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In Kaluza–Klein theory one usually computes the scalar curvature of
the principal bundle manifold using the Levi–Civita connection. Here we
consider a natural family of invariant connections on a soldered principal
bundle which is then parallelizable and hence spinable. This 3-parameter
family includes the Levi–Civita connection and the flat connection. By
varying the connection instead of merely scaling the metric on the fibers,
there is greater independence among the coupling constants in the scalar
curvature. In particular, a large cosmological constant can be avoided in
spite of tiny fibers.

PACS numbers: 04.50. +h

1. Preliminaries

For a Lie group G with Lie algebra g, let π : P → M be a principal
G-bundle over an n-manifold M . For A ∈ g, there is a fundamental vertical
vector field A∗ on P given at p ∈ P by

A∗

p =
d

dt
(p exp (tA))

∣

∣

∣

∣

t=0

. (1)
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A connection on P is a g-valued 1-form ω ∈ Ω1 (P, g) , such that ω (A∗) = A
for all A ∈ g and R∗

gω = Adg−1ω for all g ∈ G where Rg : P → P is
given by the right action Rg (p) := pg and Ad : G →End(g) is the adjoint
representation. Generally, we use the notation of [3] or [7]. For an insightful
introduction to the use of bundles and modern geometry in physics which is
particularly suited to this article, see [11].

We assume that there is a representation τ : G →O(n). More generally,
we could consider the pseudo-orthogonal case τ : G →O(n−q, q), but for the
sake of simplicity, we leave the straightforward modifications to the inter-
ested reader. We mention that for the most common physical applications,
G = G0×O(1, 3) where G0 is a compact internal symmetry group, such as
SU(3)×SU(2)×U(1), SU(5), Spin(10), etc., and τ : G0×O(1, 3) →O(1, 3) is
just the projection.

A R
n-valued 1-form α on P is equivariant with respect to τ if R∗

gα = τ−1α
for all g ∈ G, and α is horizontal if αp (A∗) = 0 for all A ∈ g. We denote
the vector space of all such smooth, horizontal, 1-forms equivariant with

respect to τ by Ω
1
τ (P, Rn). For the space of equivariant forms which are not

necessarily horizontal we write Ω1
τ (P, Rn) , and we use similar notation for

different representations and higher degree forms. A form ϕ ∈ Ω
1
τ (P, Rn) is

called a soldering form if ϕp : TpP → R
n is onto for all p ∈ P. There is a

right action of G on P × R
n given by [p, v] · g =

[

pg, τ
(

g−1
)

v
]

. Let

V := P ×τ R
n =

P × R
n

G
(2)

be the quotient space. The obvious projection V → M defines a vector
bundle over M, the vector bundle associated to P → M via τ . Soldering
forms ϕ correspond to isomorphisms TM ∼= V via π∗ (Xp) ↔ [p, ϕ (Xp)]
for Xp ∈ TpP . Since V has a natural Riemannian structure, a soldering
form induces a Riemannian metric on M . Many have profitably regarded
soldering forms as more fundamental than metrics. Early on, Trautman [10]
emphasized that the presence of a soldering form is what sets gravitational
gauge theories apart from the rest.

Suppose that kg is an AdG-invariant inner product on g and kRn is the

usual inner product on R
n. If ϕ ∈ Ω

1
τ (P, Rn) is a soldering form, one can

define the metric

gP := kg (ω, ω) + kRn (ϕ,ϕ) (3)

on P. This is analogous to the sort of bundle metric used in Kaluza–Klein
theory, except that our P is soldered to M via ϕ and our group G is not usu-
ally interpreted as a purely internal symmetry group G0. In Kaluza–Klein
theory one computes the scalar curvature RP0 of the Levi–Civita connection
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for a metric on P0, where π0 : P0 → M is a principal bundle with compact
internal symmetry group G0. The metric on P0 is gP0 := kg0 (ω0, ω0)+π∗

