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Basic features of the conservation laws in the Hamiltonian approach to
the Poincaré gauge theory are presented. It is shown that the Hamiltonian
is given as a linear combination of ten first class constraints. The Poisson
bracket algebra of these constraints is used to construct the gauge gener-
ators. By assuming that the asymptotic symmetry is the global Poincaré
symmetry, we derived the improved form of the asymptotic generators, and
discussed the related conservation laws of energy, momentum, etc.

PACS numbers: 04.50. +h, 04.20. Me

1. Introduction

Among various attempts to overcome the problem of quantization of the
general relativity, gauge theories of gravity are especially attractive, as they
are based on the concept of gauge symmetry which has been very successful
in describing other fundamental interactions in nature. The importance of
the Poincaré symmetry in particle physics leads one to consider the Poincaré
gauge theory (PGT) as a natural framework for the description of the grav-
itational phenomena [1].

In this paper we shall

a) present the Hamiltonian structure of the general PGT [2,3],

b) construct the gauge generators [4–6], and

c) clarify the relation between gauge symmetries and conservation laws,
in case of asymptotically flat spacetimes [7].
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2. Hamiltonian dynamics

The Hamiltonian analysis of PGT leads to a simple form of the gravita-
tional Hamiltonian, and yields a clear picture of the dynamical structure [3].

Basic gravitational variables in PGT are tetrad bi
µ and Lorentz connec-

tion Aij
µ, and the corresponding field strengths are torsion and curvature:

T i
µν = ∂µbi

ν + Ai
sµbs

ν − (µ ↔ ν), Rij
µν = ∂µAij

ν + Ai
sµAsj

ν − (µ ↔ ν).
The geometry of PGT is defined by the Riemann–Cartan spacetime U4, with

the general Lagrangian L̃ = bLG(Rij
kl, T

i
kl) + bLM(Ψ,∇kΨ), where Ψ are

matter fields and ∇kΨ is the covariant derivative. The gravitational La-
grangian which is at most quadratic in field strengths, i.e. of R + T 2 + R2

type, depends on ten parameters (assuming parity invariance).
Constraints. The momentum variables (πk

µ, πij
µ, π), corresponding to

(bk
µ, Aij

µ, Ψ), are obtained from L̃ in the usual way. Due to the fact that
T i

µν and Rij
µν are defined through the antisymmetric derivatives of bk

µ

and Aij
µ, respectively, they do not involve velocities of bk

0 and Aij
0. As a

consequence, one immediately obtains the following set of the so-called sure

primary constraints:

φk
0 ≡ πk

0 ≈ 0 , φij
0 ≡ πij

0 ≈ 0 . (1)

These constraints are always present, independently of the values of param-
eters in L̃. Depending of a specific form of the Lagrangian, one may also
have additional primary constraints in the theory.

The canonical Hamiltonian has the form Hc = HM + HG, where HM =

πΨ,0 − L̃M , HG = πα
k bk

α,0 + 1
2πij

αAij
α,0 − L̃G. The total Hamiltonian is

HT = Hc + uk
0φk

0 + 1
2uij

0φij
0 + (u · φ) , (2)

where φ denotes all additional primary constraints, if they exist (if-con-
straints), and HT =

∫
d3xHT .

The evaluation of the consistency conditions of the primary constraints,
π̇k

0 = {πk
0,HT } ≈ 0 and π̇ij

0 = {πij
0,HT } ≈ 0, is essentially simplified if

we previously find out the dependence of HT on the unphysical variables bk
0

and Aij
0. We shall show that Hc is linear in bk

0 and Aij
0,

Hc = bk
0Hk − 1

2Aij
0Hij + ∂αDα , (3)

where ∂αDα is a three–divergence term, while possible extra primary con-
straints φ are independent of bk

0 and Aij
0. Consequently, the consistency

conditions of the primary constraints will result in the secondary constraints:

Hk ≈ 0 , Hij ≈ 0 . (4)
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The linearity of Hc in bk
0 and Aij

0 is closely related to the so–called
(3+1) decomposition of spacetime. If n is the unit normal to the hypersur-
face Σ0 : x0 = const., the four vectors {n,eα} define the so-called ADM
basis. Introducing the projectors on n and Σ0, (P⊥)lk = nkn

l , (P‖)
l
k =

δl
k − nkn

l, we can express any vector in terms of its parallel and orthogonal

components: Vk = nkV⊥ + Vk̄, where Vk̄ ≡ (V‖)k = (P‖)
l
k Vl, V⊥ = V knk.

