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We consider the classical theory of the Dirac massive particle in the
Riemann-Cartan spacetime. We demonstrate that the translational and
the Lorentz gravitational moments, obtained by means of the Gordon type
decompositions of the canonical energy-momentum and spin currents, are
consistently coupled to torsion and curvature, as expected.
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1. Introduction

Riemann–Cartan geometry arises naturally in the gauge theory of the
Poincaré group, see e.g. [1, 2]. One can interpret spacetime coframe ϑα and
local Lorentz connection Γα

β as the gravitational potentials related to the
translation group and the Lorentz group, respectively. The two-forms of
torsion and curvature, Tα := dϑα + Γβ

α ∧ ϑβ, Rα
β := dΓα

β + Γγ
β ∧ Γα

γ ,
represent the corresponding gauge field strengths. Besides, the Riemann-
Cartan spacetime carries a metric gαβ which is covariantly constant: Dgαβ =
0. Usually one chooses gαβ = oαβ , the flat Minkowski metric, thus restricting
oneself to orthonormal frames and coframes.

General dynamical scheme of the Poincaré gauge theory is well estab-
lished. The Noether currents of matter fields, Σα (the canonical energy-
momentum three-form) and ταβ (the canonical spin three-form), are coupled

to the translational ϑα and the Lorentz Γ αβ gauge potentials, respectively.
These currents are thus representing the two types of gravitational charges

of a matter source.
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Recently, the Dirac electron theory has been analyzed in flat Minkowski

spacetime [3], and the structure of the canonical energy-momentum and spin
currents was studied in detail. It was shown, developing analogy with elec-
trodynamics, that a Dirac particle is naturally characterized by two gravi-
tational moments. In simple physical terms, one can describe them as the
Ampére type ring currents induced by the two gravitational charges via
spin of a particle. Here we consider the Dirac theory with the gravitational
field “switched on”. We demonstrate the consistency of the coupling of the
gravitational moments to the torsion and curvature.

It is worthwhile to mention that gravitational moments of a Dirac par-
ticle were discussed also by Kobzarev and Okun [4] and Khriplovich [5] in
the framework of Einstein’s general relativity theory, whereas in [6, 7] grav-
itational moments of higher spins and in lower dimensions were studied.

In this paper, we are using the basic conventions and notations of
Bjorken and Drell. In particular, the constant Minkowski metric is oαβ =
diag(+1,−1,−1,−1), and we choose the Dirac matrices γα in the standard
form of [10]. In the exterior algebra on a spacetime, ∧, ⌋ are exterior and
interior products, respectively, ∗ is the Hodge star operator. Local orthonor-

mal frame eα is dual to a coframe ϑα one-form: eα⌋ϑ
β = δ

β
α. Finally, starting

from the volume one-form η := ∗1, one defines Trautman’s η-basis as usual
by ηα := eα⌋η = ∗ϑα, ηαβ := eβ⌋ηα = ∗(ϑα ∧ ϑβ) etc.

2. Fermions in the Riemann–Cartan spacetime

For the description of classical Dirac particle of mass m, we will use
the formalism of Clifford algebra–valued exterior forms [1]. The following
matrix-valued one- or three-forms are basic objects in this approach:

γ := γα ϑα , ∗γ = γα ηα . (1)

Exterior product yields a two-form:

σ̂ :=
i

2
γ ∧ γ =

1

2
σ̂αβ ϑα ∧ ϑβ. (2)

The coefficients σ̂αβ := iγ[αγβ] generate infinitesimal Lorentz transforma-

tions of spinor fields. Defining another constant matrix, γ5 := −i γ0̂γ1̂γ2̂γ3̂,
it is straightforward to prove the fundamental identities for the Clifford
algebra-valued objects:

σ̂αβ
∗σ̂ = ηαβ − i γ5 ϑα ∧ ϑβ − 2i ϑ[α ∧ eβ]⌋

∗σ̂, (3)
∗σ̂ σ̂αβ = ηαβ − i γ5 ϑα ∧ ϑβ + 2i ϑ[α ∧ eβ]⌋

∗σ̂. (4)
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The Lagrangian four-form of a Dirac field Ψ is given by

LD =
i

2
~

{
Ψ ∗γ ∧ DΨ + DΨ ∧ ∗γ Ψ

}
+ ∗mcΨΨ . (5)

Dirac fields are local sections of the spinor SO(1, 3)-bundle associated with
the principal bundle of orthonormal frames. Hence, the spinor covariant
derivative in the Riemann-Cartan spacetime is defined by

DΨ := dΨ +
i

4
Γαβ ∧ σ̂αβ Ψ, DΨ = dΨ −

i

4
Γαβ ∧ Ψσ̂αβ . (6)

The Dirac field equation, which arises from the Lagrangian (5), reads

i~∗γ ∧ (D Ψ − 1

2
T Ψ) + ∗mcΨ = 0, (7)

i~
(
DΨ − 1

2
T Ψ

)
∧ ∗γ + ∗mcΨ = 0 , (8)

where T := eα⌋T
α is the torsion trace one-form.

