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The relatively simple Fibre-Bundle geometry of a Yang–Mills gauge theory
— mainly the clear distinction between base and fibre — made it possible, be-
tween 1953 and 1971, to construct a fully quantized version and prove that the-
ory’s renormalizability; moreover, nonperturbative (topological) solutions were
subsequently found in both the fully symmetric and the spontaneously broken
modes (instantons, monopoles). Though originally constructed as a model for-
malism, it became in 1974 the mathematical mold holding the entire Standard
Model (i.e. QCD and the Electroweak theory). On the other hand, between
1974 and 1984, Einstein’s theory was shown to be perturbatively nonrenormal-
izable. Since 1974, the search for Quantum Gravity has therefore provided the
main motivation for the construction of Gauge Theories of Gravity. Earlier,
however, in 1958-76 several such attempts were initiated, for aesthetic or heuris-
tic reasons, to provide a better understanding of the algebraic structure of GR.
A third motivation has come from the interest in Unification, making it neces-
sary to bring GR into a form compatible with an enlargement of the Standard
Model. Models can be classified according to the relevant structure group in the
fibre. Within the Poincaré group, this has been either the R4 translations, or
the Lorentz group SL(2, C) — or the entire Poincaré SL(2, C) × R4. Enlarg-
ing the group has involved the use of the Conformal SU(2, 2), the special Affine

SA(4, R) = SL(4, R)×R4 or Affine A(4, R) groups. Supergroups have included su-
persymmetry, i.e. the graded-Poincaré group (n = 1 . . . 8 in its extensions) or the
superconformal SU(2, 2/n). These supergravity theories have exploited the lessons
of the aesthetic-heuristic models — Einstein–Cartan etc. — and also achieved the
Unification target. Although perturbative renormalizability has been achieved in
some models, whether they satisfy unitarity is not known. The nonperturbative
Ashtekar program has exploited the understanding of instantons and self-dual
solutions in QCD, in the complexification and in the selection of new variables.
Note that supergravity involves Lie Derivatives as supertranlations, and several
models have treated local spacetime translations similarly. The reduction of the
larger groups, down to Poincaré, has involved spontaneous fibration and spon-
taneous symmetry breakdown. In this context, noncommutative geometry may
allow for further geometrization.
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1. Historical background

This article constituted the opening “introductory” lecture at a work-
shop held in Jadwisin in September 1997 and honoring the 64th birthday of
our distinguished colleague and friend, Andrzej Trautman. I noted in my
lecture that 64 is 100 in numerical base 8, and that the choice of that base,
motivated by Trautman’s characterization of The Spinorial Chessboard (a
spacetime feature) happened to resonate in my case, even though my eight-
fold way counted internal degrees of freedom. In some ways this similarity
yet difference, this dichotomy, is also reflected in this title and in the subject
matter of this meeting — the ’authentic’ gauge theories having their gauge
group acting on internal degrees of freedom, whereas in the case of gravity,
the group acts on spacetime.

The first gauge field theory was introduced — in an attempt to merge
Electrodynamics with General Relativity — by Hermann Weyl in 1919 (gauge
group R1, for scale [1], a noncompact spacetime feature), then withdrawn
and reformulated in 1929 with the compact gauge group U(1) acting on the
complex phase of the electron wave-function [2] (the model for all future
internal degrees of freesom), after F. London had identified that feature. It
played an important role in the construction of QED and particularly (in
the form of the derived Ward–Takahashi identities) in the renormalization
procedure. Note that Emmy Noether had meanwhile also published her two
theorems, establishing the algebraic linkage between the gauge group and
the conserved current in the first — and the actual coupling of the gauge po-
tential to this current in the second. In 1953, Yang and Mills [3] generalized
the gauge mechanism to SU(2), and thereby to any compact non-Abelian
gauge group.

In this case — as in many others — physics and geometry developed
(independently) along related lines and the physical gauge theory paralleled
the emergence of fiber bundles as geometrical constructs, a fact which was
only realized in the Sixties — Andrzej being one of the pioneers who made
the connection. Weyl was both mathematician and physicist and it is not
surprising that his gospel spanned both disciplines: Cartan, Chern, Eck-
mann, Ehresmann, Hirsch, Hopf, Lichnerowicz, Pontrjagin, Steenrod, Whit-
ney, W.T. Wu are some of the names on the mathematical side. Physics
has fully repaid that debt, first in 1984 when Sam Donaldson and Michael
Friedman used the exact solutions of physical gauge theories to make serious
advances in the classification of 4-manifolds, and again in 1994 when Nathan
Seiberg and Edward Witten’s solutions for supersymmetruc gauge theories
were applied to the mathematical program.
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It was only in the Sixties that some particle physicists — E. Lubkin,
L. Susskind and others became aware of the mathematicians’ efforts and
results. Yang himself, with T.T. Wu, explored the relationship and wrote a
“dictionary”: gauge theory = fiber bundle, gauge group = fiber group, field
potential = connection, field strength = curvature, etc. [4]. To any stu-
dent interested in learning about fiber bundles and yet preserve a physicist’s
view, I particularly recommend Yang’s contribution to the 1977 Marshak
Festschrift “Fifty Years of Weak Interactions” [5].