An analogous decomposition can be defined for any tensor.
The decomposition of e0 in the ADM basis yields e0 = Nn + Nα

eα,
where N and Nα are called lapse and shift functions, respectively. By using
the fact that N and Nα are linear in bk

0, N = nkb
k
0, Nα = hk̄

αbk
0, the

canonical Hamiltonian (3) can be easily brought into an equivalent form:

Hc = NH⊥ + NαHα − 1
2Aij

0Hij + ∂αDα , (5)

where H⊥ = nkHk, Hα = bk
αHk.

Matter Hamiltonian. Let us now turn to the proof of (5) for the matter
Hamiltonian. First, we decompose ∇kΨ into the orthogonal and parallel
components,

∇kΨ = nk∇⊥Ψ + ∇k̄Ψ ≡ nkh⊥
µ∇µΨ + hk̄

α∇αΨ .

Replacing this into LM leads to LM = LM(Ψ,∇k̄Ψ ;∇⊥Ψ, nk), where com-
plete dependence on velocities and unphysical variables (bk

0, A
ij

0) is con-
tained in ∇⊥Ψ . Second, since b = det(bk

µ) = NJ , where J does not depend
on bk

0, the expression for π can be written as

π ≡
∂(bLM )

∂Ψ,0
= J

∂LM

∂∇⊥Ψ
.

Finally, using the relation ∇0Ψ ≡ N∇⊥Ψ + Nα∇αΨ = Ψ,0 + 1
2Aij

0ΣijΨ to
express the velocities Ψ,0, the canonical Hamiltonian for matter fields takes
the form (5), where

HM
α = π∇αΨ , HM

ij = πΣijΨ ,

HM
⊥ = π∇⊥Ψ − JLM , DM

α = 0 . (6)

Expressions for HM
α and HM

ij are independent of unphysical variables. They
do not depend on the specific form of LM , but only on the transformation
properties of fields, and are called kinematical parts of the Hamiltonian. The
term HM

⊥ is dynamical , as it depends on the choice of LM . After eliminating
∇⊥Ψ with the help of the relation defining π, one finds that HM

⊥ does not

depend on unphysical variables: HM
⊥ = HM

⊥ (Ψ,∇k̄Ψ ;π/J, nk).
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Additional primary constraints, if they exist, are also independent of
unphysical variables.
Gravitational Hamiltonian. Construction of the gravitational Hamilto-
nian can be performed in a very similar way, the role of ∇kΨ being taken
over by T i

km and Rij
km. In the first step we decompose the torsion and the

curvature, in last two indices, into the orthogonal and parallel components.
The parallel components T i

k̄m̄ and Rij
k̄m̄ are independent of velocities and

unphysical variables. The replacement in the gravitational Lagrangian yields
LG =LG(T i

k̄m̄, Rij
k̄m̄;T i

⊥k̄, R
ij
⊥k̄, n

k). The relations defining gravitational
momenta take the form

π̂i
k̄ = J

∂LG

∂T i
⊥k̄

, π̂ij
k̄ = J

∂LG

∂Rij
⊥k̄

,

where π̂i
k̄ ≡ πi

αbk
α and π̂ij

k̄ ≡ πij
αbk

α are “parallel” gravitational momenta.
The velocities bi

α,0 and Aij
α,0 can be calculated from the definitions of T i

0α

and Rij
0α. After a simple algebra the canonical Hamiltonian takes the form

(5), where

HG
ij = 2π[i

αbj]α + 2πk[i
αAk

j]α + ∂απij
α ,

HG
α = πi

βT i
αβ + 1

2πij
βRij

αβ − bk
α∇βπk

β ,

HG
⊥ = (π̂i

m̄T i
⊥m̄ + 1

2 π̂ij
m̄Rij

⊥m̄ − JLG) − nk∇βπk
β ,

Dα
G = bi

0πi
α + 1

2Aij
0πij

α . (7)