The standard Lagrange–Noether machinery in the gauge gravity, see e.g.

[2], provides a general definition of the energy-momentum and spin currents
in non-flat spacetime (accounting also for the possibility of non-minimal
coupling and “Pauli-type” terms):

Σα := eα⌋L − (eα⌋DΨA) ∧
∂L

∂DΨA
− (eα⌋Ψ

A) ∧
∂L

∂ΨA

+D
∂L

∂Tα
− (eα⌋T

β) ∧
∂L

∂T β
− (eα⌋Rβ

γ) ∧
∂L

∂Rβ
γ
, (9)

ταβ := (ℓαβ
A
B ΨB) ∧

∂L

∂DΨA
+ ϑ[α ∧

∂L

∂T β]
+ D

∂L

∂Rαβ
. (10)

Here ΨA is a set of arbitrary matter fields, with ℓαβ denoting the correspond-
ing Lorentz group generators.

The first and second Noether theorems yield two covariant conservation
laws which are fullfilled on the classical matter field equations:

DΣα = 0, (11)

Dταβ + ϑ[α ∧ Σβ] = 0. (12)

In case of the Dirac theory under consideration, matter is described
by the pair of independent four-spinors ΨA = {Ψ, Ψ}, and the canonical
gravitational currents are straightforwardly obtained after substituting (5)
into (9)-(10) [hereafter Dα := eα⌋D]:

Σα =
i~

2

(
Ψ∗γDαΨ − DαΨ∗γΨ

)
, (13)

ταβ =
~

4
ϑα ∧ ϑβ ∧ Ψγγ5Ψ. (14)
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3. Gravitational moments of a Dirac particle

In a theory invariant with respect to some internal gauge group G, the
generalized moment is a G-valued two-form such that its exterior differential
produces the polarizational part of the related Noether current, with G de-
noting the Lie algebra of G. On the Lagrangian level, the moment couples
directly to the gauge field strength. To be specific, in the Dirac–Yang-Mills
theory the Noether “isospin” current J

K
= −ieΨτ

K
Ψ couples to the gauge

potential one-form AK , with e denoting the coupling constant, and τ
K

be-
ing generators of the gauge group. The Gordon decomposition [3] reveals
a nontrivial substructure of this coupling by relating the polarization mo-
ment two-form P

K
= −i e~

2mc
Ψτ

K

∗σ̂Ψ directly to the gauge field strength F K .
One may expect similar results to hold when passing from internal symme-
try groups to spacetime symmetries. Geometrically this means a departure
from flat Minkowski spacetime by “switching on” gravity.

Technically, we can proceed along the same lines as for the Dirac–Yang-
Mills theory [3]. We use (7)-(8) in order to express Ψ and Ψ in terms of
the differentials, and then substitute them back into the Dirac equation and
into the Noether currents (13)-(14). After some algebra, we find the squared
Dirac equation in the form

(D ∗D + 2S ∧ D + X)Ψ = 0, (15)

where the three-form S and the four-form X read, respectively,

S := −
i

2
(D∗σ̂ + T ∧ ∗σ̂), (16)

X := ∗

(mc

~

)2
+

1

4
∗σ̂ ∧ Rαβ σ̂αβ

+
1

2

(
− d ∗T + i ∗σ̂ ∧ dT −

1

2
T ∧ ∗T + i (D∗σ̂) ∧ T

)
. (17)

Here we have used the Ricci identity for the spinor covariant derivative (6):

DDΨ =
i

4
Rαβ σ̂αβΨ. (18)

One can immediately verify that equation (15) can be derived from the
Lagrange four-form

LD2 = L(c) + L(p), (19)

where the convective Lagrangian and the polarizational Lagrangian read,
respectively:

L(c) :=
1

2

(
~

2

mc
∗DΨ ∧ DΨ + ∗mcΨ Ψ

)
, (20)
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L(p) = Mαβ ∧ Rαβ + Mα ∧ Tα −
~

2

8mc
T ∧ ∗T Ψ Ψ. (21)

Here Mαβ is the Lorentz gravitational moment given by

Mαβ :=
~

2

16mc
Ψ(∗σ̂σ̂αβ + σ̂αβ

∗σ̂)Ψ, (22)

and

Mα :=
~

2

4mc

[
i Ψ ∗σ̂DαΨ − iDαΨ∗σ̂ Ψ − (eα⌋

∗DΨ)Ψ − Ψ(eα⌋
∗DΨ)

]
. (23)

We are now in a position to find the decosmposition of the energy-
momentum and spin currents into the convective and polarization parts
corresponding to the decomposition of the Lagrangian (19),

Σα = Σ(c)
α + Σ(p)

α , (24)

ταβ = τ
(c)
αβ + τ

(p)
αβ . (25)

A straightforward use of the convective Lagrangian (20) in (9) and (10) yields
the the three-forms

