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We point out that in the gauge approach to gravity it is not always
possible to reduce translation invariance to diffeomorphism invariance. It
is argued that a proper generator of translations on the spacetime manifold
is given by a gauge covariant Lie derivative. A reduction to diffeomor-
phism invariance is obtained if the gauging of the translation group does
not involve homogeneous frame transformations. Possible consequences are
shortly discussed.

PACS numbers: 04.20. Cv, 11.15. –q

1. Introduction

In this note we focus on the traditional gauge approach to gravity. This
approach is the basis of any gauge approach to gravity. From our point
of view, a “traditional” gauge approach to gravity includes the following
features:

1. The four dimensional spacetime–manifold constitutes the base mani-
fold of the gauge theory.

2. The translation group is gauged in some way in order to link the
energy–momentum tensor of matter to the Riemannian geometry of
spacetime.

3. The gauge symmetry might include homogeneous, linear frame trans-
formations (Lorentz–transformations or, as the most general case, gen-
eral linear transformations, e.g. ).

∗ Presented at the Workshop on Gauge Theories of Gravitation, Jadwisin, Poland,

September 4–10, 1997.

(1121)



1122 F. Gronwald

This setting developed from the pioneering works of Utiyama [21], Sciama
[17, 18], and Kibble [10]; a concise historical summary of this development
can be found in [15], for a modern review see [7]. The underlying mathe-
matical structure, in particular in regard to the Einstein-Cartan theory, was
analyzed by Trautman [19]. His analysis was based on the ideas of Cartan [1]
but formulated in a more modern differential geometric framework [13].

Usually, traditions appear in various adaptations and modifications. The
same is, unfortunately, also true for the gauging of the translation group.
This is because the usual geometric framework of a gauge theory, as clearly
described in the book of Trautman [20], cannot be straightforwardly ap-
plied to the translation group. This circumstance is sketched in Fig.1: A
fiber bundle with spacetime as base manifold M carries the gauge freedom
within its fibers. This picture is particularly clear if one concentrates on an
associated vector bundle which contains the reference frames that are used
to accomodate physical fields or to describe the geometry of the spacetime
manifold itself. Then the vector bundle is associated to a principal bundle
with the gauge group as structure group. It follows that the gauge group is
represented by its action on the reference frames. A corresponding mapping
from one set of reference frames to another is called a gauge transformation.
As a consequence of this definition, gauge transformations act vertically, i.e.,
they leave the base point of a particular reference frame invariant. It is thus
not obvious how to interpret a translation as a vertical gauge transformation
since, from its very definition, a translation does not leave the base points
on the spacetime manifold invariant. This is the reason why it is difficult to
gauge the translation group.

fiber F

gauge 
transformation

reference
frame

??

base point of F

projection π

base manifold Μ 

translation

Fig. 1. The usual picture of a gauge theory is outlined on the left side of the figure.
It is not obvious how to interpret a translation as a gauge transformation since, a
priori, translations are no vertical transformations in some fiber but are defined on
the base manifold.
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2. Translations, diffeomorphisms, and frame transformations

There are two obvious ways to tackle the difficulty of gauging the trans-
lation group:

1. One can adopt a passive point of view and interpret the translations as
coordinate transformations. This is feasible since it is always possible
to compensate an active translation of base points by such a passive
diffeomorphism. One might wonder why in this case a gauging makes
sense since a Lagrangian, if written in exterior forms, is trivially invari-
ant under passive diffeomorphisms. However, in exterior form language
a corresponding Yang-Mills type gauge scheme of diffeomorphisms in
their passive interpretation was proposed by Wallner [22].

2. The translations can be interpreted as active but internal translations
within the fibers. A gauging of the translations is then immediate. Af-

ter the gauging one then has to convert the active, internal translations
to external translations, i.e. diffeomorphisms. The corresponding pro-
cedure is commonly called soldering procedure, (see below).

Therefore, with both approaches we have reduced translation invariance to
diffeomorphism invariance - and this is why the group of diffeomorphisms is
often referred to as the gauge group of gravity.

We now ask what happens if the gauge symmetry additionally includes
homogeneous, linear frame transformations, generated by a group H, like
Lorentz–transformations (H = SO(1, 3)) or general linear transformations
(H = GL). In both approaches it is possible to gauge these active frame
transformations independently of the translations T 4 in complete analogy
to a conventional Yang–Mills theory. This leaves the gauge procedure 1. or
2. for the translations untouched.

From a physical point of view it is more plausible to include the frame
transformations by means of a semidirect product T 4 ⊂× H, i.e., to directly
gauge, for example, the Poincaré group (H = SO(1, 3)) or the more general
affine group (H = GL(4, R)). In this case it is not clear how to generalize
the gauge procedure 1. since the frame transformations are not regarded as
passive ones. However, it is immediate to generalize the gauge procedure 2.
in this respect, and this is what we will focus on in the following.