In physics, though the Yang–Mills theory was originally a physical model
with no direct application, by 1975 it had become the mold for the entire
Standard Model — the gauge theory of SU(3)color for Quantum Chromo-
dynamics (the “Strong Interactions”) and the spontaneously broken gauge
theory of SU(2) × U(1) for the Electroweak interactions. This was the con-
sequence of a successful renormalization program, started by Feynman in
1958 [6], continued by B. DeWitt, A.A. Slavnov, J.C. Taylor, L.D. Faddeev
and V.N. Popov, B.W. Lee and J. Zinn–Justin and others, completed by
’t Hooft in 1971 [7], with added final touches by Becchi, Rouet and Stora
(“BRS”) [8]. Thierry–Mieg [9] provided in 1979-80 an elegant geometrical in-
terpretation to the unitarity-guaranteeing BRS construction. Note that the
reason Feynman started this program was the difficulty he was experiencing
in his attempt to quantize and renormalize General Relativity. Feynman
took up the Yang–Mills model as an easier pilot program for gravity... We
see that Gauge theories and General Relativity were very close from the
start and throughout their evolution.

The progression from Feynman to ’t Hooft describes the acquisition of
a perturbative solution. This was practically all that had been needed in
QED. In non-Abelian QCD, however, this turned out to be good for the
high energy (UV) sector (due to asymptotic freedom) but useless for the
low-energy (IR) region. One answer to this problem was the discovery of
exact solutions, both for the fully symmetric case (instantons [10]) and for
the broken symmetry case (monopoles [11]).

In the first part of this article, I shall review the mathematical and
physical characteristics of Gauge Theories in general. I shall then analyze
the various motivations for the construction of Gauge Theories of Gravity
and the possible algebraic routes, after which I shall discuss results.

2. Geometrical structure

A Principal Fiber Bundle is a manifold P(M,G, π, •). M is the base
manifold (generally flat spacetime), G is the gauge group, π the projection
π : P → M; • is the right-multiplication of P by G. For p, p′ ∈ P, g, g′ ∈ G
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we have a verticality condition, π(p • g) = π(p) (the group acts only on
the fiber, staying above the same point in M, i.e. there is a well-defined
vertical direction) and equivariance (p • g) • g′ = p • (gg′)., i.e. the group
product is faithfully mapped. The latter (right-multiplication) is realized as
a map from the abstract infinitesimal Lie algebra Λ of G onto the tangent
manifold P∗: ∀λ ∈ Λ, with [λa, λb] = if c

a b λc, we have t : λ → λ̃ ∈ P∗,
the abstract Lie bracket becoming mapped into a differentiation bracket

[λ̃a, λ̃b]f = λ̃a(λ̃bf) − λ̃b(λ̃af). Thus ˜[λa, λb] = [λ̃a, λ̃b] Note that if the
dimensionalities are dimM = m,dimG = k, dimP = m + k, the map t is
from k onto k + m. To have an inverse, this map needs a structure which
is aware of which is the correctly parallel-transported vertical direction at
any point of P. This is the connection ω : P∗ → Λ,∀λ ∈ Λ,ω(λ̃) = λ. The
gauge-potential or connection is thus a one-form, acting by contraction, i.e.
at a point p, ωa(λ̃b) = ωa⌋λ̃b = δab .

Defining the field-strength (or curvature two-form) as Ω = dω+ 1
2 [ω, ω],

the BRS equations reexpress [12] the Cartan–Maurer structure equations

stating the horizontality of the curvature, λ̃⌋Ω = 0.

