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We find a class of electrically charged exact solutions for a toy model
of metric-affine gravity. Their metric is of the Plebański-Demiański type
and their nonmetricity and torsion are represented by a triplet of covectors
with dilation, shear, and spin charges.
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1. Introduction

In analyzing the structure of Minkowski space, Kopczyński & Traut-
man [1] stressed its underlying affine structure which expresses the inertial
properties of spacetime. Superimposed to it, there exists a flat metric which
allows to calculate lengths, times, and angles. It is the combination of both
structures, the affine and the metric one, which determines the unique fea-
tures of the Minkowski space of special relativity.

In special relativity the effects of gravity are neglected. Then the group
of motions of spacetime is the Poincaré group with its 4+6 parameters. This
group is the semidirect product of the translation and the Lorentz group.

The source of gravity is the mass–energy of matter. Because of the
Noether theorem, the conservation of mass–energy, in Minkowski space, is
related to the translation group. Consequently the gauging of the transla-
tions should yield gravity, as foreseen by Feynman [2], amongst others. We
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understand here gauging as a heuristic concept, as developed by Yang-Mills,
which allows to “deduce” an interaction (here gravity) from a conserved
current (here mass-energy) and its associated invariance group (here the
translation group), see O’Raifeartaigh [3].

Since the translations are an inseparable part of the Poincaré group, it is
near at hand to gauge the Poincaré group altogether; even more general, one
can set free the “frozen” affine degrees of freedom of the Minkowski space by
gauging the affine group A(4,R) = R4 ⊃× GL(4,R), the semidirect product
of the translations and the linear transformations. If we still keep a metric
superimposed to that affine gauge ansatz, then we end up at the metric–
affine gauge theory of gravity (MAG), see the reviews [4, 5] from which we
also take our conventions.

Andrzej Trautman [6, 7] was one of the first to explore the relation be-
tween the metric and the affine properties of spacetime. He restricted himself
to the use of the curvature scalar as a gravitational Lagrangian. Thus, he
could not go beyond a Riemann–Cartan spacetime with its metric compat-
ible connection, see theorem 3 on page 151 of Ref. [6]. If one allows pieces
in the gravitational Lagrangian which are quadratic in the curvature, for
instance, then such a restriction becomes unnatural and one arrives at the
full potentialities of the metric–affine gauge theory of gravity.

2. A metric–affine model theory

In metric–affine gravity, the metric gαβ , the coframe ϑα, and the con-

nection Γα
β are considered to be independent gravitational field variables.

In such a framework, one can recover general relativity by means of the
gravitational Lagrangian

VGR′ = − 1

2l2

(

Rαβ ∧ ηαβ + βQ ∧ ⋆Q
)

, (1)

where we have Rα
β as curvature 2-form belonging to the connection Γα

β,
ηαβ := ⋆(ϑα ∧ ϑβ), the Weyl covector is Q := Q γ

γ /4 with the nonmetric-
ity Qαβ := −Dgαβ , and the Hodge dual is denoted by a star ⋆. Pro-
vided the matter Lagrangian Lmat doesn’t couple to the connection, i.e.,

if δLmat/δΓ
β

α = 0, we fall back to general relativity. It is decisive for these
considerations to have a non–vanishing β in (1), see [8,9] for a corresponding
discussion.

In order to explore the potentialities of metric–affine gravity, we will
choose the simple non–trivial dilation–shear Lagrangian,

Vdil−sh = − 1

2l2

(

Rαβ ∧ ηαβ + βQ ∧ ⋆Q + γT ∧ ⋆T
)

− 1

8
α Rα

α ∧ ⋆Rβ
β , (2)
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with the dimensionless coupling constants α, β, and γ, and T := eα⌋Tα,
where Tα is the torsion of spacetime. In future we will choose units such
that l2 = 1. Observe that the last piece is of a pure post–Riemannian nature,
in fact, it is proportional to the square of Weyl’s segmental curvature which
Weyl used in the context of his unsuccessful unified field theory of 1918.
It can be alternatively written as −(α/2) dQ ∧ ⋆dQ, where Q is the Weyl
covector.