The expressions T i
⊥m̄ and Rij

⊥m̄ in HG
⊥ should be eliminated with the help

of the equations defining momenta π̂i
m̄ and π̂ij

m̄.
Consistency of the theory. The fact that Hc is linear in unphysical
variables implies the existence of the secondary constraints: H⊥ ≈ 0, Hα ≈ 0
and Hij ≈ 0. By working out the constraint algebra we shall see that these
constraints are FC. As a consequence, the consistency conditions of the
secondary constraints will be automatically satisfied.

3. Gauge symmetries

The correct definition of gauge generators enables one to clarify the re-
lationship between gauge symmetries and conservation laws.
Constraint algebra. An explicit knowledge of the algebra of constraints
is necessary for the investigation of the consistency of the theory, as well as
for the construction of the gauge generators [4].

If extra constraints are not present in the theory, one can show that the
Poisson bracket algebra of the secondary constraints takes the form

{Hij ,H
′
kl} = 1

2fij
mn

klHmnδ , {Hij ,H
′
α} = 0 ,
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{Hα,H′
β} = (H′

α∂β + Hβ∂α − 1
2Rij

αβHij)δ ,

{Hij ,H
′
⊥} = 0 , {Hα,H′

⊥} = (H⊥∂α − 1
2Rij

α⊥Hij)δ ,

{H⊥,H′
⊥} = −(3gαβHα + 3g′αβH′

α)∂βδ . (8)

In the presence of extra constraints the whole analysis becomes much
more involved, but the results are essentially the same: a) the dynamical
Hamiltonian H⊥ goes over into a redefined expression H⊥, that includes the
contributions of all primary second class constraints; b) the Poisson bracket
algebra may contain primary FC terms (CPFC). Therefore, consistency
conditions of the secondary constraints are automatically satisfied.
Gauge generators. In PGT, the gauge generator has the form G =
ε̇(t)G1 + ε(t)G0, where G0, G1 are phase space functions satisfying the con-
ditions [5]

G1 = CPFC ,

G0 + {G1,HT } = CPFC ,

{G0,HT } = CPFC .

It is clear that the construction of the gauge generator demands the
knowledge of the algebra of constraints. Since the Poincaré gauge symmetry
is always present, independently of a specific form of the action, one naturally
expects that all essential features of the gauge generator can be obtained by
considering the simple case of the theory without extra constraints. In that
case the primary constraints πk

0 and πij
0 are FC, and the Poincaré gauge

generator takes the form [6]

G̃ =

∫
d3x[ξ̇µ(bk

µπk
0 + 1

2Aij
µπij

0) + ξµPµ + 1
2 ω̇ijπij

0 + 1
2ωijSij] , (9)

where

Pµ = bk
µHk −

1
2Aij

µHij + bk
0,µπk

0 + 1
2Aij

0,µπij
0 ,

Sij = −Hij + 2b[i0πj]
0 + 2As

[i0πsj]
0 .