3. Lie derivatives

Since we want to talk about diffeomorphism invariance on the spacetime
manifold we have to know how to actually measure the effect of a diffeomor-
phism on physical fields. A passive diffeomorphism of a geometric object O,
with the diffeomorphism defined by a vector flow, “pointing” from a point p
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with coordinates x to a point p + dp with coordinates x̃, means taking the
value of O at p in the dragged coordinate system x̃ of p + dp. This is op-
posed to an active diffeomorphism, where the value of the actively dragged
O is taken at p + dp in the coordinate system x̃. Both (passive) dragging
of the coordinate system x̃ to O or (active) dragging of O to the coordinate
system x̃, with subsequent comparison to the original value of O at p or
p + dp, respectively, can be uniquely described by a limiting process which
leads to the definition of a Lie derivative [2,16]. The Lie derivative describes
the change of a geometric object along the flow of a vector field.

Since physical fields can be described as exterior forms with values in
some vector space it is convenient to have a corresponding operator for the
Lie derivative at hand. We first introduce the anticommutator between the
interior product ⌋ and the exterior derivative,

ℓv... := v⌋d... + d(v⌋...) , (1)

with some vector field v. For scalar valued p-forms Ψ this operator coincides
with the Lie derivative, i.e.,

LvΨ := v⌋dΨ + d(v⌋Ψ) (2)

yields the value of the Lie derivative of Ψ with respect to v.
Next we consider tensor-valued p-forms Φα...

β... where the indices α, β

refer to some vector basis eα (or the corresponding cobasis ϑα). In this case
the operator for the Lie derivative turns out to be

LvΦα...
β... = ℓvΦα...

β... +Φµ...
β...(eα⌋ℓvϑ

µ)+ ...−Φα...
µ...(eµ⌋ℓvϑ

β)− ... . (3)

In the case of orthonormal bases an analogous formula is valid for spinor-
valued forms [8]. The Lie derivative of other geometric objects, like bases
or connections, can be calculated from the defining limiting process. A
collection of useful formulas involving different operators of the Lie derivative
can be found in [6].

The expression (3) is not covariant under a change of frames. That
is, if gauge transformations involve homogeneous frame transformations the
operator for the Lie derivative is in general not gauge covariant. Therefore,
from a physical point of view, it is useful to add to the concept of a Lie
derivative the notion of a gauge covariant Lie derivative. This is similar
to the introduction of a gauge covariant derivative in addition to the usual
derivative. To this end we first introduce the anticommutator between the
interior product and the gauge covariant exterior derivative DΓ ,

Łv... := v⌋DΓ ... + DΓ (v⌋...) . (4)
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Then the gauge covariant Lie derivative of a tensor-valued p-form Φα...
β... is

defined as
ŁvΦα...

β... := v⌋DΓ Φα...
β... + DΓ (v⌋Φα...

β...) , (5)

with an analogous formula for spinor-valued p-forms.

4. Soldering procedure

The gauging of internal translations in a Yang-Mills like mode introduces
a translational gauge potential Γ (T ), but this is not sufficient to reproduce
gravity. Additionally, a soldering procedure is required which induces an
identification of internal translations and diffeomorphisms on the base man-
ifold. Only after the soldering the translational gauge potential is coupled
to the energy-momentum tensor. For the fairly general framework of metric-
affine gravity [7], which is based on a gauging of the n-dimensional affine
group A(n,R) = T n ⊂× GL(n,R), a down-to-earth introduction into the
gauge and soldering process was given in [4]. We shortly repeat the essential
steps to see how the notion of gauge covariant translations emerges.

The gauging of the affine group presupposes that the corresponding
fibers, compare Fig.1, are represented by affine tangent spaces. Within any
fiber a gauge transformation is an affine transformation which relates two
affine frames. An affine frame is a pair (ei, p) consisting of a linear frame
ei and a point p. The gauging itself is accomplished by the introduction
of a GL(n,R)-valued linear connection Γ (L) and a Rn-valued translational
connection Γ (T ). Both Γ (L) and Γ (T ) form a so called generalized affine

connection which establishes parallelism of affine frames of different fibers.
This is all what the gauging of the affine group is about.

The subsequent soldering process is more complicated. The essential
idea is to identify in each fiber one point p with the corresponding base
point x ∈ M . This is also called the zeroth order approximation of the
base manifold by affine tangent spaces. Due to the presence of a generalized
affine connection it is then possible to identify, to first order points, of affine
tangent spaces with points of the base manifold. This identification is made
precise by Cartan’s development [13], i.e. the development of a curve on
the manifold to a curve in an affine tangent space. It follows that a vector
flow induces both an internal translation within the affine tangent spaces
(the fibers) and an external translation (diffeomorphism) on the manifold.
This makes it possible to identify an internal translation with an external
diffeomorphism. It is important to note that this identification presupposes
a proper gauging of the affine group.

