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The teleparallelism equivalent GR‖ of gravity is considered. After its
complexification via a canonical transformation, it becomes a true Yang–
Mills theory of translations. It is shown that states constructed from the
translational Chern–Simons term C

TT
fully solve the corresponding Hamil-

tonian and diffeomorphism constraints.

PACS numbers: 04.60. Ds, 04.60. –m, 02.40. –k

1. Introduction

The Ashtekar formulation of general relativity (GR) as well as that of
its teleparallelism equivalent (GR‖) are both generated by the same trans-

lational boundary term idCTT. Whereas the Hamiltonian constraints of
complex GR with cosmological term can partially be mapped to SU(2)
Chern–Simons theory, complexified GR‖ becomes a true Yang–Mills theory
of translations. In this new approach, states constructed from the transla-
tional Chern–Simons term CTT fully solve the constraints of teleparallelism
without invoking a cosmological constant. Moreover, for GR‖ the (open)
Wilson type loops get replaced by Cartan circuits carrying energy instead of
spin as Noether charges. A further bonus is that, due to the teleparallelism
constraint, the chiral anomaly for gravitationally coupled fermions seems to
be absent.
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1.1. Complex variables for the 1D harmonic oscillator

In a ‘nutshell’, the Ashtekar approach to quantum gravity proceeds from
a canonical transformation. In order to exhibit this on a most elementary
level, we consider as a toy model the Lagrangian

L =
1

2

•
q
2
− U(q) =

1

2
(
•
q
2
− q2) (1)

of a one–dimensional harmonic oscillator of one Hertz, where • := ∂/∂t
denotes the time derivative. In terms of the canonical momentum p :=

∂L/∂•
q =

•
q the Hamiltonian takes the form H = p

•
q − L = 1

2(p2 + q2).
Let us consider a canonical transformation (q, p) → (q̃, p̃) induced by

C = q2/2 as generating function. On the Lagrangian level this is equiva-

lently achieved by adding the boundary term i
•
C, resulting in the complex

Lagrangian
±
L = L ± i

•
C = L ± i

•
q q . (2)

The corresponding complex momenta are
±
p :=

•
q±i∂

•
C/∂•

q =
•
q±i∂C/∂q =

p± iq [= ±i
√

2a (†)]. As is shown below, in quantum mechanics (QM) this
corresponds to the Bargmann representation of the harmonic oscillator (and
is the main clever trick also in Ashtekar formulation, invented by a high

IQ!). The Hamiltonian
±
H :=

±
p

•
q −

±
L = 1

2

±
p
±
p − i

±
p q = H turns out to be

holomorphic in
±
p.

In QM, where q and p become operators obeying [q, p] = i~, the canonical
transformation is achieved by the similarity transformation

{
q̃ = NqN−1 = q

p̃ = NpN−1 = p± i∂
•
C/∂•

q =
±
p

⇒ N = e±C/~

︸ ︷︷ ︸
non−unitary

. (3)

The construction of the non-unitary operator N proceeds via eCpe−C =
p + [C, p] + 1

2! [C, [C, p]] + 1
3! [C, [C, [C, p]]] + · · · = p ± iq. Since [q2, p] =

q[q, p] + [q, p]q = 2i~q, we necessarily recover C = q2/2~. Observe that
in the Schrödinger representation this corresponds to the renormalization of
the wave function

ψ = Nψ̃ = exp
(
±q2/2~

)
ψ̃ , ψ̃n = AnHn

(
q/
√

~

)
, (4)

where Hn are the Hermite polynomials; for reality constraints and Wick
rotation to the creation and annihilation operators a and a †, see Ref. [31].
In the Ashtekar formulation of gravity with complex variables, the “triad

densities” and the complex momenta will become the generalized coordinates

and momenta according to q → ∗ϑα and
±
p → ∗

(±)

Π α =
(±)

A α.
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1.2. Ashtekar variables from the translational Chern–Simons term

Originally Ashtekar [2, 3] found his complex variables in the Hamilto-
nian formulation. In the equivalent Lagrangian approach, the change of
variables is likewise induced by a generating function [18,19] which involves
the boundary term dCTT multiplied by the imaginary unit.