0gM ,
where kg0 is an AdG0 -invariant scalar product on g0, ω0 is a connection 1-
form on P0, and gM is a metric on M . One finds that the scalar curvature
for gP0 is

RP0 = RG0 + π∗

0 (RM ) − 1
4 (kg0 ⊗ gM ) (Ωω0 , Ωω0) , (4)

where RG0 is the scalar curvature of the Levi–Civita connection for the bi-
invariant metric on G0 induced by kg0, RM is the scalar curvature of M
with respect to the Levi–Civita connection for the metric gM on M, and

Ωω0 := dω0 + 1
2 [ω0, ω0] ∈ Ω

2
(P0, G0) is the field strength of the gauge

potential ω0. As the scalar curvature RP0 is G0-invariant, it projects to a
well-defined function on M which serves as an action density. Setting the
first variation of the total action with respect to gM equal to zero yields
Einstein’s equations

(R
M

)ij −
1
2 (RM + RG0) (gM )ij

= 1
2 (gM )hk kg0

(

Ωω0
hi , Ωω0

kj

)

− 1
8 (kg0 ⊗ gM ) (Ωω0 , Ωω0) (gM )ij (5)

with Yang–Mills source originating from ω0 and a cosmological constant due
to RG0 (which many are content to remove by hand). The first variation
with respect to ω0 yields the Yang–Mills equation δω0Ωω0 = 0, where δω0 is
the covariant codifferential operator. For more details on this, see [3] or [4].

One can also compute the scalar curvature of the Levi–Civita connection
of gP in (3), and we will present the result. However, there are many other
natural G-invariant linear metric connections on P for which one can com-
pute the scalar curvature. Indeed, there is a natural 3-parameter family of
G-invariant linear connections for P which we will examine. We have com-
puted the scalar curvature of these connections as a quadratic function of
these 3 parameters. Essentially the result generalizes the standard Kaluza–
Klein result. Conceivably this could be useful to modelers who want to get
an early start building the next universe before time runs out.

2. Invariant connections

A vector v ∈ R
n gives rise to a standard horizontal vector field v∗ which

is determined by

ω (v∗) = 0 and ϕ (v∗) = v. (6)

Given an orthonormal basis e1, ..., en for R
n with the usual metric and an or-

thonormal basis u1′ , ..., uN ′ for g relative to the AdG-invariant inner product
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kg, we have a globally defined framing u∗

1′ , ..., u
∗

N ′ , e∗1, ..., e
∗

n of fundamental

vertical vector fields and standard horizontal vector fields. Note that we

have primed 1′, ..., N ′ so that {1′, ...,N ′} ∩ {1, ..., n} = φ. In sums, we let

the Greek indices α, β, γ, ... run from 1′ to N ′ and lower-case Latin indices

h, i, j, ... run from 1 to n. Writing

ω =
N ′

∑

α=1′

ωαuα =
∑

α

ωαuα and ϕ =
n
∑

i=1

ϕiei =
∑

i

ϕiei, (7)

we see that ω1′ , ..., ωN ′

, ϕ1, ..., ϕn form the coframe field dual to frame field

u∗

1′ , ..., u
∗

N ′ , e∗1, ..., e
∗

n. These are global orthonormal framings with respect to

gP . For non-soldered Kaluza–Klein theories, one does not necessarily have

a global framings, let alone natural ones. It is also convenient to define

(v1, ..., vN , vN+1, ..., vN+n) := (u1′ , ..., uN ′ , e1, ..., en) , (8)

and introduce the (g ⊕ R
n)-valued form ̟ := (ω,ϕ). This form is an exam-

ple of a Cartan connection (see [8]). Via the choice of bases, we can identify

̟ with the R
N+n-valued form (global coframe)

(

̟1, ...,̟N ,̟N+1, ...,̟N+n
)

:=
(

ω1′ , ..., ωN ′

, ϕ1, ..., ϕn
)

(9)

which is dual to the framing of vertical and horizontal vector fields
(

v∗1 , ..., v
∗

N+n

)

. We let the upper-case Latin indices H, I, J,K,... run from 1

to N + n.