3. Physical characteristics

Given a “free” Quantum Field Theory Lagrangian for a matter field ψ,
namely, Lψ(ψ, dψ), we obtain the full Lagrangian as (Lψ)d→D + LYM (Ω),
with D = d+ωaλa and LYM = Ω∧∗Ω. The Bianchi identity is DΩ = 0 and
the equation of motion is D∗Ω = ∗j. Infinitesimally, the gauge group acts
on the fields via δψj = iαa(λa)

j
kψ

k. Note that the other invariant bilinear
in the curvatures, Ω ∧Ω is a topological invariant and corresponds (up to a
numerical factor) to the exact solutions (instantons) of the symmetric theory
[10]. They turn out to be 4-divergences — here of the axial vector unitary
singlet current, an important point in the physical hadron theory. One can
also thus freely add them (with some factor θ) to the Lagrangian — except
that they may violate P or CP (“the θ problem” in QCD).

This entails special features, all relating to the couplings:
(a) The couplings are universal, i.e. they are given (in ∗j(d → D)) for

the connection ωa by the matrix element of the corresponding algebraic
generator, in the ψi representation of Λ, cjai =< ψi | λa | ψj >. If for any
symmetry the coupling is a Clebsch–Gordan coefficient, here it is a specific
one, the a index specifying the adjoint representation of the algebra. For
Abelian G this is a constant number, representing the large-distance value
(Ze for electric charges, whatever the measured system); for non-Abelian G

we have an extra factor, making it into a running coupling gjai = cjaif(q2)
and with f(q2) possibly diverging at some “large” distance (around 1 fm, for
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QCD). In gravity, the coupling is to the matrix-elements of the density of the
generator of translations in an Abelian invariant subgroup of the Poincaré
group, a matter related to the Equivalence Principle.

(b) The coupling is also dimensionless, due to the structure of the La-
grangian, quadratic in the curvatures — thus a four-form, whose integration
over four-dimensional spacetime yields a dimensionless action, fitting the
Quantum Postulate, with no need for the coupling to contribute dimension-
alities. This feature is essential for a program of perturbative renormaliza-
tion — otherwise one would need new counter terms at every order of the
perturbative expansion.

(c) These couplings are to conserved Noether currents. Renormalization
effects are forbidden (for dimensionless couplings) if the relevant interac-
tions obey the same symmetry . This is how the CVC — conserved vector
current nature of the Weak Interactions was first identified by Gershtein and
Zeldovich, and later by Feynman and Gell–Mann, through the equality of
the Weak vector couplings in neutron beta-decay and in muon decay. The
Strong Interactions, which should have renormalized the coupling in neutron
decay, respect the isospin symmetry generating the Weak current (up to the
Cabibbo term). Similar algorithms were found for all Lie-group-generated
symmetries of the hadrons (such as the Goldberger–Treiman relation, etc).
They were especially important in 1958–1975 (the era when QFT was taboo)
because they could be given the form of a dispersion relation [12]. Again,
there is a similarity with the Equivalence Principle — in Gravity, the cou-
pling is to a conserved current of the Poincaré group — a symmetry respected
by all known interactions (and expressing itself in the Eotvos experiments’
precision nonrenormalization results).

(d) The potential (or connection) can be gauged away by a local active
gauge transformation (of the relevant internal degree of freedom). This
feature (corresponding to an acceleration replacing a gravitational potential
for gravity, i.e. the Equivalence Principle) entails local phase effects in QED
or QCD, but becomes nominal for broken symmetries like the electroweak
gauge.

Using the path-integral formulation for the quantization (v is the group
volume, ∆ω the measure in the space of connections),

Z = (v(G))−1
∫

[∆ω]ei
R

Ld4x

one may define canonical variables

[ωaµ(x), Ẽ
ν
b (y)] = i~δab δ

ν
µδ

3(~x− ~y) ,

where (r, s, t are space indices, 0 is time) the momentum Ẽrb = δL
δΩb

st

=

ε st
r Ω0r

b .
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Weyl already introduced what we now know as the “Wilson loop” (a

holonomy) Tω := trPe
H

ω, a gauge invariant quantity, therefore a possible
observable. Anticipating on the next sections, we note that it is also invariant
under the diffeomorphisms of the integration loop, which is why it is useful
in Ashtekar’s canonical treatment of gravity. In QCD, the Wilson loop is
the basic tool for computation, in what is now known as lattice gauge theory
— the loop being selected around a rectangle. Using two spacelike and two
timelike sides and making the timelike ones tend to infinity, we have Wilson’s
lattice proof of color confinement.

Note that in Hamiltonian quantization, the Bianchi identity becomes a
constraint.