Similarly as in Maxwell’s theory, where the Chern–Simons (CS) term
reads Cem := A ∧ F , the translational Chern–Simons term in gravity is
constructed from the coframe ϑα as a soldered translational gauge potential
[20] and torsion Tα := Dϑα as its corresponding field strength:

CTT :=
1

2ℓ2

(
ϑα ∧ Tα

)
. (5)

A fundamental length ℓ necessarily occurs for dimensional reasons. The
corresponding boundary or Nieh–Yan term [26]

dCTT ≡ 1

2ℓ2

(
Tα ∧ Tα +Rαβ ∧ ϑα ∧ ϑβ

)
(6)

suggest two options for a viable gravitational Lagrangian: After distributing
a Hodge star between the two 2–forms, Hilbert’s original choice

VHE = − 1

2ℓ2
R

{}
αβ ∧ ∗(ϑα ∧ ϑβ) (7)

emerges, where R
{}
αβ denotes the Riemannian curvature and Tα ∧ Tα = 0 as

in general relativity (GR). Secondly, a torsion square Lagrangian [15]

V‖ :=
1

2ℓ2
Tα ∧ ∗

(
− (1)Tα + 2 (2)Tα +

1

2
(3)Tα

)
(8)

with the teleparallelism (GR‖) constraint Rαβ = 0 of vanishing Riemann–
Cartan curvature could also be employed, as has already been suggested by
Einstein. Due to the geometric identity

V‖ ≡ VHE +
1

2ℓ2
Rαβ ∧ ∗(ϑα ∧ ϑβ) +

1

2ℓ2
d
(
ϑα ∧ ∗Tα

)
, (9)

GR‖ is equivalent to GR up to a boundary term. Note that both Lagrangians
are subcases of the Poincaré gauge (PG) theory [4, 12].

In the self-dual or chiral formulation [21, 22], the Lagrangian of the
Einstein–Cartan (EC) theory of gravity [32] plus cosmological term then
takes the form

(±)

V EC := VEC ± idCTT = − 1

2ℓ2

(±)

R αβ ∧ ∗(ϑα ∧ ϑβ) +
Λ

ℓ2
η . (10)
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Without fermions as matter source, it suffices to restrict to a Riemannian

connection Γαβ ≡ Γ
{}
αβ as part of the linear connection [12]. In the case of

gravitationally coupled Dirac spinors in the EC theory as well as for coupled
Rarita–Schwinger fields in simple supergravity, the translational boundary
term induces “on shell”, i.e. via Cartan’s algebraic torsion relation, also
a chiral decomposition in the fermionic part of the Lagrangian, cf. [21, 22]
for details. There exists also solutions of the corresponding Hamiltonian
constraints by loop states [1, 24].

2. Hamiltonian formulation

The general form of the PG Hamiltonian reads [19]

H ∼= nα δL

δϑα
+ Γ⊥

αβ δL

δΓαβ
=: nα Gα + Γ⊥

αβ Gαβ , (11)

where nα := n⌋ϑα comprises the lapse and shift vector and Γ⊥
αβ are lo-

cal Lorentz boosts. Together these are 4 + 6 parameters, which surface as
Lagrange multipliers for the generators Gα and Gαβ in phase space.

Quite generally, the Poisson brackets of the generators at “equal times”
read [4, 27, 29]

{Gα(t, ~x), Gβ(t, ~y)} = (−Tαβ
γGγ +Rαβ

γδGγδ)·δ(~x− ~y) , (12)

{Gα(t, ~x), Gβγ(t, ~y)} = ηα[βGγ]δ(~x− ~y) , (13)

{Gαβ(t, ~x), Gγδ(t, ~y)} = (ηγ[αGβ]δ − ηδ[αGβ]γ)·δ(~x− ~y) . (14)

They are the counterparts of the local Poincaré algebra

[Dα,Dβ] = −Tαβ
γ(x)Dγ +Rαβ

γδ(x)Lγδ ,

[Dα, Lβγ ] = ηα[β Dγ] ,

[Lαβ, Lγδ] = ηγ[α Lβ]δ − ηδ[α Lβ]γ , (15)

where Dα := eα⌋D is the gauge covariant derivative. Instead of “structure
constants”, in the translational part of both algebras there arises torsion
and curvature. Thus only a “soft gauge algebra” [28] emerges, a fact which
is gradually also realized by the Ashtekar community [25].

2.1. Complex GR constraints

Following Schwinger [30], we can apply a 3+1 decomposition [19] and use
tetrads in the time or temporal gauge, for which the coframe and curvature
with A,B,C, · · · = 1, 2, 3 tangential to the hypersurface satisfy

ϑ0̂ = 0 ,
(±)

R A :=
1

2
ηABC

(±)

R BC . (16)
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Then in the Ashtekar formulation [2], the Gauss, diffeomorphism and Hamil-
tonian constraints read

±
D ∗ϑA ∼= 0 , (17)

∗
(±)

R AB ∧ ∗ϑB ∼= 0 , (18)

HΛ := ηABC
∗

[
(±)

R A − Λ

6
∗ϑA

]
∧ ϑB ∧ ϑC ∼= 0 . (19)

In the transition to quantum gravity, one works in the connection repre-

sentation, for which the tangential Ashtekar connection
(±)

A B (“momentum”)
is represented by itself, whereas the “densitized” triads ∗ϑB become differ-
ential operators:

±
p:

(±)

A B Ψ(A) =
(±)

A BΨ(A) ,

q : ∗ϑB Ψ(A) =
δ

δ
(±)

A B

Ψ(A) . (20)

Quantum-theoretical factor ordering problems are ignored here.