Let ∇ denote the covariant derivative for a linear connection on P . Asso-

ciated with ∇ is a globally-defined (N + n)× (N + n) matrix-valued 1-form

θ on P, defined by

∇v∗
K

v∗J =
∑

K

θIJ (v∗K) v∗I . (10)

Alternatively (in basis-free notation), for A, B ∈ g ⊕ R
n and with A∗ :=

̟−1 (A) , we have

∇A∗B∗ = (θ (A∗)B)∗ (11)

for θ ∈ Ω1 (P,End (g ⊕ R
n)) . The flat connection for gP , is the one for which

θ = 0. By definition, a metric connection (relative to gP ) is one for which

∇ satisfies

A∗ [gP (B∗, C∗)] = gP (∇A∗B∗, C∗) + gP (B∗,∇A∗C∗) (12)
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or

0 = gP ((θ (A∗)B)∗ , C∗) + gP (B∗, (θ (A∗) C)∗) , (13)

i.e., the associated matrix θ of connection 1-forms is anti-symmetric. The

torsion of ∇ is the (g ⊕ R
n)-valued 2-form T θ on P given by

T θ := d̟ + θ ∧ ̟ = dω ⊕ dϕ + θ ∧ (ω ⊕ ϕ) . (14)

Here θ∧̟ is the matrix product of θ with ̟, where the entries are multiplied

via wedge product, or equivalently

(θ ∧ ̟) (X,Y ) = θ (X) ̟ (Y ) − θ (Y )̟ (X) . (15)

For the Levi–Civita connection T θ = 0, and for the flat connection clearly

T θ = d̟. For a given 2-form T ∈ Ω2 (P, g ⊕ R
n), the equation

d̟ + θ ∧ ̟ = T (16)

determines θ uniquely. To find θ, we proceed as follows. We define the

curvature of ω by

Ωω := dω +
1

2
[ω, ω] , (17)

and the torsion of ω relative to ϕ by

Φ := Dωϕ := dϕ + τ∗ (ω) ∧ ϕ. (18)

Here 1
2 [ω, ω] ∈ Ω2 (P, g) is given by

1

2
[ω, ω] (X,Y ) :=

1

2
([ω (X) , ω (Y )] − [ω (Y ) , ω (X)]) = [ω (X) , ω (Y )] ,

(19)
and for g a Lie algebra of matrices, 1

2 [ω, ω] = ω ∧ ω. Also, τ∗ : g → so (n) is
the Lie algebra map induced by τ : G →O(n). We say that ω is torsion-free

relative to ϕ, if Φ = 0. This is the usual notion of “torsion-free” when ϕ is
the canonical 1-form on the bundle of orthonormal frames (relative to some
metric gM on M) with connection 1-form ω (i.e., in this case, if ω is torsion-
free relative to ϕ, then ω is the Levi–Civita connection for gM ). We remain
in the general setting, not assuming that Φ = 0. We can write (16) as

(

Ωω −
1

2
[ω, ω]

)

⊕ (Dωϕ − τ∗ (ω) ∧ ϕ) + θ ∧ (ω ⊕ ϕ) = T. (20)
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We also write

Ωω =
1

2

∑

i,j

Ωijϕ
i ∧ ϕj =

1

2

∑

i,j,α

Ωαijuαϕi ∧ ϕj (21)

and

Dωϕ = Φ =
1

2

∑

i,j

Φijϕ
i ∧ ϕj =

1

2

∑

i,j,k

Φkijekϕ
i ∧ ϕj . (22)

The structure constants cαβγ are defined by

[uβ, uγ ] =
∑

α

cαβγuα. (23)

For any AdG-invariant metric kg on g, we have cαβγ totally antisymmetric
in α, β, γ. Now

d̟ = dω ⊕ dϕ =

(

Ωω −
1

2
[ω, ω]

)

⊕ (Dωϕ − τ∗ (ω) ∧ ϕ)

