respect to gµν , one can
finally express LH in the form (up to a divergence term)

LH =
√−g

[

R(g) +K(g, ψ) − 2V (g, ψ)
]

≡ √−g
[

R(g) + gµν
(

Qα
µνQ

β
αβ

−Qα
µβQ

β
να

)]

−√−g
[

gµνrµν(g, ψ) −
(

detψ

g

)
1

2

f(ψµν , rµν)
]

. (17)

Here K being the quadratic polynomial in Qα
µν is a kinetic Lagrangian for

ψµν and is universal (is independent of the form of f) while the potential V is
determined by the original Lagrangian. It is a straightforward calculation to
show that the theory based on LH is dynamically equivalent to that based
on L =

√
−ψf [9, 10]. It is far from being obvious that it is possible to

define the genuine metric gµν in such a way that the gravitational part of
the Helmholtz Lagrangian is exactly equal to the curvature scalar. In this
sense Einstein general relativity is a universal Hamiltonian image (under a
Legendre transformation) of any NLG theory .

The field equations δSH/δg
µν = 0 are just Einstein ones,

Gµν(g) = Tµν(g, ψ) ≡ Qα
α(µ;ν) −Qα

µν;α −Qα
µνQ

β
αβ +Qα

µβQ
β
αν + rµν

+
1

2
gµνg

αβ(Qλ
αβ;λ −Qλ

λα;β +Qσ
αβQ

λ
σλ −Qσ

αλQ
λ
σβ − rαβ) . (18)

This Tµν is the variational energy-momentum tensor following from (17);
the quickest way of deriving it is to apply the identity (16). In general the
stress tensor is indefinite and the energy density is not determined by initial
data since it depends on ψµν;αβ . The kinetic part of it (made up of Qα

µν) is
universal while the potential part is determined by rµν(g, ψ) and does not
depend explicitly on f . This stress tensor is rather complicated, nevertheless
it is considerably simpler than that for the linear inconsistent field discussed
in previous section [4].

Lagrange equations δSH/δψµν = 0 are too complicated to be presented
here [6]. These are quasi-linear second order equations whose “kinetic” part
is universal (due to (17)). This universality shows that there is no need
to study a generic NLG theory — to find out the physical content of all
these theories it is sufficient to investigate the simplest case: the original L
being a quadratic function of the curvature. Furthermore, if L is a cubic or
higher order polynomial in R̄µν there are technical problems with inverting
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the definition (13) to get R̄µν(ψ) = rµν(gαβ , ψαβ). The particle content is
the same for all cases: in a weak-field limit of (17) we find that gµν describes
the massless graviton (helicity 2) while ψµν is a mixture of massive spin-2
and spin-0 fields. (If Weyl tensor is present in L this picture may become
more complex.) Our results are in agreement with Stelle [8] who studied the
quadratic Lagrangian R̄+ aR̄2 + bR̄µνR̄

µν .
We choose the Lagrangian L =

√
−ψ(R̄ + aR̄2 − 3aR̄µνR̄

µν) with a =
const > 0 of dimension (length)2. The fourth-order field equations imply
R̄ = 0. This corresponds to absence of the scalar canonical momentum φ
defined in (12), φ = const. The field πµν (being now proportional to R̄µν) is
traceless and divergenceless (with respect to ψµν), thus it describes purely
spin-2 particles; its equations of motion are

2πµν − 1

3a
πµν +

1

12a
gµνπ

αβπαβ − 2Rα(µν)βπ
αβ = 0. (19)

The field cannot be massless, m2
π = 1

3a .
The Legendre transformation (13) (usually named a transition to Ein-

stein conformal frame (ECF)) clearly shows that Einstein–Hilbert term in
L is essential. In fact, one gets

gµν = A(g, ψ)[(1 + 2aR̄)γµν − 6aR̄µν ] (20)

with A ≡ |det(ψµν)/g|1/2 and γµν being the inverse matrix to ψµν . From
now on we raise and lower tensor indices with the aid of gµν , e.g.

ψµν = gµαgνβψαβ and γµαψαν = δµ
ν = ψµαγαν .