4. Gravity seen as a twisted and deformed gauge theory

The story here sounds like a Freudian Oedipus’ (or Electra’s) complex .
Gravity was the mother of all gauge-like theories, with an interplay between
two “gauge groups” (part of the mystery) — the diffeomorphisms Diff(R4)
(“the Principle of Covariance”) and in addition, the Lorentz group SL(2, C)
on the local frames (a factor which became more explicit after Dirac’s equa-
tion for the electron and its inclusion in GR through local frames in 1928).
Also, it is to the local Lorentz group we turn when we want to implement
the Equivalence Principle and replace a potential by an acceleration.

Remember that it was because of Gravity’s GR that the Weyl and the
Yang–Mills gauge theories were born and that it was also because of gravity
that Feynman launched the quantization program for the YM model; yet
when we now go into details, we shall draw a picture showing gravity to be
like a caricature of a gauge theory — thus also motivating the search for a
different presentation (yet preserving the macroscopic predictions).

First — covariance. Is this really a gauge group? For one thing, it
does not have an active mode. Example: a change of scale is a diffeomor-
phism, and GR is indeed passively invariant under such a transformation
(i.e. changing the unit from centimeters to inches), but it is not invariant
under an active physical invariance, such as a doubling of all distances. The
forces would really weaken, whereas in Weyl’s scale-invariant 1919 theory (or
in Englert’s modern version), they would not. One reason is that Newton’s
constant has dimensions. In Englert’s theory [13], there is no such constant,
it is replaced by a scalar field (whose vacuun expectation value happens to
have that value, but could take any other).

Secondly, mathematically, diffeomorphisms appear equivalent to “gauging
the translations”. Again, although this route has been explored by Cho and
others, I do not consider this as a valid mode because the translations ∂µ
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are not covariant and we would not be able to perform active displacements
with them. The covariant operators are the covariant derivatives with frame
indices (here ω becomes Γ and Ω is R) Da = eµa(∂µ − Γ ρµσ). However, the
Da, under commutation do not make a Lie algebra. This kind of translation
is algebraically known as a Lie derivative. It was discussed in Ref. [14].
We called it an anholonomized general coordinate transformation (AGCT)
in Ref. [15]. In supergravity, the spinorial displacements consist in such Lie
derivatives, as we showed in that work. As a matter of fact, gauging the
“modified Poincaré algebra”, with translations replaced by the AGCT would
be a conceptually clean answer, but this also means that the group we are
“gauging” is not a Lie group with a Lie algebra. Its translations subalgebra
has four generators — but structure functions instead of structure constants.
As a result, even the variations of the gauge potentials are not the usual
δωa = Dεa; instead, one has an additional piece ε⌋Ra. We shall return to
this approach in the sequel [16].

The Principle of Covariance is thus not really a physical gauge principle,
but it is certainly mathematically useful. Equivalence, on the other hand,
has many of the attributes of a gauge theory (e.g. universality, a potential
that can be gauged away) but no mathematical derivation. Our third point,
indeed, is that the Lorentz subgroup SL(2, C) ⊂ Diff(R4) (the overline de-
notes the double covering group) is indeed actively implementable. And yet
the dynamical theory, as expressed — our points (a, b) — by the Noether
content of the coupled conserved current is not that of the Lorentz group. On
the contrary, the relevant current is the energy-momentum tensor, i.e. the
density of the generators of translations, the quotient of the Poincaré group
by that same Lorentz group! And yet in the implementation of our point
(d), i.e. gauging away the potential, we do have to use the local Lorentz
group!

The fourth point relates to the dimensionality of Newton’s constant,
the theory’s coupling. Again, with a Lagrangian linear in the curvature,
i.e. a two-form, we need to assign to the coupling a dimensionality of the
inverse of a squared length. This will impact heavily on the perturbative
renormalization program.

All of this is due to the Einstein–Hilbert Lagrangian, linear in the cur-
vature. Whereas in the YM field equation D∗Ω = ∗j, the Ω and j relate
to the same algebraic generators, in GR the Ω (now R) is the field-strength
of rotations and the current j is that of the translations. In the Einstein–
Cartan version, we have yet another cross-eyed equation relating the torsion
— the field strength of translations — to the spin, i.e. the Lorentz group
current.
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We may gain some consolation from a 1977 demonstration by MacDowell
and Mansouri [17]. They showed that if you undo the Wigner–Inönü contrac-
tion, replacing translations by rotations into the fifth dimension (the contrac-
tion consisting in having taken the radius to infinity) and write a “somewhat
YM-like” 5th component εabcd5R

ab∧Rcd of a topological R∧R, you will have
an “aesthetic” understanding of our problem. The curvatures into the ’old’
spacetime dimensions now have an extra term Rab

′
= Rab− (1/2)Γ a5 ∧Γ 5b.