=
∑

α





1

2

∑

i,j

Ωαijϕ
i ∧ ϕj −

1

2

∑

β,γ

cαβγωβ ∧ ωγ



uα

⊕
∑

i





1

2

∑

j,k

Φijkϕ
j ∧ ϕk −

∑

α,j

τ∗ (uα)ij ωα ∧ ϕj



 ei. (24)

In general, suppose that

d̟I =
1

2

∑

J,K

bIJK̟J ∧ ̟K , (25)

where bIJK = −bIKJ . Then the unique constants θIJK , such that

θIJ =
∑

K

θIJK̟K (26)

satisfies

d̟ + θ ∧ ̟ = T =
1

2

∑

I,J,K

TIJKvI ̟J ∧ ̟K (27)

for given TIJK (with TIKJ = −TIJK), are given by

θIKJ = −
1

2
(bIJK + bKIJ − bJKI) +

1

2
(TIJK + TKIJ − TJKI) . (28)
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Writing

θαβ =
∑

γ

θαβγωγ +
∑

k

θαβkϕ
k ,

θαj = −θjα =
∑

γ

θαjγωγ +
∑

k

θαjkϕ
k ,

θij =
∑

γ

θijγωγ +
∑

k

θijkϕ
k, (29)

(28) yields

θαβγ =
1

2
cαγβ + 1

2 (Tαγβ + Tβαγ − Tγβα) ,

θαβi = 1
2 (Tαiβ + Tβαi − Tiβα) ,

θαji = −1
2Ωαij + 1

2 (Tαij + Tjαi − Tijα) ,

θαjγ = 1
2 (Tαγj + Tjαγ − Tγjα) ,

θjαi = 1
2Ωαij + 1

2 (Tjiα + Tαji − Tiαj) ,

θjαβ = 1
2 (Tjβα + Tαjβ − Tβαj) ,

θikj = −1
2 (Φijk + Φkij − Φjki) + 1

2 (Tijk + Tkij − Tjki) ,

θikα = τ∗ (uα)ik − 1
2Ωαik + 1

2 (Tiαk + Tkiα − Tαki) . (30)

We obtain the Levi–Civita connection, say θL, by setting all components of
T equal to 0. Thus,

θL
αβ =

1

2

∑

γ

cαγβωγ ,

θL
αj = −θL

jα = −
1

2

∑

k

Ωαijϕ
i ,

θL
ij =

∑

γ

(

τ∗ (uγ)
ij
− 1

2Ωγij

)

ωγ −
1

2

∑

k

(Φikj + Φjik − Φkji) ϕk . (31)
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If ûα := kg (uα, ·) and êi := kRn (ei, ·) , then

θL =
∑

α,β

θL
αβuα ⊗ ûβ +

∑

α,j

θL
αj (uα ⊗ êj − ej ⊗ ûα) +

∑

i,j

θL
ijei ⊗ êj

=
1

2

∑

α,β,γ

cαγβωγ ⊗ uα ⊗ ûβ −
1

2

∑

α,j,i

Ωαijϕ
i ⊗ (uα ⊗ êj − ej ⊗ ûα)

+
∑

i,j,γ

(

τ∗ (uγ)
ij
−

1

2
Ωγij

)

ωγ ⊗ ei ⊗ êj

−
1

2

∑

i,j,k

(Φikj + Φjik − Φkji)ϕk ⊗ ei ⊗ êj . (32)

Besides the Levi–Civita connection and the flat connection (where θ = 0),
there are other natural choices. For example, even if Φ 6= 0, we may choose
Tijk = Φijk to produce θikj = 0. We can also choose Tαγβ = −cαγβ to

get θαβγ = 1
2cαγβ − 1

2 (cαγβ + cβαγ − cγβα) = 0. We study more general
possibilities below. For the Levi–Civita connection, we have