Below we will look for exact solutions of the field equations belonging to
the Lagrangian

L = Vdil−sh + VMax , with VMax = −(1/2)F ∧ ⋆F (3)

as the Lagrangian of the Maxwell field F = dA. We will only be able to find
non–trivial solutions, if the coupling constants fulfill the constraint

γ = −8

3

β

β + 6
. (4)

This is not completely satisfactory but, up to now, we cannot do better.
The search for exact solution in metric affine gravity has been pioneered by
Tresguerres [10, 11] and by Tucker and Wang [12].

3. Starting with the Plebański–Demiański

metric of general relativity

Using the Eq. (3.30) of Ref. [13], see also [14,15], the orthonormal coframe
can be expressed in terms of the coordinates (τ, q, p, σ) as follows,

ϑ0̂ =
1

H

√

Q
∆

(

dτ − p2dσ
)

,

ϑ1̂ =
1

H

√

∆

Q dq,

ϑ2̂ =
1

H

√

∆

P dp,

ϑ3̂ =
1

H

√

P
∆

(

dτ + q2dσ
)

, (5)

with the metric

g = −ϑ0̂ ⊗ ϑ0̂ + ϑ1̂ ⊗ ϑ1̂ + ϑ2̂ ⊗ ϑ2̂ + ϑ3̂ ⊗ ϑ3̂ , (6)
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or

g =
1

H2

{

−Q
∆

(dτ − p2dσ)2 +
∆

Q dq2 +
∆

P dp2 +
P
∆

(dτ + q2dσ)2
}

. (7)

The unknown functions are polynomials and read:

P :=

(

γ − g2
o − λ

6

)

+ 2n p − ε p2 + 2m p3 −
(

γ + e2
o +

λ

6

)

p4 ,

Q :=

(

γ + e2
o −

λ

6

)

− 2m q + ε q2 − 2n q3 −
(

γ − g2
o +

λ

6

)

q4 ,

∆ := p2 + q2 ,

H := 1 − p q . (8)

The electromagnetic potential A appropriate for this solution can be ex-
pressed as follows:

A =
1

∆
[(eo q + go p)dτ + (go q − eo p) p qdσ]

=
H√
∆

(

eo q√
Q

ϑ0̂ +
go p√
P

ϑ3̂

)

. (9)

4. Generating solutions in metric-affine gravity

It has been pointed out by Dereli, Tucker, et al., see [16, 17], and by
Obukhov et al., see [18], that exact solutions of metric-affine gravity can
be generated from electrovacuum solutions of general relativity if one as-
sumes, besides the coframe (5), (6), a fairly simple form for nonmetricity
and torsion, namely the so-called triplet ansatz (see [19]) patterned after
the electromagnetic potential in (9):

Q = k0

H√
∆

(

Ne q√
Q

ϑ0̂ +
Ng p√
P

ϑ3̂

)

,

T = k1
H√
∆

(

Ne q√
Q

ϑ0̂ +
Ng p√
P

ϑ3̂

)

, (10)

Λ = k2
H√
∆

(

Ne q√
Q

ϑ0̂ +
Ng p√
P

ϑ3̂

)

.

The Weyl covector Q and the torsion trace T were defined above, the Λ co-
vector represents one irreducible piece of the shear part of the nonmetricity
Λ := ϑαeβ⌋(Qαβ − Qgαβ).
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The result of Ref. [18] is even stronger: Let the starting point be a gen-
eral metric-affine Lagrangian which is quadratic in curvature, torsion, and
nonmetricity. Provided this Lagrangian possesses, like (2), only one curva-
ture square piece built up from Weyl’s segmental curvature Rα

α, then the
triplet (10) represents the general solution for the post-Riemannian pieces of
the connection. In other words, if one wants to find exact solutions encom-
passing also the other 2 + 2 irreducible pieces of nonmetricity and torsion,
respectively, then one has to enrich the Lagrangian by other curvature square
pieces.