Σ(c)
α :=

mc

2
ΨΨ ηα +

~
2

4mc

[
∗(DΨ)DαΨ + DαΨ∗DΨ

+(eα⌋
∗DΨ) ∧ DΨ + DΨ ∧ (eα⌋

∗DΨ)
]
, (26)

τ
(c)
αβ = −

i~2

8mc

(
∗DΨσ̂αβΨ − Ψσ̂αβ

∗DΨ
)
. (27)

For the polarizational part, we need the derivatives with respect to curvature
and torsion:

∂L(p)

∂Rαβ
= Mαβ, (28)

∂L(p)

∂Tα
= Mα +

~
2

4mc
(eα⌋

∗T )Ψ Ψ =: M̌α. (29)

Here we recover the correct translational grativational moment [3]

M̌α = −
i~2

4mc
[Ψ (eα⌋

∗ σ̂) ∧ DΨ + DΨ ∧ (eα⌋
∗ σ̂)Ψ ]. (30)

In (29) we used the Riemann-Cartan the identity which holds for all spinor
fields satisfying the Dirac equation:

i
(
Ψ ∗σ̂ ∧ DΨ − DΨ ∧ ∗σ̂Ψ

)
= ∗D(ΨΨ) − ∗T ΨΨ. (31)
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Substituting (28),(29) into (9),(10), we finally obtain the polarizational
energy-momentum and spin currents of a Dirac particle in the Riemann-
Cartan spacetime:

Σ(p)
α = D M̌α + Σ(RC)

α , (32)

τ
(p)
αβ = ϑ[α ∧ M̌β] + D Mαβ + τ

(RC)
αβ . (33)

The terms Σ
(RC)
α and τ

(RC)
αβ contain curvature and torsion explicitly; these

contributions are absent in flat Minkowski spacetime. For completeness, we
give their explicit form:

Σ(RC)
α = (eα⌋Mρσ) ∧ Rρσ − M̌α ∧ T + (eα⌋M̌β − eβ⌋M̌α) ∧ T β

−(eα⌋eβ⌋U) ∧ T β + (eα⌋U) ∧ T + (eα⌋
∗U) ∧ ∗T

−
~

2

8mc
[(eα⌋T ) ∗T + T ∧ eα⌋

∗T ] ΨΨ, (34)

τ
(RC)
αβ = −eγ⌋(Mαβ ∧ T γ). (35)

As was noticed in [3], the three-form

U =
1

2
ϑα ∧ M̌α = −

i~2

4mc

(
Ψ ∗σ̂ ∧ DΨ − DΨ ∧ ∗σ̂Ψ

)
(36)

plays a role of a “superpotential” from which all the moments of a Dirac par-
ticle are generated. For comparison, it is instructive to collect the properties
of the moments in a Table I.

TABLE I
Gauge couplings and moments of the Dirac particle

Gauge model Generator Field Moment 2-form Dim

Maxwell U(1) i F e~

2mc
Ψ∗σ̂Ψ [e]

Yang-Mills SU(N) τ
K

F K −i e~

2mc
Ψτ

K

∗σ̂Ψ [e]

−i ~
2

4mc
{Ψ(eα⌋

∗σ̂) ∧ DΨ
T4 Dα T α [mc]

Poincaré +DΨ ∧ (eα⌋
∗σ̂)Ψ}

gravity

SO(1, 3) i
4
σ̂αβ Rαβ ~

2

16mc
Ψ(∗σ̂σ̂αβ + σ̂αβ

∗σ̂)Ψ [~]
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4. Discussion and conclusion

In this paper, we have generalized our previous discussion [3] of the
gravitational moments to the case of the Riemann-Cartan spacetime.

Although the structure of the torsion- and curvature-dependent terms
(34) and (35) is not physically transparent, it is remarkable that the gravi-
tational moments M̌α and Mαβ are the same for a Minkowski and a Riemann-
Cartan spacetime. Moreover, the specific coupling moment×gauge field

strength on the Lagrangian level is correctly reproduced in the Poincaré
gauge–Dirac theory, see (21).

The results obtained are helpful for deepening our understanding of the
classical limit of the Dirac theory. A relevant general discussion of the low-
energy limit can be found in [8] (for non-inertial frames in flat spacetime),
and in [9] (for the Riemann-Cartan spacetime).

The present study clearly demonstrates the complete consistency of the
properties of two gravitational moments with the fundamental structure of
the Poincaré gauge gravity which naturally operates with the two types of
gravitational charge, mass and spin. At the same time, the definition and
properties of a gravitational moment in a purely Riemannian spacetime of
Einstein’s general relativity (GR) remain unclear. A somewhat paradoxical
situation arises: only a translational gravitational charge (mass, or energy-
momentum) is available in GR, but evidently only a Lorentz gravitational
moment can survive for the case of the vanishing torsion [recall that a mo-
ment is “conjugated” to a corresponding gauge field strength, cf. (28)-(29)].
This problem will be analyzed elsewhere.

This work was supported by Deutsche Forschungsgemeinschaft (Bonn)
under project He 528/17-2.
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