∇u∗
α
u∗

β =
1

2

∑

γ

cγαβu∗

γ =
1

2
[uα, uβ ]∗ ,

∇e∗j
u∗

β =
1

2

∑

i

Ωβjie
∗

i ,

∇u∗
α
e∗j =

∑

i

(

τ∗ (uα)ij −
1

2
Ωαij

)

e∗i ,

∇e∗j
e∗k =

1

2

∑

γ

Ωγkju
∗

γ −
1

2

∑

i

(Φijk + Φkij − Φjki) e∗i . (33)

Since we want the scalar curvature for ∇ to be G-invariant, it is desirable
to require that the covariant derivative operator ∇ determined by θ be G-
invariant on P , in the sense that

Rg∗ (∇A∗B∗) = ∇Rg∗(A∗) (Rg∗ (B∗)) . (34)

One can show that this is equivalent to the Ad(Ad×τ)-equivariance of θ, where
Ad(Ad×τ) : G →O(so (g ⊕ R

n)) is given (for E ∈End(g ⊕ R
n)) by

Ad(Ad×τ) (g) (E) = (Adg × τ (g)) ◦ E ◦
(

Adg−1 × τ
(

g−1
))

. (35)
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To say that θ ∈ Ω1
Ad(Ad×τ)

(P, so (g ⊕ R
n)) means that for all A ∈ g⊕R

n and

g ∈ G, we have

(Adg × τ (g))−1 θ (A∗) (Adg × τ (g)) = θ
((

(Adg × τ (g))−1 (A)
)

∗
)

. (36)

A straightforward computation shows that

T θ ∈ Ω2
Ad×τ (P, g ⊕ R

n) ⇔ θ ∈ Ω1
AdAd×τ

(P, so (g ⊕ R
n)) . (37)

In particular, the Levi–Civita connection form θL is in
Ω1

AdAd×τ
(P, so (g ⊕ R

n)). The last two sums in (32) each split into

two separate sums in Ω1
AdAd×τ

(P, so (g ⊕ R
n)), and hence θL is a sum of six

terms, each one of which is in Ω1
AdAd×τ

(P, so (g ⊕ R
n)). There is actually

another element of Ω1
AdAd×τ

(P, so (g ⊕ R
n)) not occurring in θL, but worthy

of consideration, namely

∑

α,j

τ∗ (uα)ij ϕi ⊗ (uα ⊗ êj − ej ⊗ ûα) . (38)

By giving each of the six sums in θL its own real coefficient and including
the term (38) as well, we have a connection form θ (a, bΩ , bτ , cΩ , cτ , c1, c2)
defined by

θ (a, bΩ , bτ , cΩ , cτ , c1, c2) :=
1

2
a
∑

α,β,γ

cαγβωγ ⊗ uα ⊗ ûβ

−
1

2
bΩ

∑

α,j

Ωαijϕ
i ⊗ (uα ⊗ êj − ej ⊗ ûα)

+
1

2
bτ

∑

α,j

τ∗ (uα)ij ϕi ⊗ (uα ⊗ êj − ej ⊗ ûα)

−
1

2
cΩ

∑

i,j,γ

Ωγijω
γ ⊗ ei ⊗ êj + cτ

∑

i,j,γ

τ∗ (uγ)ij ωγ ⊗ ei ⊗ êj

+
1

2
c1

∑

i,j,k

(Φijk − Φjik) ϕk ⊗ ei ⊗ êj −
1

2
c2

∑

i,j,k

Φkijϕ
k ⊗ ei ⊗ êj . (39)

It is possible (although not necessarily desirable) to construct more terms in-
volving contracted polynomial expressions of higher degree in Ωαij , τ∗ (uγ)ij ,

Φkij, and cαγβ . For simplicity (and the fact that time did not permit us to
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sufficiently check our computations in the more general case), we will con-
sider the restricted family

θ(a,b,c) := a
∑

α,β

θL
αβuα ⊗ ûβ + b

∑

α,j

θL
αj (uα ⊗ êj − ej ⊗ ûα) + c

∑

i,j

θL
ijei ⊗ êj

=
1

2
a
∑

α,β,γ

cαγβωγ ⊗ uα ⊗ ûβ −
1

2
b
∑

α,i,j

Ωαijϕ
i ⊗ (uα ⊗ êj − ej ⊗ ûα)

+c
∑

i,j

(

∑

γ

(

τ∗ (uγ)ij −
1
2Ωγij

)

ωγ

+1
2

∑

k (Φijk − Φjik − Φkij) ϕk

)

⊗ ei ⊗ êj. (40)

The Levi–Civita connection θL is θ(1,1,1).

