
Vol. 29 (1998) ACTA PHYSICA POLONICA B No 4

NULL SURFACE CANONICAL FORMALISM∗

J.N. Goldberg

Department of Physics, Syracuse University

Syracuse, NY 13244-1130, USA

and D.C. Robinson

Department of Mathematics, Kings College London

Strand, London WC2R 2LS, GB

(Received October 10, 1997)

Dedicated to Andrzej Trautman in honour of his 64th birthday

The canonical formalism for general relativity on a null surface is com-
pared with that on a space-like surface using Ashtekar variables, the self-
dual connection and a densitized triad. The principal difference lies in the
appearance of second class constraints. These arise in part because the
metric on a null surface is singular, in part because on a null surface there
is a preferred direction, and in part because a compact mapping will not
map a null surface into a null surface. Second class constraints are elimi-
nated by the use of Dirac brackets. It is shown that, in principle, this is
particularly straightforward in this case.

PACS numbers: 04.20. Fy

1. Introduction

There have been several attempts to construct a Hamiltonian for general
relativity on a null surface [1-5]. Of these, only the work by D’Inverno and
Vickers and by Goldberg, Robinson, and Soteriou (GRS) are successful in
that all of the Einstein equations are obtained directly from the variation of
the action from which the formalism begins. These succeed by introducing
auxiliary variables whose values fix the nature of the surface t = constant:
space-like, time-like, or null. The values of these auxiliary variables are
determined by the variation of Lagrange multipliers in the action itself. In
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this talk, I focus on the formalism of GRS although the ideas are equally
applicable to other formalisms.

The plan of this talk is first to describe briefly the Ashtekar formalism on
a space-like surface. Then to discuss the differences which occur when the
formalism is applied to a null surface. The Hamiltonian on the null surface
will then be described together with the constraints. The constraints will be
separated into first and second class and finally the treatment of the second
class constraints will be described. The concluding remarks will discuss what
needs to be accomplished if the quantization program is to move forward.

2. Space-like surface

In the Ashtekar formalism [6], the phase space variables are the pullback
to a space-like surface of the self-dual connection and the dual of the pulled
back self-dual two-forms constructed from an orthonormal frame. On the
space-like surface, the latter form a densitized triad tangent to the surface.
These variables arise naturally from the 3+1 decomposition of the action

S =

∫

d4x RA ∧ SBgAB . (1)

A,B = 1, 2, 3 label the three independent self-dual components of the Rie-
mann tensor and 2-forms and gAB is an O(3) metric which raises and lowers
these indices. In a 3 + 1 decomposition, this becomes

S =

∫

dtd3x{AA
i,0EA

i + BAGA − NH0 + N iHi}.

BA, N i,N behave like Lagrange multipliers which define the mappings gen-
erated by GA,Hi,H0, the gauge, diffeomorphism, and scalar constraints:

GA = DiEA
i ,

Hi = RA
ijEA

j ,

H0 = ηABCRA
ijE

BjECk .

The Hamiltonian is then just a linear combination of these constraints.
The constraints are all first class — their Poisson brackets are equal to linear
combinations of themselves and, therefore, vanish on the constraint surface
of the phase space. Note that the action and Hamiltonian are complex.
Therefore, to reconstruct the Einstein theory certain reality conditions are
needed as well. However, these are beyond our present interests.
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3. Null surface

The most striking feature of the canonical formalism on a null surface
is the appearance of constraints in addition to those arising from gauge
invariance or diffeomorphism invariance. In a broad sense, these null surface
constraints arise from the fact that the metric on a null surface is singular.
This has the effect that in a formalism making use of a system of non-
singular triads, one of the triad vectors is not dynamical. Furthermore, on a
null surface, there is a distiguished direction. This reduces the gauge group
to the two complex parameter group of null rotations. Another feature of
working on a null surface is that there are no small compact deformations
which map a null surface to a neighboring null surface. The net effect of this
is that together with the null surface constraints, one of the gauge constraints
and the scalar constraint form a system of second class constraints.

The Poisson brackets between second class constraints do not vanish on
the constraint surface. Furthermore, the matrix formed by the system of
Poisson brackets is not singular. Therefore, second class constraints repre-
sent canonical pairs of phase space variables which are superfluous and which
are not independent of the remaining variables. Following the Bergmann-
Dirac quantization rules, these second class constraints should be eliminated
from the theory before constructing the quantum algebra.