Note that P0 = HT − ∂αDα, since ḃk
0 = uk

0 , Ȧij
0 = uij

0, on shell.
The action of the gauge generator on the fields (Ψ, bk

µ, Aij
µ) produces the

correct Poincaré gauge transformations. These transformations are symme-
try transformations of the action not only when extra constraints are absent,
but also in the general case. This fact leads to the conclusion that the ex-
pression (9) is the correct generator of the Poincaré gauge symmetry for any
choice of the parameters of the theory.
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4. Conservation laws

Now, we are going to consider one of the most important problems of
the classical theory of gravity — the definition of the gravitational energy,
and other conserved quantities [7].
The asymptotic symmetry. We assume that the symmetry of the U4

theory in the asymptotic region is the global Poincaré symmetry. The global
Poincaré transformations can be obtained from the gauge transformations
by the following replacement of parameters:

ωij(x) → −ωij , ξµ(x) → −ωµ
νx

ν − εν ≡ −ξµ ,

where ωij and εν are constants, ωµ
ν = δµ

i ωijηjν . The related generator can
be obtained from the gauge generator (9) in the same manner, leading to

G = 1
2ωijMij − ενPν , (10)

where

Pµ =

∫
d3xPµ,

Mαβ =

∫
d3x(xαPβ − xβPα − Sαβ) ,

M0β =

∫
d3x(x0Pβ − xβP0 − S0β + bk

βπk
0 + 1

2Aij
βπij

0) .

Since the generators act on basic dynamical variables via Poisson brack-
ets, they are required to have well defined functional derivatives. As this is
not always the case with the generator (10), we shall try to improve its form
so as to obtain the expression with well defined functional derivatives. The
first step in that direction is to define precisely the phase space in which the
generator (10) acts.
The phase space. The choice of asymptotics will become more clear if
we first express the asymptotic structure of spacetime in certain geometric
terms. Here we shall be concerned with isolated physical systems, charac-
terized by matter fields that decrease sufficiently fast at large distances, so
that their contribution to surface integrals vanishes. The spacetime out-
side an isolated system is said to be asymptotically flat if the following two
conditions are satisfied:

(a) gµν = ηµν + O1, where ηµν is the Minkowskian metric, On decreases
like r−n or faster for large r, and r2 = (x1)2 + (x2)2 + (x3)2.

(b) Rij
µν = O2+α (α > 0) (the absolute parallelism for large r).
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The second condition can be easily satisfied by demanding Aij
µ = O1+α.

In the Einstein–Cartan (EC) theory the connection behaves as ∂gµν , so that
A = O2. The same law holds in the general U4 theory when the field A is
massive, while massless A can have a slower decrease. We shall study here,
for simplicity, the EC theory, i.e. we shall assume that

bk
µ = δk

µ + O1 , Aij
µ = O2 . (11)

To ensure the global Poincaré invariance of these conditions we demand
bk

µ,ν = O2, Aij
µ,ν = O3, etc.

The asymptotic behaviour of momenta is determined by requiring p −

∂L/∂q̇ = Ô, where Ô denotes a term that decreases sufficiently fast. From
the definitions of the gravitational momenta in EC theory one obtains

πk
0, πij

0 = Ô , πk
α = Ô , πij

α = −4aJn[ihj]
α + Ô . (12)

Similar arguments lead to the consistent determination of the asymptotic
behaviour of the Hamiltonian multipliers.
Improving the Poincaré generators. The generators act on dynamical
variables via Poisson brackets, defined in terms of functional derivatives.
A functional F [ϕ, π] =

∫
d3xf(ϕ, ∂µϕ, π, ∂νπ) has well defined functional

derivatives if its variation can be written as δF =
∫

d3x[Aδϕ + Bδπ], where
terms δϕ,µ and δπ,µ are absent .

The variation of the spatial translation generator has the form

δPα = −δEα + R ,

Eα ≡ ωintdsγ(πij
βAij

[αδβ]
γ) , (13)

where the integration domain is the boundary of the three-dimensional space,
and R denotes regular terms, not containing δϕ,µ, δπ,ν . Therefore, we can
redefine the generator Pα,

Pα → P̃α ≡ Pα + Eα , (14)

so that P̃α has well defined functional derivative. The assumed asymptotic
behaviour of phase–space variables ensures finitness of Eα.