3. The scalar curvature

The curvature 2-form Ω(a,b,c) ∈ Ω2 (P, so (g ⊕ R
n)) of θ(a,b,c) with respect

to the global coframe field ̟ is given by

Ω(a,b,c) = dθ(a,b,c) + θ(a,b,c) ∧ θ(a,b,c). (41)

Ultimately, Ω(a,b,c) can be written as

Ω(a,b,c) =
1

2

∑

H,I,J,K

R
(a,b,c)
HIJKvH ⊗ v̂I ⊗ ̟J ∧ ̟K . (42)

We have actually computed all of the components R
(a,b,c)
HIJK , and we will gladly

furnish them along with the Ricci tensor (symmetric if (a, b, c) = (1, 1, 1))
via email. However, here we provide the scalar curvature.

Theorem 1 The scalar curvature for the metric connection θ(a,b,c) on P is

R(a,b,c) =
∑

H,I

R
(a,b,c)
HIHI

=
1

2
a

(

1 −
1

2
a

)

∑

α,β,γ

cαβγcαβγ + (b (1 − c) + c)
∑

α,i,j

τ∗ (uα)ij Ωαij

+
1

2

(

c (b − 1) −
1

2
b2

)

∑

i,j,α

ΩαijΩαij + 2c
∑

i,j

e∗i [Φjji]

−
1

2
c2
∑

l,i,j

(ΦlijΦilj + 2ΦiilΦjjl) −
1

2
c

(

1 −
1

2
c

)

∑

l,i,j

ΦlijΦlij. (43)
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We remark that to simplify as much as possible, we used the Bianchi
identities

0 = dΩω + [ω,Ωω] and 0 = dΦ + τ∗ (ω) ∧ Φ − τ∗ (Ωω) ∧ ϕ, (44)

which are easily derived from the definitions Ωω = dω + 1
2 [ω, ω] and Φ =

dϕ+ω∧ϕ by exterior differentiation. In particular, although one expects to
see derivatives of Ωαij in R(a,b,c), none appear, due to the Bianchi identities.
Moreover, the only sum

∑

i,j e∗i [Φjji] involving derivatives vanishes in the

case where the torsion is traceless, as is often the case in applications (e.g.,
when Φijk is totally antisymmetric). For example, in U4 and ECSK theories
with Dirac fields, Φijk is proportional to the spin-angular momentum of the
Dirac field, which is a 3-form or axial vector (see [2] or [5]).

To compare the result (43) with the Kaluza–Klein result (4), first assume
that G = G0×O(n), and P is the fibered product of a principal bundle P0

with group G0 with the bundle F (M) of orthonormal frames of a Riemannian
n-manifold M with metric gM . The g0 ⊕ so(n)-valued connection form ω

splits into two components, say ω = ω0 ⊕ωM . Next assume that ϕ is the lift
of the canonical 1-form on F (M) to P and that ωM is the lift to P of the
Levi–Civita connection of gM . We then have Φ = Dωϕ = Dω0ϕ = 0. Note
that the terms in the sum

∑

α,i,j τ∗ (uα)ij Ωαij vanish for α ≤ dim (G0) , and
this sum is the scalar curvature RgM

of gM . In what follows, the constant
K is the scale that one chooses for the scalar product kso on so(n), namely
kso (A,B) = KAijB

ij = −K trace(A◦BT ), and RO(n) is the scalar curvature

of O(n) when K is chosen to be 1. With these choices,

R(a,b,c) =
1

2
a

(

1 −
1

2
a

)