When you now reimplementate the contraction, Γ a5 → ea and the ad-
ditional term is ηab = εabcde

c ∧ ed. The quadratic Lagrangian yields a
quadratic topological (instanton-like) invariant, a cosmological term com-
ing from squaring the ηab — and the Einstein Lagrangian ηab ∧ Rab —
which has thus acquired a ’respectable’ progenitor (gauging the de Sitter
group in an almost YM fashion..). The advantage of this presentation is
that it can directly be extended to Supergravity — the contraction holding
for OSp(1/4) (as SO(3, 2) = Sp(4, R); alternatively, for the other de Sitter
group SO(4, 1) = Sp(2, 2), we would thus have OSp(1/2,2)).

5. Motivations for a Gauge Theory of Gravity
— conceptual simplicity

The first motivation to look for a more YM-like alternative was explo-
rative, a search for conceptual simplicity, for a YM-like interpretation of
GR. It started almost immediately after the YM paper, mainly in the con-
tributions of Utiyama [18], Kibble [19] and Sciama [20]. One result was
the renewed interest in torsion, appearing in all treatments based on the
Poincaré group, since it is the field-strength of the translations. Here there
was an encounter with the veterans of the 1920–1950 Einstein-stirred search
for a unification betwen GR and Electromagnetism. Other than Weyl and
his gauge approach, there had been Eddington, Cartan, Mme Tonnelat,
Stueckelberg, Finkelstein, Rodichev, Ivanenko and collaborators, Pellegrini
and Plebanski, etc. Torsion with its antisymmetric indices plays an impor-
tant role in all this. Before we leave this subject, it is interesting to note
that Einstein’s quest found its tightest solution in N=2 Supergravity: be-
tween the J = 2 graviton and the J = 1 photon, two J = 3/2 gravitinos
(i.e. one charged complex field) are what was needed to construct an irre-
ducible theory of GR plus EM [21]. However, when this was found, the stir
was minimal. After Einstein’s death, there were not many left who would
disregard the Strong and the Weak interactions in an effort for unification.

This phase ended up in (1) a rebirth of the Einstein–Cartan theory, as a
mild gauge-like facelift to GR, described in [15] — and (2) in the Poincaré
Gauge Theory, quadratic in the curvatures and torsions [22]. This includes
the option of a more drastic piece of surgery, namely teleparallelism [23], ex-
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ploiting mostly the possibility of replacing the Einstein–Hilbert linear term
by a quadratic squared-torsion term — the particular irreducible component
known as the Weitzenböck invariant. Another conceptually valid version is
the use of the “modified” Poincaré group — with Lie derivatives (AGCT)
replacing the translations — providing an elegant physical interpretation —
including an understanding of what in gravity is not simply gauge-like. This
approach is particularly appropriate for treatments which include supergrav-
ity, since that is the nature of the relevant supersymmetric transformation
[24]. Note that in supersymmetry a way was also found to return to an
orthodox Lie superalgebra — by adding auxiliary fields.

Another interpretative result was the method of gauging on the group
manifold. With Regge [15] and Thierry–Mieg [24], we showed that starting
from two copies of the group manifold, taken both as base space and as fiber
(the copy which becomes the base manifold is allowed to curve, the one in the
fiber is rigid — as usual in a fiber bundle), but using a Lagrangian breaking
the group symmetry (in the gravity case the group is the Poincaré group
and the Lagrangian is locally only Lorentz-invariant) there occurs a process
of spontaneous compactification and factorization. Thus, on mass shell, the
fiber reduces to the Lorentz subgroup and the base manifold reduces to
the space of translations, i.e. spacetime. This methodology works also for
supergravity.

An alternative approach is to have both the Einstein linear term and
terms quadratic in the curvatures — with different interpretations, includ-
ing the possibility of new contact interactions [14] or a contribution to the
Strong Interactions with confinement [25]. Two schools, Hehl’s group in
Cologne and Trautman, Kopczyński, Tafel etc., in Warsaw, have led these
movements, with Trautman [26] providing the most thorough analysis of a
U(4) geometry as the Riemannian V4 geometry is indeed replaced here by a
U(4), i.e. with the inclusion of torsion.