3. Chern–Simons solution of quantum gravity?

Since in the Hamiltonian formulation, chiral GR becomes essentially 3D
on the hypersurface, on can formally transfer results from SU(2) Chern–
Simons field theory [9, 11, 35] to gravity. In fact, the state vector

ΨΛ(A) = exp


 3

Λ

∫

M3

(±)

C RR
{}




= exp

(
3

Λ

∫

M3

[(±)

A B ∧
(±)

R B
{} − 1

3!
ηBCD

(±)

A B ∧
(±)

A C ∧
(±)

A D
])

(21)

involving the tangential complexified Chern–Simons term C
{}
RR is known [14]

to solve the Hamiltonian constraint HΛ ΨΛ(A) = 0 of gravity in the non-
perturbative loop approach [6, 10]. This is due to the curvature identity

δ

δ
(±)

A B

ΨΛ(A) =
6

Λ

(±)

R B ΨΛ(A) . (22)
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Note that a non-zero cosmological constant Λ is crucial for this construc-
tion. Therefore, one would surmise that the state vector is dominated by
configurations winding around compact 3-manifolds as hypersurfaces.

Because of the Bianchi identity
(±)

D
(±)

R B ≡ 0 for the 3D curvature, also
the Gauss constraint (17) holds. However, for the diffeomorphism constraint
there arises a non-trivial Lanczos type quadratic curvature relation which
has to be satisfied.

3.1. Full solution of the Ashtekar constraints of the teleparallelism

equivalent in terms of Cartan circuits

On the other hand, “. . . gravity is that field which corresponds to a
gauge invariance with respect to displacement transformations”, according
Feynman. The teleparallel version (8) of Einstein’s GR has recently been
cast [19, 21, 22] into a Yang–Mills type gauge theory of translations after a

change of variables induced again via
(±)

V ‖ := V‖±idCTT. The teleparallelism

constraint can be enforced in the proper Lagrangian Ṽ‖ := V‖ − Rαβ ∧ λαβ

via the Lagrange multipliers λαβ. In the Hamiltonian formulation, there
would then arise the extra term Dλαβ in the Lorentz constraint, see (11.2) of
Ref. [19]. However, as suggested by the geometric identity (9), this constraint
is identically satisfied by λαβ = (1/2ℓ2) ∗(ϑα ∧ ϑβ) = −(1/Nℓ2)n[α

∗ϑβ].

This is only implicitly related to the teleparallel connection Γαβ
‖ which is of

pure gauge type and therefore can be gauged to zero.

After this trivialization of the Lorentz constraint, the following Hamil-
tonian surfaces [19]

(±)

H = −nα ∧
(±)

D
(±)

Π α + d(nα
(±)

Π α) . (23)

If we denote by K := N⌋V‖ the normal part of the GR‖–Lagrangian, the

“triad densities” ∗ϑα and the Ashtekar connection
(±)

A α := ∗
(±)

Π α, being
3–dual to the translational field momentum, form a canonical pair:

∂
(±)

K /∂(ℓn
∗ϑα) = −

(±)

A α.

Then the Hamiltonian (α = 0) and diffeomorphism constraints (α = A)
of complexified GR‖ are, in terms of this Sen type connection, already of
Yang–Mills form:

(±)

D ∗
(±)

A α = 0 . (24)
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In the transition to quantum gravity, we use, in contrast to the Hilbert–
Einstein case, the Schrödinger representation, for which the Ashtekar con-

nection
(±)

A B (“momentum”) becomes a differential operator

±
p:

(±)

A α Ψ‖(ϑ) =
δ

δ ∗ϑα

Ψ‖(ϑ) ,

q : ϑB Ψ‖(ϑ) = ϑB Ψ‖(ϑ) , (25)

whereas the triads remain generalized coordinates.

The Hamiltonian constraint H‖ =
(±)

D ∗
(±)

A 0̂ = 0, i.e. (24) for α = 0̂,
vanishes identically, if we adopt again tetrads in the time gauge (16).