∑

α,β,γ

cαβγcαβγ + (b (1 − c) + c)
∑

α,i,j

τ∗ (uα)ij Ωαij

+
1

2

(

c (b − 1) −
1

2
b2

)

∑

i,j,α

ΩαijΩαij

=
1

2
a

(

1 −
1

2
a

)

(

RG0 + K−1RO(n)

)

+ (b (1 − c) + c)RgM

+
1

2

(

c (b − 1) −
1

2
b2

)





∑

i,j,α

Ωω0
αijΩ

ω0
αij + K

∑

h,k,i,j

(

RM
hkij

)2



 (45)

When (a, b, c) = (1, 1, 1), we obtain

R(1,1,1) =

(

RG0 −
1

4
(kg0 ⊗ gM ) (Ωω0, Ωω0) + RgM

)

+K−1RO(n) −
1

4
K ‖RiemM‖2 . (46)
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The terms in parentheses constitute the scalar curvature of P0 in standard
Kaluza–Klein theory. Note that had a been chosen to be 0 or 2 instead of 1,
then the constant terms RG0 and RO(n) in R(a,b,c), which ultimately yield

a cosmological constant in Einstein’s equations, would be absent. Gen-
erally speaking, the scalar curvature function on P can be naturally al-
tered, not only by scaling the scalar product on the group-like fibers, but
also by using different G-invariant connections on P . In particular, con-
trary to popular belief, tiny curled-up fibers do not necessary have to pro-
duce huge cosmological constants. There are also the additional terms in
K−1RO(n) −

1
4K ‖RiemM‖2. One would not have K−1RO(n), if a was cho-

sen to be 0 or 2. People have found uses for terms such as −1
4K ‖RiemM‖2,

such as in regularizing quantum gravity, but the consensus seems to be that
they are a mixed blessing at best.

4. Further directions and speculations

One of the attractive features of working on a soldered principal bun-
dle π : P → M is that it has a natural parallelization depending only on
the choice of basis for g ⊕ R

n. Thus, one has a trivial spin structure, say
Spin(P ) → F (P ), associated with this trivialization of the frame bundle
F (P ), even if the base M has no spin structure. One may then consider
spinor fields on P , and we are investigating the harmonic analysis of spinor
fields on P . The space of such spinor fields decomposes into invariant sub-
spaces under the group action of G, and these subspaces can be identified
with various types of particle fields on M (sections of vector bundles over
M , associated with various representations of G). A program of this sort in
the Kaluza–Klein context was started in [6]. Recently, a harmonic analysis
of spinor fields on circle bundles was carried out in [1].

One tantalizing prospect occurs in the special case where P = F (M), the
oriented orthonormal frame bundle of an oriented Riemannian 4-manifold
M . Then, dim(P ) = 4 + dim (SO(4)) = 10, and the group of the
bundle F (P ) → P is SO(10), while the group of the composed bundle
Spin(P ) → F (P ) → P is Spin(10). One of the most elegant of the grand uni-
fied theories (GUTs) is the SO(10) theory which neatly “explains” some mys-
terious features of the original SU(5) theory [9]. Any one of the three gen-
erations of 16 fundamental fermions (including a right-handed neutrino) fits
perfectly in 16-dimensional fundamental spinor representation of Spin(10).
Actually, SO(10) GUT is a misnomer, since the fundamental spinor repre-
sentation of Spin(10) does not descend to a single-valued representation of
SO(10). Although the group for the frame bundle π : P → M is SO(4)
which is regarded as an external symmetry group, it would be nice if the
group Spin(10) for the composed bundle Spin(P ) → F (P ) → P could be
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interpreted as an internal symmetry group. Note that the further composi-
tion Spin(P ) → F (P ) → P → M is a soldered principal bundle with group
Spin(10)×SO(4) (regarded as “internal× external”). This is exactly what
one wants in a grand unified euclidean field theory. Have we GUEFT or
goofed?
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