The equations of motion now involve asymmetric tensors, closer to the
canonical derivations (first Noether theorem) for the relevant currents. Gµν

is an asymmetric Einstein tensor, T µνρ is the torsion, Σµν the canonical
energy-momentum current tensor, τµνρ the spin angu;ar momentum current
tensor. The equations of motion are,

Gµν = κΣµν ,
T µνρ = κτµνρ ,

(1)
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with the Noether currents, now as defined by their couplings (2nd Noether
theorem),

eτµνρ := δL
δK

ρ
µν

,

Σµν := σµν − ∇̃ρ(τ
µνρ − τνρµ + τρµν) ,

σµν := δL
δgµν

,

∇̃µ := ∇µ + 2Sνµν ,
S ρ
µν := (1/2)(Γ ρ

µν − Γ ρ
νµ ) ,

T ρ
µν := S ρ

µν + 2δρ[µS
σ

ν]σ ,

Kρ
µν := −S ρ

µν + S ρ
ν µ − Sρµν ,

(2)

where we have also defined the symmetric energy current σ and the various
torsion tensors T and S and the contortion K.

There are two possible direct routes to extend this formalism (still with-
out invoking supersymmetry), according to whether one embeds the Poincaré
group in the homothetic [1] and conformal [13] groups SL(2, C) × R3,1 ⊂
SU(2, 2) (the homothetic is the middle step inwhich one only adds the R1

of dilations) or in the affine [30] groups, SL(2, C) × R3,1 ⊂ GL(4, R) × R4,
with the special affine SL(4, R) ×R4 as middle step. Either route has been
used and we shall return to affine geometry when we look at perturbative
quantization, where it has been applied. The interest in these possibilities
simply followed the search for a more general outlook [28]. There appeared
to be an inherent difficulty in the affine case, in which the Lorentz SO(1,3)
is replaced by the linear SL(4, R), because it was (wrongly) assumed in the
GRG community that, while SO(1, 3) = SL(2, C)i.e. there is a double cov-
ering to the Lorentz group — hence the existence of spinors — there is no
double covering group for SL(4, R). I broke this superstition in 1978 [29]
and constructed (infinite-component) linear and affine spinors [30] and even
world spinors [31] on which the diffeomorphisms are represented nonlinearly
over their linear subgroup, just as for tensors. Note that in Metric–Affine
Gravity, we have new components to the curvature, deriving from the non-
metricity Dgµν = Qµν 6= 0. Starting from gauge-like considerations, Yang
constructed such a model (coinciding with Stephenson’s and Kilmister’s, the
SKY model [32]), but this model, taken macroscopically, does not approxi-
mate to Newtonian gravity.

6. Motivations for a Gauge Theory of Gravity:
perturbative quantization

When the renormalization program for the Yang–Mills field achieved
its goal in 1971, it was natural that Veltman and ’t Hooft should turn to
gravity [33]. The first answer was a nice surprise — considering the various
reasons which predicted failure, mainly the dimensionality of the coupling.
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It turned out that the one-loop vacuum contribution (gravitons interacting
with gravitons) is accidentally finite, due to a topological identity. However,
adding matter — scalar, spinor or vector — leads to infinities [34]. This
line of theoretical experimentation was not pursued — had it, supergravity
might have been discovered somewhat earlier, since N=1 supergravity can
be regarded as gravity plus J = 3/2 “matter”. Due to the supersymmetric
algebra, as was later proved by Kallosh, anything true of gravitons can be
generalized to the entire supersymmetric multiplet.

Hope for another set of miracles was finally dashed when Goroff and Sag-
notti [35] using a supercomputer, managed to evaluate the two-loop vacuum
diagram and found it to be infinite. Meanwhile, Stelle had shown [36] that a
curvature-squared term in the Lagrangian would make it finite — its dimen-
sion frees it from the need for a dimensional coupling; moreover, it would
also ensure that it dominate the linear term in the high energy regime. Such
terms would certainly be generated in the renormalization procedure, even
if the original Lagrangian were the linear one. However, Stelle also showed
the theory to be non-unitary, due to its p−4 propagators. These propaga-
tors are created because of the Riemannian nature of the theory, i.e. the
dependence of the connection on the metric (resulting from Dgµν = 0). As
a result, Γ ∼ ∂g, R ∼ ∂2g + (∂g)2 and L ∼ (∂2g)2, (∂g)4, ∂2g(∂g)2, all
producing p−4 terms in the inverse Fourier transform. Such propagators can
be simulated by a difference between two poles p−4 ∼ (1/p2)− [1/(p2−m2)],
one of which has to be a ghost. Tomboulis [37] has recently provided a proof
of the breakdown of unitarity at the nonperturbative level.