Another difference in the null surface formalism is that it is necessary to
introduce an auxiliary variable in order to obtain all of the Einstein equa-
tions. This arises because if t = constant is a null surface, then g00 = 0.
Variation of the action with respect to this variable is missing and, as a
result, the corresponding field equation is missing. The auxiliary variable
prevents that from occurring until after the variations have taken place.

The action we use is the same as in the previous section except that
the 3+1 reduction is done by pullback to a null surface instead of a space-
like surface. To construct the self-dual bivectors, we use a tetrad of null

one-forms (νi
ivj

i = δij , all indices have the range 1-3, repeated indices

sum, and bold face indices refer to the one-forms and tetrads),

θ0 = (N + αν1
iN

i)dt + αν1
idxi ,

θi = νi
i(N

idt + dxi) ,

e0 = N−1(∂t − N i∂i) ,

ei = (vi
i + αδ1

iN
−1)∂i − αδ1

iN
−1∂t , (2)

so that

ds2 = θ0 ⊗ θ1 + θ1 ⊗ θ0 − θ2 ⊗ θ3 − θ3 ⊗ θ2 .

This definition of the metric identifies the tetrad as a null tetrad.
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The self-dual bivectors on the null surface are then

S1 : = 1
2 [θ1 ∧ θ0 + θ3 ∧ θ2] ,

S2 : = θ1 ∧ θ2 ,

S3 : = θ3 ∧ θ0 . (3)

Note the presence of the auxiliary variable α. It is needed to obtain all of
the Einstein equations since

g00 = −
2

N
α

so that α = 0 ⇒ g00 = 0.

The self-dual Riemann tensor is defined from the self-dual connection

Γ 1 : =
1

2
(ω01 + ω23) ,

Γ 2 : = ω21 ,

Γ 3 : = ω03 . (4)

by
1
2RA = dΓ A + ηA

BCΓB ∧ ΓC . (5)

In terms of a 3+1 decomposition relative to the null surface

ΓA = BAdt + AA
idxi (6)

it follows that

RA
ij = 2AA

[i,j] + 2ηA
BCAB

jA
C

i

RA
0i = DiB

A − AA
i,0 . (7)

Note, however, that when α = 0,

S3 = Nν3
idxi ∧ dt

so that its pull back to the null surface vanishes. Since the triad densities
defined by the dual of the pullback of the bivectors to the null surface are
dynamical variables, this leads to three of the null surface constraints.
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4. Hamiltonian

In terms of the variables defined in the 3+1 decomposition, the action,
Eq. (1), takes the form

S =

∫

d4x{ȦA
iΣA

i + BADiΣA
i + N iRA

ijΣA
j

−Nvi(R1
ijΣ3

j + R2
ijΣ1

j) + + µi(Σ2
i − αvi) + ρα2} . (8)

In the above we have introduced the densitized triad variables ΣA
i to dis-

tinguish the null case from the space-like triad EA
i:

ΣA
i = 1

2ηijkSB
jkgAB

so that (ν = detνi
i)

Σ1
i = −νv1

i ,

Σ2
i = αvi ,

Σ3
i = −νv3

i ,

vi = νv2
i . (9)

Thus, vi, ΣA
i are densities of weight one and N := N/ν is a density of

weight minus one. Note once again that α = 0 implies that the dual of
S3, Σ2

i = 0. In this case, Σ1
i, vi, Σ3

i are a non-degenerate triad tangent
to the null surface.

As in the space-like case, the action is already in canonical form, so we
can identify the dynamical phase space variables as

(AA
i, ΣA

i) . (10)

Here, unlike reference 3, the remaining variables - BA, vi,N ,N i, µi, α, ρ -
are treated like Lagrange multipliers. Variation with respect to ρ leads to
α = 0 which forces t=constant surfaces to be null. Then variation with
respect to α gives

µiv
i = 0 . (11)

µi appears as one term in the propagation equation for A2
i. It is the con-

dition on this Lagrange multiplier in Eq. (11) which leads to the Einstein
equation which would otherwise be missing.
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Varying the remaining multipliers leads to constraints on the phase space
variables:

GA : = ΣA
i
,i + 2ηABCAB

iΣD
igCD = 0 ,

Hi : = −RA
ijN

j = 0 ,

H0 : = vi(R1
ijΣ3

j + R2
ijΣ1

j) = 0 ,

φi : = R1
ijΣ3

j + R2
ijΣ1

j = 0 .