Let us try for the remaining Gauss constraint (24) the state vector

Ψ‖(ϑ) = exp



∫

M3

(±)

C TT




= exp

(
1

2ℓ2

∫

M3

[
ϑB ∧

(±)

T B

])
= exp

(
1

2ℓ2

∫

M3

[
∗ϑB ∧ ∗

(±)

T B
])

(26)

which involves the tangential complexified translational Chern–Simons term
(±)

C TT in terms of the self- or anti-selfdual torsion
(±)

T α := 1
2 (Tα ± i ∗Tα).

Due to the torsion identity, we have

δ

δ ∗ϑB

Ψ‖(ϑ) = ∗
(±)

T B Ψ‖(ϑ) . (27)

For the Sen covariant tangential diffeomorphism constraint we conse-
quently find

(±)

D ∗

(
δ

δ ∗ϑA

)
=

(±)

D
(±)

T A ≡
(±)

R B
A ∧ ϑB = 0 , (28)

which vanishes due to the first Bianchi identity and the teleparallelism con-
straint of zero Riemann–Cartan curvature. (The latter needs also to be
fulfilled on the quantum level.)

Note that our new approach has the advantage that the state vector does
not depend on any cosmological constant which in the Kodama approach
[6, 10, 14] becomes singular for Λ → 0, but merely smoothly on the Planck
length ℓ.



878 E.W. Mielke

3.2. Cartan circuits versus Wilson loops

Instead of loops, we encounter for GR‖ Cartan circuits [7, 16] with dis-
locations at the Planck scale. Since these Cartan loops carry triads along,
they are inherently framed.

Moreover, it is a general feature of open Wilson loops that there ends
carry the Noether charge corresponding to the connection transported along
the loop. In the Ashtekar approach this is the spin as an su(2)-valued
“charge”, leading eventually to a ‘spin network’. This intuitively non-gravita-

tional feature originates from the intertwined coupling of the energy–momen-
tum and spin currents to torsion and curvature in the EC theory. In con-
tradistinction, GR‖ has the bonus that the corresponding loops transport
along the translational connection, i.e. the soldered coframe ϑα. Conse-
quently, their ends carry energy(–momentum) Σα := ∂L/∂ϑα as Noether
charge as it should be in a proper gauge theory of gravity.

If one converts the tetrads into the true translational connection Γ (T )α =
ϑα −Dξα of Cartan [7,20], there arises also the prospect of a more coherent
formulation of the gravitational Aharanov–Bohm effect [16].

Moreover, the usual axial anomaly [23]

〈dj5〉 = 2im〈P 〉 − 1

48π2

[
R{}αβ ∧R{}

αβ +
1

2
dA ∧ dA

]
(29)

in the coupling to fermions is absent due to the teleparallelism constraint
Rαβ = 0 if we disregard topological defects for the axial torsion A := ∗(ϑα∧
Tα) and the contortion Kαβ := Γ

{}
αβ − Γαβ . This can be infered from the

deformation R{}αβ∧R{}
αβ = Rαβ∧Rαβ +d[Kαβ∧(R{}αβ +D{}Kαβ− 2

3Kγ
α∧

Kβ
γ)], cf. [34]. (Observe that no Nieh–Yan term (6) contributes to (29),

despite recent claims in Ref. [8]).
On the other hand, on the 3D hypersurface of the Hamiltonian formu-

lation there exist the intriguing mapping ϑA → Γ ⋆A := 1
2η

ABC ΓBC of the
triads to the corresponding 3-dual of the su(2)-valued connection [5]. This
allows to establish the corresponding mapping CTT → CRR + Λ′η for the
associate Chern–Simons term plus induced cosmological term. Thus we ex-

pect that the complexified translational CS term
(±)

C TT will induce the same
knot invariants as for the Ashtekar connection.

4. Outlook: knitwear spacetime?

The full correlation function for Wilson loops is related to knot invari-

ants, such as the Jones polynomial or the Kauffman bracket [6, 10]. One
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should note however, that the construction of a knot polynomial which is
different for all knots is an open problem. The Jones polynomial, for in-
stance, coincides for some of the different prime knots up to 13 crossings.
It is a conjecture that the Vassiliev invariant [13, 33] classifies the knots
uniquely.

Commonly, Wilson type loops live on simply–connected spacetime. How-
ever, it would be interesting to see applications to spacetimes with knot

wormholes [17], for which generalizations of torus knots and links should
occur which cannot shrink to a point.

In conclusion, our macroscopic view of a smooth spacetime may be much
too simple on the Planck scale ℓ ≃ 10−33 cm of quantum gravity. Do we
live rather in a “knitwear spacetime” with dislocations and other topological
defects? A silk tie with one macroscopic trefoil knot looks also very smooth
and elegant, however, even under a modest microscope the “knitting and
knotting” of the texture will reveal itself!
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