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The group structure of quasicrystallographic space groups is described
in an alternative way, using the language of group extensions. The rôle of
the lattice of translations in classical crystallography is pointed out to be
taken by the abstract dual of the generalized kind of lattice in Fourier space
that one has in the quasi case.

PACS numbers: 02.20. Rt

1. Introduction

In their ‘Copernican’ [1] approach to quasicrystallography, N.D. Mermin
and coworkers specify space groups by their point groups and certain associ-
ated phase functions. In the main body of these works, the group structure
of these objects is not manifest, and they are given such structure only in
an appendix to [2]. In the present note we give an alternative description of
this structure that closely parallels an alternative description of the space
groups of classical crystallography as group extensions, given by cocycles on
the point group with values in the abstract dual of the (generalized) lattice
Λ in Fourier space.

2. Standard crystallographic situation

Here one has the Euclidean group E(3)of motions in real physical 3–space
with its subgroups T(3) of translations and O(3) of rotations and reflections.
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Thus there is the splitting exact sequence [3]

0→ T(3)→ E(3) →← O(3)→ 1.

A crystallographic space group G is a discrete subgroup of E(3) with its
lattice T of translations and the finite ‘point group’ G0 ⊂ O(3) leaving the
lattice T invariant; but in general, the exact sequence [3]

0→ T → G → G0 → 1

does not split. (If it does, G is called ‘symmorphic’ by crystallographers.)
In mathematics, in this situation G is called [4, 5] an extension of G0 by
the (abelian) group T — or an extension of T by G0, according to others
[6] — and it is shown there that such an extension is characterized by (i)
a homomorphism of G0 into Aut T (the group of automorphisms of T ) and
(ii) by a cocycle on G0 with values in T (if T is abelian as it is in our case).
This means that the above exact sequence of groups, and the group G in
particular, may be reconstructed abstractly from T , G0, its action on T , and
an extension cocycle, by a textbook procedure [4–6].

3. Quasicrystallographic situation

In ‘Copernican’ (quasi)crystallography, one starts with a finitely gen-
erated free Z–module Λ ⊂ R

3 (which generalizes the reciprocal lattice of
standard crystals and which, in the quasi case, has more than 3 free gen-
erators, so that it may even be dense in R

3) together with a point group
G0 ⊂ O(3) leaving Λ invariant. To specify a space group belonging to G0, Λ,
one has to write down a real–valued phase function Φg on Λ for each g ∈ G0,
Z–linear when reduced mod Z, such that the following ‘group compatibility
condition’1 holds:

zg,g′ := Φg − Φgg′ + gΦg′ ∈ Z
Λ , all g, g′ ∈ G0 .

Here Z
Λ is the Z–module of integer–valued functions on Λ, addition and

subtraction are pointwise, and the action of G0 on functions Φ from Λ to R

or Z is given by (gΦ)(k) = Φ(g−1k), k ∈ Λ. Now the first point to make is
that z is a 2–cocycle on G0 with values in the abelian group Z

Λ with respect
to the action of G0 just defined. This is to say that z satisfies the cocycle
condition

gzg′,g′′ − zgg′,g′′ + zg,g′g′′ − zg,g′ = 0 , allg, g′, g′′ ∈ G0 .

1 The slight difference between Mermin’s form of this condition and ours arises because

we call Φg what he would write Φg−1 . This is to conform with the left action of G0

on Z
Λ as given in the following.
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We assume that the Φg are gauged [7] such that Φe = 0 (whence ze,g = 0
= zg,e), e being the unit element of G0. Textbooks [4–6] tell us then that

one can define a group structure G on the set G0 × Z
Λ by taking z as an

extension cocycle; i.e. one puts, for g, g′ ∈ G0 and f, f ′ ∈ Z
Λ,

(g, f)(g′, f ′) := (gg′, f + gf ′ + zg,g′) .

This is the desired group law, the cocycle condition guaranteeing associativ-
ity and (e, 0) giving the unit element of G. One checks that phase functions
gauge–equivalent in Mermin’s sense give the same cocycle (which also could
be phrased cohomologically) and that all this extends the standard case,
taken in Fourier space, where the functions involved specialize to linear
functions on R

3 restricted to Λ.
So far, however, our construction yields a group which is far too big,

much bigger than the one constructed in [2]. This is because we haven’t
used the condition of Z-linearity of the Φg when reduced mod Z: what does
it imply for the cocycles z? Being required to be integer-valued, Z-linearity
mod Z is automatic for them, but now our second point is that to z there
is a cohomologous cocycle z̃ that takes values in the abstract dual module
Λ∗ (Z-linear maps Λ → Z). One therefore can consider the corresponding
extensions G0×Λ∗ of G0 by Λ∗ instead of Z

Λ which are considerably smaller
and are equivalent to the construction in [2]. Note that G0 acts on Λ∗ in the
same way as on Z

Λ.
In detail: cohomologous cocycles z, z̃ on G0 with values in Z

Λ fulfill

z̃g,g′ − zg,g′ = fg − fgg′ + gfg′ for some fg ∈ Z
Λ ;

they arise if Φg is replaced by Φ̃g = Φg + fg. To make z̃ Λ∗-valued, choose

a basis {bi} for Λ and define Φ̃g by

Φ̃g(λ) :=
∑

i

λiΦg(bi), where λ =
∑

i

λibi .

Then Φ̃g − Φg =: f̃g ∈ Z
Λ by our assumption on Φg, and so, defining

z̃g,g′ = Φ̃g − Φ̃gg′ + gΦ̃g′ ,

we have
z̃g,g′ − zg,g′ = f̃g − f̃gg′ + gf̃g′ ,

i.e. z̃ and z are cohomologous cocycles. But now z̃g,g′ is Z-valued and
Z-linear. The cocycle z̃ thus takes values in Λ∗ and defines ([5,6]) an element
in H2(G0, Λ

∗). This element is independent of the basis chosen for Λ. In
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fact, if we start from another one, {b̄i}, and form ¯̃zg,g′ , correspondingly, the

difference z̃g,g′ − ¯̃zg,g′ is of the form fg − fgg′ + gfg′ , where

fg := f̃g −
¯̃
fg = Φ̃g −

¯̃
Φg

is Z-valued and Z-linear, i.e. fg ∈ Λ∗, thus z̃ and ¯̃z are cohomologous as
cocycles with values in Λ∗. Our new cocycle is again normalized if z was,
so the group law of the extension G0 × Λ∗ can be copied from above. As
is well-known, up to isomorphism, the extension is uniquely determined by
the cohomology class of z̃.

4. Concluding remark

In classical crystallography, one has the lattice T of translations in phys-
ical space and its reciprocal lattice Λ in Fourier space; the abstract dual of
the latter as a Z-module, Λ∗, can be identified with T again. In ‘Copernican’
quasicrystallography, one starts with a finitely generated free Z-module Λ

in Fourier space with more than three generators; its abstract dual Λ∗ then
has no interpretation as being embedded in physical space; but apart from
this, the description of the space groups by elements of H2(G0, Λ

∗) is the
same. It is clear that this hardly scratches the surface of quasicrystallogra-
phy, however.

We are indebted to the students of a course on quasicrystallography who
forced us into a clearer thinking of this subject. The last named author
(H. U.) acknowledges an invitation to present this work at the Jadwisin
Conference celebrating the 64th anniversary of Prof. Andrzej Trautman’s
birthday.
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