Ci : = Σ2
i − αvi = 0 . (12)

It is easy to see that φiΣ1
i = HiΣ3

iφiv
i = H0 so that there are in total

eleven constraints on the 18 dynamical variables: GA,Hi,H0 are the usual
gauge, diffeomorphism, and scalar constraints. Ci, φiΣ3

i result from use of
the first order self-dual formalism on a null surface, hence are the null surface
constraints.

In proceeding to the Hamiltonian, we may now forget about ρ and set
α = 0. (In references [3] and [4] this was done afterward.) However, in so
doing we must keep not only the above constraints with α = 0, but also the
condition (11), µiv

i = 0. As in the space-like case, the Hamiltonian is then
a linear combination of the gauge, diffeomorphism, and scalar constraints,
but with the addition of the null surface constraint Σ2

i = 0.

H =

∫

d3x
{

NH0 + N iHi − BAGA − µiΣ2
i
}

. (13)

Propagation of Σ2
i = 0G3 = 0 lead to conditions on the Lagrange mul-

tipliers viµi, repectively:

χi := 2δB
2Dj

(

Nv[iΣA
j]QA

B

)

− 2A3
jN

[iΣ1
j] − B3Σ1

i = 0 , (14)

QA
B := δA

3 δ1
B + δA

1 δ2
B ,

and
µiΣ1

i = viR2
ijΣ3

j . (15)

Together with the propagation equations for A1
iA

2
i (15) leads to an iden-

tity when the symmetry properties of the Riemann tensor are taken into
account. The remaining component, µiΣ3

i, is just the null component of
the conformal tensor [4]. Propagation of the remaining constraints does not
lead to new constraints or additional conditions on multipliers.

Poisson brackets of AA
iΣA

i give us the propagation equations. However
reality conditions are still needed to limit the solution of these equations to
solutions of the Einstein equations [3,4].
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5. Constraints

The constraints group themselves into first class constraints — those
whose Poisson brackets vanish modulo the constraints — and second class
— those whose Poisson brackets do not vanish on the constraint surface.
There are five first class constraints:

G1 = 0, G2 = 0, H′

i := Hi + AA
iGA = 0

and six second class constaints (recall that φiΣ1
i = HiΣ3

iφiv
i = H0):

G3 = 0, H0 = 0, Σ3
iφi = 0, Σ2

i = 0 .

The first class constraints generate the invariant mappings of the theory. In
particular, G1G2 generate the two complex parameter group of self-dual null
rotations while Hi generate the three dimensional group of diffeomorphisms
on the null surface.

Each first class constraint corresponds to two conditions on the phase
space variables while each second class constraint corresponds to one condi-
tion on phase space variables. Therefore, the constraints correspond to 16
conditions on the 18 phase space variables.

Let us recall the origin of the second class constraints. First of all, α = 0
forces t =constant to be a null surface and at the same time it requires
Σ2

i = 0. Σ3
iφi = 0 arises both from the use of a null surface and the

complex structure which is introduced by the use of a self-dual connection.
viφi = H0 = 0 is second class because a null surface is special in that there
are no compact infinitesimal mappings from a null surface to another null
surface. Finally, G3 = 0 is second class because on a null surface there are the
null directions which are left invariant by any gauge transformation. These
last two conditions reduce the invariance of the formalism and therefore,
reduce the number of first class constraints.

The Poisson bracket algebra of the first class constraints is not only
closed, but is also a Lie algebra, the semi-direct product of the null rotations
and the diffeomorphisms (A′ = 1, 2) :

{

∫

d3xEA′

GA′ ,

∫

d3xFB′

GB′

}

= 2

∫

d3x(E2F 1 − E1F 2)G2 ,

{

∫

d3xEA′

GA′ ,

∫

d3xXiH′

i

}

= −

∫

d3x(LXE)A
′

GA′ ,

{

∫

d3xXiH′

i,

∫

d3xY jH′

j

}

=

∫

d3x(LXY )iHi . (16)
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As noted above, because the scalar constraint is among the second class
constraints, the first class constraint algebra is a true Lie algebra. This may
be helpful in constructing the quantum algebra.