There is a nice illustration of the interplay between internal and exter-
nal translations: Suppose that we already performed the gauging and the
soldering. Now we conduct an infinitesimal internal translation ε and focus
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on a particular fiber, i.e., a particular affine tangent space AxM . Within
this affine tangent space the origin ox gets shifted by an amount ε and is
no longer the origin of the affine tangent space AxM . However, due to the
presence of the generalized affine connection, this former origin can be iden-
tified with a point of another affine tangent space Ax+εM which became an
origin ox+ε after the infinitesimal translation. Now we turn to the external
diffeomorphism which corresponds to the internal translation ε: If addition-
ally performed it corrects the coordinates on the manifold in a way such that
the point with coordinates x + ε becomes the point with coordinates x. It
follows that the former origin ox (before the combined internal and external
translation) again becomes an origin ox (after the combined internal and
external translation). This really is as much translational invariance as we
can expect!

In view of a physical theory it is clearly not enough to discuss the invari-
ance of points. The building of a translational invariant theory requires the
introduction of a coframe ϑα which automatically embodies translational
invariance. If expressed with respect to this tetrad, physical fields are au-
tomatically translation invariant. In metric-affine gravity the construction
of the tetrad goes along the following line [4]: One first considers an in-
finitesimal affine transformation, acting on affine frames (ei, p) within the
fibers,

δei = εi
jej , δp = εiei . (6)

Under such a transformation the generalized affine connection transforms
according to

δΓ (T )i = −εj
iΓ (T )j − DΓ εi , (7)

δΓ
(L)j
i = −DΓ εi

j . (8)

The desired GL(n,R)-covariant transformation behavior of ϑα reads

δϑα = −εβ
αϑβ . (9)

It can be achieved by the coupling (we use the Kronecker symbol δα
i to

carefully shift from holonomic to anholonomic coordinates)

ϑα := δα
i (dxi + Γ (T )i) (10)

if the holonomic frame dxi transforms as

δdxi = DΓ
jε

idxj − εj
idxi (11)

= Łεdxi − εj
idxj . (12)
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Therefore the construction of ϑα is connected with a gauge covariant trans-
lation of dxi. This is due to the presence of the gauge covariant exterior
derivative in (7). More general: A transition from the holonomic coframe
dxi to the locally translation invariant and anholonomic coframe ϑα requires
a transition from internal translations in the fibers to gauge covariant trans-
lations on M .

5. Consequences

Gauge covariant translations do not show up in General Relativity (GR).
This is a trivial fact since in this case there is no linear connection present
which is independent of the Riemannian geometry of spacetime: GR can be
deduced from a mere gauging of the translation group and thus only requires
a translational potential which determines an orthonormal coframe. This is
also the reason why in GR we cannot accomodate vector or spinor fields but
only spinless matter.

Classically, in a general metric-affine gravity model (with independent
linear connection) the difference between gauge covariant translations and
ordinary diffeomorphisms does neither affect the specific form of a specific
Lagrangian nor influence the field equations. However, a difference shows up
in the corresponding Noether identities: Invariance under gauge covariant
translations yields a gauge covariant Noether identity [11,12], in contrast to
the ordinary case.

In view of quantum aspects one is mainly interested in the gauge algebra
of a theory [3, 9]. The gauge algebra is given by the commutators of the
generators of the Noether identity. Thus, in metric affine gravity, one is
interested in the commutator of two translations generated by Łε1

,Łε2
, the

commutator of a translation Łε1
and a general linear transformation δε2α

β ,
and the commutator of two general linear transformations δε1α

β , δε2γ
δ . This

yields the commutation relations

[Łε1
,Łε2

] = Ł[ε1,ε2] + δ(ε2⌋(ε1⌋dΓα
β)+(ε1⌋Γγ

β)(ε2⌋Γα
γ)−(ε2⌋Γγ

β)(ε1⌋Γα
γ))

= Ł[ε1,ε2] + δ(ε2⌋(ε1⌋Rα
β)) , (13)

[Łε1
, δε2α

β ] = δε1⌋(DΓ ε2α
β) , (14)

[δε1α
β , δε2γ

δ ] = δε1δ
ρε2λ

δ−ε2γ
ρε1λ

γ , (15)

This gauge algebra is still irreducible and closed, but exhibits field-dependent
structure functions. The commutator (13), which generalizes the infinite
Ogievetsky algebra, is analogous to that of two “anholonomized coordinate
transformations” [14,15] which also play an important part in supergravity.

A general covariant quantization scheme is the BRST-antifield formal-
ism [3]. It can be straightforwardly applied to metric-affine gravity with
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gauge algebra (13)–(15) [5]. The result is that due to the use of the gauge
covariant Lie derivative complicated couplings to the linear connection occur
which make any attempt to quantization very difficult. This might be the
reason why the use of gauge covariant translations, though desirable from a
geometric point of view, is not really common.

The author is indebted for the kind invitation to the workshop on Gauge

Theories of Gravitation. He would like to thank the organizers for the pleas-
ant and highly stimulating atmosphere during this meeting.
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