In a similar way we find P̃ 0 ≡ P0 + E0, where

E0 ≡ ωintdsγ(−2aJha
αhb

γAab
α) . (15)

The surface term E0 is finite under the adopted asymptotic conditions, and
represents the value of the energy of the system.
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The spatial rotation generator reads M̃αβ = Mαβ + Eαβ , where

Eαβ ≡ ωintdsγ [−παβ
γ + x[α(πij

γAij
β])] . (16)

A detailed analysis shows that the adopted asymptotic conditions do not
guarantee the finitness of Eαβ , as the integrand contains O1 terms. These
troublesome terms are seen to vanish if we impose the asymptotic gauge
condition a[ij] = O2 on the gauge potentials ak

µ = bk
µ − δk

µ, and certain
parity conditions. These conditions are invariant under the global Poincaré
transformations, and they restrict the remaining gauge symmetry. After

that Eαβ is seen to be finite and, consequently, M̃αβ is well defined.
By varying the expression for the boost generator one finds

E0β ≡ ωintdsγ [−π0β
γ + x0(πij

αAij
[βδα]

γ)

−xβ(2aJha
αhb

γAab
α)] . (17)

Additional gauge and parity conditions guarantee the finitness of E0β .
All these results are referred to the EC theory. Analogous considerations

in the general R + T 2 + R2 theory show that the boost generator cannot
be redefined by adding a surface term. Therefore, it is not a well defined
generator under the adopted boundary conditions.
Conservation laws. The improved asymptotic Poincaré generators satisfy
the standard Poincaré algebra, up to squares (or higher powers) of con-
straints and surface terms. This results proves the asymptotic Poincaré
symmetry of the theory. We now wish to see whether this symmetry im-
plies, as usually, the existence of certain conserved quantities.

One can prove that a phase-space functional G[ϕ, π, t] is a generator of
global symmetries if and only if

{G, H̃T } +
∂G

∂t
= CPFC , {G,ϕs} ≈ 0 ,

where H̃T is the improved Hamiltonian, ϕs are all constraints, and, as before,
the equality means an equality up to the zero generators. The first equation
represents the Hamiltonian form of the conservation law. Indeed, it implies
dG/dt ≡ {G,HT } + ∂G/∂t ≈ S, so that G is conserved if the surface term

S is absent .
One finds in this way that the generators P̃ 0, P̃α and M̃αβ are conserved,

and that the surface terms E0, Eα and Eαβ represent the values of energy,
linear momentum and angular momentum as conserved quantities. On the
other hand, the boost generator is not a conserved quantity. This result is a
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consequence of an explicit, linear time dependence of M̃0β , and the existence

of a non–vanishing surface term in P̃ β.
Comparison with the Lagrangian formalism. In order to compare
the form of the surface terms with those obtained by the Lagrangian treat-
ment, one should express all momentum variables in terms of fields and their
derivatives, with the help of the constraints and the equations of motion.
One finds that

i) the energy–momentum in EC theory is given by the same expressions
as in GR,

ii) the angular momentum also coincides with the GR expression.

In the general R + T 2 + R2 theory, the result for the energy–momentum
is of the same form, while the angular momentum remains the same only
when all tordions are massive. When massless tordions exist, then a) the
spatial angular momentum Eαβ becomes different from the GR expression,
and b) the boost E0β is not even defined in this case.

5. Concluding remarks

1) We constructed the Hamiltonian for the general PGT. The Hamilto-
nian constraints H⊥,Hα,Hij are found to be first class.

2) The Poisson bracket algebra of constraints is calculated and used to
construct the Poincaré gauge generators.

3) In case of the Minkowskian asymptotics, we obtained the conserva-
tion of energy–momentum and angular momentum. Other interesting
asymptotic conditions (e.g. de Sitter spacetime) have not yet been
studied.

4) Depending on the structure of L̃, one may have extra FC constraints
in the theory. The related extra gauge symmetries have been studied
only in the linear approximation [8].

5) The Hamiltonian approach may be very useful in clarifying the dy-
namical structure of the teleparallelism theory.
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