For our Lagrangian (2), the constants in the triplet (10) read

k0 = − 24

β + 6
, k1 = − 36

β + 6
, k2 = 6 , (11)

and Ne and Ng are the quasi-electric and the quasi-magnetic dilation–shear–
spin charges, respectively. Now, in MAG, the polynomials depend also on
these quasi-charges in a fairly trivial way,

P :=
(

b − g2
o − G2

o

)

+ 2np − εp2 + 2mµp3 −
[

µ2
(

b + e2
o + E2

o

)

+
λ

3

]

p4,

Q :=
(

b + e2
o + E2

o

)

− 2mq + εq2 − 2nµq3 −
[

µ2
(

b − g2
o − G2

o

)

+
λ

3

]

q4,

∆ := p2 + q2,

H := 1 − µ p q , (12)

where we introduced b := γ − λ/6. We slightly generalized the solution by
means of the parameter µ, which can take the values −1, 0,+1. The post-
Riemannian charges Ne and Ng are related to the post-Riemannian pieces
Eo and Go, entering the polynomials, according to

Eo = k0

√

α

2
Ne , Go = k0

√

α

2
Ng , with α > 0 . (13)

The solution (5), (6), (10) to (13) has been thoroughly checked with the
help of our computer algebra programs written in Reduce for the exterior
calculus package Excalc, see [20]. This solution seems to exhaust all the
possibilities one has with the Plebański-Demiański metric and the triplet
ansatz.

Finally, we would like to link up our new solution with the more special
cases known from the literature [19, 21–23].
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5. Reduction to a solution with mass, angular momentum,

electric charge and quasi-electric post-Riemannian triplet

In order to recover known solutions, we change to more familiar coordi-
nates, namely to the Boyer-Lindquist coordinates of the Kerr solution:

(τ, q, p, σ) −→ (t, y, x, φ) −→ (t, r, θ, φ) . (14)

More exactly, we have

τ = jo(t − joφ) ,

σ = −j2
o φ ,

q =
y

jo

=
r

jo

,

p = x = − cos θ . (15)

By means of these transformations, the coframe (5) has the same form as
that of the Vtoh-solution of Ref. [21], Eq. (3.1). In fact, we can identify the
coframes, provided we have

1

H

√

Qj2
o

∆
≡

√

∆Vtoh

ΣVtoh

,
1

H

√

P
∆

≡

√

fVtoh sin2 θ

ΣVtoh

. (16)

These identities can be fulfilled by the ansatz

H = 1 , ∆j2
o = ΣVtoh , Qj4

o = ∆Vtoh , Pj2
o = fVtoh sin2 θ . (17)

Therefore we have first to kill the µ–parameter: µ = 0. Furthermore, the
magnetic and the quasi–magnetic charges and the NUT–parameter have to
vanish:

go = 0 , Go = 0 , Ng = 0 , n = 0 . (18)

A modification of ε = 1 − λj2
o/3 is also necessary.

Then, by a suitable redefinition of the constants, the electromagnetic
potential reduces to (cf. [24])

A =
eo r

r2 + j2
o cos2θ

(

dt − jo sin2θdφ
)

, (19)

and the Vtoh-functions (for a0 = 1 and z4 = α) turn out to be:

∆Vtoh = r2 + j2
o − 2Mr − λ

3
r2

(

r2 + j2
o

)

+ α
(k0Ne)

2

2
+ e2

o ,

ΣVtoh = r2 + j2
o cos2θ ,

fVtoh = 1 +
λ

3
j2
o cos2θ . (20)



Gauge Theory of Gravity: Electrically Charged Solutions... 1119

Note that we kept the electric charge eo. Correspondingly, we found the
charged version of the Vtoh-solution. Putting eo = 0, we finally recover
the Vtoh-solution of [21]: It carries only mass, angular momentum, and
the quasi–electric dilation–shear–spin charge Ne. Our solution of Sec.4 has,
additionally, the NUT–parameter, electric and magnetic charges, the accel-
eration parameter, and the quasi–magnetic dilation–shear–spin charge.
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