To cope with this issue, we have assumed [38] that the fundamental
(high energy) theory is an affine or metric-affine gauge like model, such as
the SKY Lagrangian. An appropriate Higgs field causes the local SL(4, R)
symmetry to break spontaneously (presumably at Planck energies), reducing
to SL(2, C) and the low-energy theory is then Riemannian (and Einsteinian,
for instance if we prepare a φ2R term — which is dimensionally OK — in the
original Lagrangian). This theory was proven to be renormalizable [39,40]
a la YM, but we nevertheless lack a proof of unitarity because (only) the
gauge-fixing term still involves p−4.

At this point, I am opening a parenthesis. In 1979, David Fairlie and I
[41] indpendently conceived of an internal supersymmetry gauge model, the
simple supergroup SU(2/1), whose even subgroup is SU(2)×U(1), which we
identified with the Electroweak gauge group. The odd quotient of SU(2/1)
by its even subgroup has the quantum numbers of the (complex) Higgs
field, with Iweak = 1/2, Yweak = 1. The supergroup constrains the 15–20
free parameters of the electroweak theory and predicts for the Higgs mass
mH = 2mW , about 170 GeV. We had, however, problems with the inter-
pretation, since the odd generators of supersymmetry are assumed to relate
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bosons to fermions and vice versa, whereas in this construction, the mat-
ter fields are [νL, eL], eR so that the odd generators only connect different
chiralities. However, when taking the boson multiplet and working with
forms, the action fits the statistics ansatz, since the W,Z,A vector mesons
in the even part make one-forms, while the Higgs in the odd part are zero-
forms. With J. Thierry–Mieg and S. Sternberg we worked hard throughout
1980–1990 to overcome the interpretative issue. Meanwhile, however, the
mathematician D. Quillen published his “theory of the superconnection” [42]
and we understood that this was what I had constructed, a superconnection.
One should count together both parities, that of the Grassmann elements
over which the supermatrix is valued, and that of the generating superalge-
bra. The even parts are the Grassmann-odd Yang–Mills connections and are
superalgebraically even, the odd parts are Grassmann-even Higgs fields but
they are superalgebraically odd. The overall parity is thus odd, as befits a
(super) connection, still a connection. We reformulated the theory, therefore
as a Quillen superconnection [43].

Meanwhile, another advance had happened in Mathematics, namely
Connes’ Noncommutative Geometry [44]. Connes and Lott applied it to
the electroweak theory and reproduced the Weinberg–Salam model geomet-
rically [45]. Soon afterwards, Coquereaux, Scheck and collaborators [46]
showed that by modifying some steps in NCG, the same geometric deriva-
tion yields our superconnection!

Already in 1980, we had shown [47] that such supergroups (and their
superconnections) reproduce the Higgs–Kibble model of spontaneous sym-
metry breakdown in other examples. At the recent Marcel Grossmann VIII
in Jerusalem I presented [48] such a superconnection for the model we dis-
cussed here, namely a SKY affine Lagrangian whose SL(4, R) is sponta-
neously broken to SL(2, C), i.e. Einsteinian gravity as the low energy theory
of a fundamentally “post-Riemannian” affine high energy theory. The rele-
vant supergroup is the double-covering of the simple (rank 3) P(4, R), whose
even subgroup is SL(4, R)

I recommend this extension of gauge theories over noncommutative ge-
ometry in any case, for its aesthetic characteristics [49].

7. Nonperturbative (canonical) quantization

In Section 3 we noted the existence of an exact (i.e. nonperturbtive) so-
lution to the YM theory, namely the instanton.This is the Chern–Pontrjagin
topological invariant, characterizing a bundle manifold, ν = 1

64π2

∫
Ω ∧ Ω.

This is a four-divergence ν = dG, that of a Chern–Simons three-form G ∼
tr {ω∧Ω− (1/3)ω ∧ω∧ω)}. With matter fields, this is the term generating
the chiral anomaly. As an invariant and a constant, it can be added to the
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QCD Lagrangian, with some coefficient θ. It does, however, generate vio-
lations of parity P , because it is a pseudoscalar — due to the εµνρσ of the
four-form in Minkowski spacetime. In the physical term, this is compensated
by the second epsilon tensor, that of the Hodge duality. Violating P , it also
violates CP (and T ). These problems can be resolved by assigning a small
value to θ (experimentally, θ ≤ 10−9) or inserting the imaginary unit i, but
QCD would appear more natural if one would not have to make arbitrary
assignments.

Once we have both terms in the Lagrangian, minimizing the action im-
plies putting either one of Ω±i∗Ω to zero, i.e. selecting self-dual or anti-self-
dual fields and connections. The imaginary unit here is related to ∗∗f = −f
and the overall result amounts also to complexification.