Due to presence of the linear term in L, for spacetimes close to flat space
(R̄µν ≈ 0) the tensor gµν is nonsingular and has the correct signature; for
Minkowski space the transformation is the identity one (see also [11, 12]).
To invert (20) one first expresses R̄ in terms of A and the trace t ≡ gµνψµν ,
then one finds

R̄µν(ψ) = rµν(g, ψ) =
1

6aA
[(t− 3A)ψµν − ψµαψ

α
ν ]. (21)

The Helmholtz Lagrangian in ECF takes now the form

LH =
√−g

[

R(g) +K(g, ψ) +
1

12a

(

−B
A

+ 6t− 12A

)]

(22)

with B ≡ t2 − ψµνψµν . The potential contains a term linear in ψµν .
The tensor ψµν should satisfy a number of constraints to represent a

spin-2 field on the spacetime (M,gµν). When viewed as a metric field it
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satisfies Bianchi identity ∇̄νḠ
ν
µ(ψ) ≡ 0 which gives rise to 4 differential

constraints γαβ(rµα;β − 1
2rαβ;µ −Qλ

αβrµλ) = 0. Inserting here rµν from (21)
one finds after some manipulations that

1

4
tγαβψαβ;µ − ψ ;α

µα = 0 . (23)

Denoting by

Pµν(g, ψ) ≡ ∂

∂ψµν

( −2√−gV
)

the potential part of Lagrange equations one may write these equations as
Eµν = Lµν(Q)−Pµν = 0, Lµν(Q) being the universal kinetic part. Using the
explicit (and very intricate) form of Lµν one can show that Lµνψµν = 0 when
(23) holds. This in turn implies Pµνψµν = 0 and for the potential as in (22)
the latter reads Pµνψµν = Aγµνrµν = 0. In other terms one recovers in ECF
that R̄ = 0 and from (21) one finds that it is equivalent to 4A = t. Using
then a differential identity for the scalar A one can simplify the constraints
(23). The final outcome is that ψµν is subject to 5 constraints: 4A = t and
t;µ = 2ψ ;α

µα . With their aid one gets

rµν =
1

6at
(tψµν−4ψµαψ

α
ν ) and Pµν =

1

6a

[(

B

t
− 3t

4

)

γµν +
4

t
ψµν − gµν

]

.

(24)
Finally these relations allow to simplify the Lagrange equations of motion.
After a lengthy computation one arrives at

Eµν = Lµν − Pµν = γα(µ∇ν)∇α ln t

+γαβ [−1
2g

µν∇α∇β ln t+ ∇αJ
µν

β − γλσJµν
λψασ;β + (1

2g
µνγλσψαλ;σ

−γλ(µψαλ
;ν))∇β ln t] + γα(µγν)β [−1

22ψαβ + γλρ(1
2ψαλ

;σψβρ;σ

+2ψσ
[α;λ]ψσ[β;ρ])] − Pµν = 0 , (25)

where Jµν
α ≡ 2γλ(µψν)

[λ;α]. There are only 9 algebraically independent
equations since Lµνψµν = 0 = Pµνψµν identically. Complexity of the
equations, though considerable, is not hopeless. One can replace ψµν by
φµν ≡ ψµν − 1

2 tgµν . It follows from the constraints that φµν is divergence-
less, φ ;ν

µν = 0, it is not , however, traceless since gµνψµν = −t. For this field
the usual condition of vanishing trace is replaced by the constraint 4A = t
and the field has 5 degrees of freedom.
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4. Open problems

1. Explicit proof of consistency. The fourth-order Lagrange equations
for any NLG theory are consistent in the sense that their divergence vanishes
identically (as being a Bianchi identity following from the coordinate invari-
ance of the Lagrangian L). Consequently Lagrange equations (25) arising
from the Legendre transformation are consistent too. Can their consistency
be directly proven without invoking the original theory?

2. Stability of the ground state solution. The candidate ground states
for the theory are Minkowski, de Sitter and anti-de Sitter spaces [13]. Rather
little is known which of them are true vacuum states, i.e. which solutions
are stable.

3. To find simple “realistic” solutions for ψµν and gµν and study their
physical content. In particular to study their energy density.
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