The bracket algebra of the second class constraints is not as nice, but
fortunately we do not need the exact expressions. However, if we define,
I = 1 · · · 6,

CI := (G3,H0, Σ3
jφj , Σ2

i) ,

the Poisson bracket matrix has the structure

C :=

(

Q R
−R̃ 0

)

. (17)

Each entry in the above is a 3 × 3 matrix. The inverse is easily found to be

C−1 :=

(

0 −R̃−1

R−1 R−1QR̃−1

)

. (18)

According to Dirac [7], the second class constraints are eliminated by defining
a new bracket, now called the Dirac bracket, such that the bracket formed
with the second class constraints and any other variable vanishes identically.
Given two functions on the phase space, FG, the Dirac bracket is

{F,G}D = {F,G} −
∑

J,K

{F,CJ}C
−1JK{CK , G} . (19)

A similar result is obtained by Bergmann and Komar [8] who define new
variables, starred variables, which have vanishing Poisson brackets with the
second class constraints:

X∗ = X −
∑

IJ

{X,CI}C
−1IJCJ . (20)

The Poisson brackets of the starred variables is equal to the Dirac brackets
of the original variables. In either case, the second class constraints are then
eliminated.

The structure of the Poisson bracket matrix shown above tells us that the
Dirac brackets of A1

i, A
3
i, Σ1

i, Σ3
i are just the Poisson brackets. Therefore,

in terms of these variables, one can solve the second class constraints for
A2

iΣ2
i which are then eliminated from further consideration.

Σ2
i = 0 and G3 = 0 can be solved algebraically:

A2
iΣ1

i = Σ3
i
,i − 2A1

iΣ3
i . (21)

In principle, one can solve for the the remaining components of A2
i by

integrating the second class part of the φi constraints. Our triad is defined
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so that Σ1
i is tangent to the null generators of the null surface. Therefore,

we can introduce a parameter along the null generators such that

Σ1
i = Σ

dxi

ds
,

then

Σ1
i ∂

∂xi
= Σ

d

ds
. (22)

Then one can formally integrate viφi = 0Σ3
i = 0 for the remaining com-

ponents. However, to do so in general is exceedingly complicated. To give
an indication of the nature of the solution, we can simplify the calculation.
Asume that

Σ1
i = Σδi

1 . (23)

Then (a = 2, 3)

A2
a = Ya

b(s)Ab(s) ,

Ab = Ab(∞) +

s
∫

∞

ds′Y −1
b

c(s′)Gc(s
′) ,

Gc = A2
1,c − 2A1

cA
2
1 + Σ−1[A2

1Σ3
1A3

c + 2A1
[c,j]Σ3

j] ,

Ya
b(s) = exp

s
∫

∞

ds′(2A1
1 − Σ−1Σ3

jA3
j)P exp

s
∫

∞

ds′Σ−1A3
aΣ3

b(s′) .

(24)

The P in front of the exponential indicates path ordering of the product
integrals. A2

i is no longer considered as an independent variable on the
phase space. Wherever it appears in earlier expressions the above is to be
substituted. On the other hand, if one is considering quantization, one need
only determine the Poisson brackets of A2

i with the remaining variables
using (21) and the above integral expressions.

6. Discussion

We have discussed the canonical formalism on a null surface using Ashtekar
type variables — a self-dual connection and a densitized triad as phase space
variables. The difference between the formulation on a space-like surface and
a null surface has been stressed. Four extra constraints arise because one
is working on a null surface. Together with these, the scalar constraint
and one of the gauge constraints form a system of second class constraints.
This occurs because a bubble deformation does not map a null surface into
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another null surface and because the null directions on a null surface are
preserved under a gauge transformation. Finally, we showed how, in princi-
ple, the second class constraints can be removed while the remaining Poisson
bracket algebra is unchanged. The remaining problem is to understand bet-
ter the relationship of the reduced phase space variables with those which
have been removed by solving the second class constraints. Then one can
ask for the best way to treat the first class constraints which form a Lie
algebra. The role of the first class constraints is to eliminate A1

i, Σ1
i, and

half of A3
i, Σ3

i as independent operators in the sought for quantum theory.
This corresponds to the one degree of freedom one expects on a null surface.

There is another interesting direction. In the Ashtekar formalism on a
space-like surface one is able to study the effect of degenerate triads. These
of course lead to degenerate metrics [9]. The null surface formalism has a
degenerate metric without having a degenerate triad. It would be interesting
to understand the relationship of this degeneracy to that already studied.

It is my pleasure to have given this paper at a workshop to honor Andrzej
Trautman. He was responsible for my first visit to Poland in 1961 and I have
returned many times to discuss physics and to visit friends.
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