We now turn to gravity. In striving to achieve a nonperturbative quanti-
zation, Ashtekar [50] has emulated the YM model, using self-duality eigen-
fields as canonical variables, thus also enacting a complexification of the
model. The Chern–Simons terms here are [51] Crr = −(Γ∧R+(1.3)Γ∧Γ∧Γ )
for Lorentz curvatures and Ctt = (1/k2)(ϑa∧dϑ

a−ϑa∧ϑ
b∧Γ ab ). The “instan-

ton term” here is the divergence dC, to be added to Einstein’s Lagrangian.
As a result one gets the constraints, the vector Xa = DiẼ

ai, (i, j = 1..3),

corresponding to the Gauss constraint in the YM case, the three Xi = F aijẼ
j
a

guaranteeing invariance under 3-dimensional diffeomorphisms — and the
scalar (time-evolution) Hamiltonian constraint X = εabcFijaẼ

i
bẼ

j
c .

Ashtekar’s program has succeeded in generating quantum gravitational
states, realized through the loop quantization as an observables’ represen-
tation These are the Wilson loops we discussed in Section 3, as applied by
Rovelli [52] and Smolin [53]. The program’s difficulties are partly in our
inexperience with the interpretation of nonperturbative states, where we
cannot count quanta.

It is interesting that the success in gravity has already produced new
applications in YM theory, in the search for a proof of color confinement
in QCD. Some ten years ago, we conjectured [54] that QCD itself produces
something resembling gravity, in its IR region, and that it is this gravity-like
component which generates color confinement, a geometrical feature. We
were indeed able to prove that such a component does exist [55,56], using
semi-perturbative and algebraic methods. Independently, D.Z. Freedman,
K. Johnson and several collaborators have been attacking the same problem
nonperturbatively, applying variables inspired by Ashtekar’s [57]. Let me
mention that Seiberg and Witten have recently supplied a mathematical
proof of confinement [58], but this depends crucially on the presence of
supersymmetry, beyond SU(3)color.
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8. Unification as a motivation

With all other interactions quantized and sitting in a gauge theory mold,
it seems obvious that gravity should be reformulated in a similar mold, if we
are to end up with a unified theory. The drive for unification goes both ways
— physicists working on internal degrees of freedom have always looked for a
spacetime origin — with the Kaluza–Klein approach as the simplest unifying
mechanism. Right after the advent of (flavor) SU(3) we already tried this
route [59]. With SU(6), combining spacetime spin with “internal” unitary
spin, the prospects appeared good at first for an algebraic unification. Such
hopes were dashed by the various no-go theorems of the Sixties, culminating
in the Coleman–Mandula (very negative) formulation. Hope was born again
after the discovery of supersymmetry and the options left open by the Haag–
Łopuszański–Sohnius theorems.

The theorems, however, did not restrict gauge groups, and the result
was Supergravity. There was the additional hope that the new algebraic
constraints would tame at least some of the divergences, as had happened
in the Wess–Zumino model. Of the two original formulations of supergrav-
ity [60,61], the Freedman et al. dealt with gravity in the classical manner,
whereas the Deser–Zumino presentation was influenced by the algebraically
more elegant Einstein–Cartan formulation, as discussed by Kibble, for ex-
ample (including the “first order” approach). Unification is maximal with
the N = 8 model, which we were hoping, Gell-Mann and I, would also enjoy
improved renormalizability, as indeed later happened with the related N = 4
Yang–Mills theory (which is simply finite, no radiative corrections at all).
N = 8 supergravity was constructed in 1978 by Cremmer and Julia [62], as
a 4-dimensional reduction of N = 1 in eleven dimensions. This approach
calls for a Kaluza–Klein interpretation and there have been interesting leads
for spontaneous compactification. Yet the answer has to await the verdict as
to the theory’s renormalizability — which is still not known. For some years
(1984–1995) this model was abandoned, due to pessimistic evaluations of its
chances.

Supergravity itself (but not the 11-dimensional model) is just the QFT
(in 10 dimensions) obtained when truncating Superstring Theory beneath
Planck energies — this was the view throughout the above period. Recently,
this picture has veered again in the direction of the 11-dimensional model,
which was shown to emerge from the truncation of a supermembrane in that
dimensionality [63]. In the last two years, interest has grown enormously,
with the discovery of dualities which relate all Superstring theories to this
“M Theory” [64]. Should this be the answer, we could rest from our search
for a gravitational gauge theory . . . My own suggestion is to restrain the
excitement at this stage and continue in our quest.
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