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It is conjectured that space-time and momentum space may be both
conformally compactified and correlated by conformal inversion, rendering
a priori impossible the empirical realization of the concept of both infinity
and infinitesimal. It appears that in such a world momentum space is
appropriate for the description of quantum mechanics in spinorial form.
An exactly soluble, two-dimensional model is presented and discussed.

PACS numbers: 12.90. +b

1. Introduction

The concept of infinity (and of infinitesimal), despite its old age (απειρoν:
Anaximander, Pythagoras, Aristotle) and its central role both in mathemat-
ics and in philosophy has not yet found an universally accepted, selfconsis-
tent, definition and keeps being one of the main sources of difficulties both
in mathematics and in physics. According to D. Hilbert, infinity should not
exist since there is no empirical evidence of it. Here we will try to bring
some arguments in favour of this conjecture.

Some cosmological arguments seem to favour the model of the Universe
with positive spatial curvature (Ω ≥ 1) corresponding to a closed Universe
well represented by the Robertson–Walker space-time:

MRW = S3 × R , (1)
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compatible with the cosmological principle [1], in which infinite space in-
tervals would not be conceivable. But even stronger arguments in favour
of the absence of infinity in space-time may be obtained from the study of
conformal symmetry.

In a similar way as Maxwell’s equations Lorentz-covariance suggested
the familiar structure of Minkowski space-time: M = R

1,3, their conformal
covariance suggested [2] its conformally compactified structure: Mc = (S3×
S1)/Z2 compatible with MRW of Eq. (1), if R is interpreted as an infinite
covering of S1, subsequently adopted by several authors [3]. Mathematically
Mc may be defined as an homogeneous space:

Mc =
G

H1
=

S3 × S1

Z2
, (2)

where G = L ⊗ D×⊃ P ×⊃ S represents the conformal group (L, D, P, S
meaning Lorentz, Dilatation, Poincaré, Special conformal transformations,
respectively) and HI = L⊗D×⊃ /S represents its eleven parameter subgroup.
G has another eleven parameter subgroup HII = L ⊗ D×⊃ /T and the
homogeneous space

Pc =
G

HI
=

S3 × S1

Z2
(3)

has the same geometrical structure as Mc.
As is well known conformal inversion I transform T in S and vice versa

and, therefore
IMc = PcI . (4)

If G is extended to G by inclusion of I, then Mc and Pc are two copies
of the same [4] homogeneous space H:

H =
G

HI
=

G

HII
. (5)

In previous papers [5] the conjecture was proposed that if the copy Mc

of H represents conformally compactified space-time of the closed universe
(of which MRW represents a particular realization) then the copy Pc of H
represents conformally compactified momentum space.

In this paper we try to bring some further arguments in favour of the
conjecture which, if true, would not only eliminate a priori the necessity
but also the possibility of concrete realization of infinity in space-time in
agreement with Hilbert’s conjecture, but also in momentum space, or, in the
frame of quantum mechanics, it would eliminate the concept of infinitesimal
in space-time, which, in fact, would have to be expected in a conformal world
without infinity.
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It is obvious that this programme, if realizable at all, would imply the
necessity of drastic changes in the traditional way of dealing with field the-
ories in such a compact conformal world. In fact, not only integrations
extended up to infinity both in space-time and in momentum space world
have to be eliminated, but also the classical methods of differential calculus
and differential geometry would have to be changed. Furthermore, the tra-
ditional infinite sums representing completeness relations would have to be
substituted by finite sums.

2. Dual lattices

The duality of space-time and momentum space may be derived from
Fourier transforms correlating functions taking values in M = R

1,3, and
P = R

1,3 which, in our case have to be substituted by Mc and Rc copies
of H as defined in Eq. (5). Therefore, our first task will be to search for
transforms between functions taking values on them such that they identify
with the standard Fourier transforms in the flat limit (when the radii of S3

and S1 go to infinity). We will show that this programme can indeed be
performed but, for the moment, only in the particular, exactly soluble, case
of two-dimensional space-time M = R

1,1, when Mc and Pc, where fields may
be defined, restrict to two dual lattices ML and PL in two toruses S1 × S1,
where, however, some of the features anticipated in the previous paragraph
already appear, and may be discussed.

For M = R
1,1 and P = R

1,1 the corresponding conformally compactified
spaces are:

Mc =
S1 × S1

Z2
and Pc =

S1 × S1

Z2

copies of H = G/HI = G/HII . Suppose now that R is the radius of the
S1 in Mc and K is the radius of S1 in Pc. If R is a length K is the inverse
of a length (remember that IMc = PcI). Now inscribe in each S1 a regular
polygon with

2N = 2πRK (6)

vertices, these define in Mc and Pc two lattices: ML ⊂ Mc and PL ⊂ Pc.
Proposition 1. The lattices ML and PL are Fourier dual.

In order to prove it we may start by restricting to S1, one point com-
pactification of x ∈ R

1. On it we may define the arc coordinate xn = n/K of
the lattice defined by the mentioned polygon with 2N vertices and indicate
a point of it by

Un = Re
i
R

xn = Rei n
RK = Rei πn

N = Rεn ,
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where ε = e
iπ
N represents the 2N -root of unity. The normalized eigenfunc-

tions on the lattice may be defined to be:

〈ρn〉 = (2N)−
1

2 εnρ (7)

satisfying the orthonormality condition

N−1
∑

ρ=−N

〈nρ〉〈ρm〉 = δnm . (8)

If we now introduce S1 compactification of k, dual of x, and the lattice
coordinate kρ = ρ/R we easily obtain:

f(xmn) = (2π)−1R−2
N−1
∑

ρ,τ=−N

ε(nρ−mτ)F (pρτ ) ,

F (pρτ ) = (2π)−1K−2
N−1
∑

m,n=−N

ε−(nρ−mτ)f(xmn) , (9)

where

xmn = Re
i
R

(tn−xm) ∈ ML; pρτ = Ke
i
K

(∈ρ−pτ ) ∈ PL

and f(xmn) and F (pρτ ) indicate functions taking values on ML and PL,
respectively. Eqs (9) are true because of (8) and Proposition 1 is proved.

It is easily seen that in the limit R → ∞ and K → ∞ Eq. (9) become
the standard Fourier transforms in two-dimensional Minkowski space-time.
This then justifies the name of Fourier transforms adopted for Eq. (9) and
Fourier dual for lattices ML and PL.

Observe that Eq. (8) implies the finite completeness relation:

N−1
∑

ρ=−N

|ρ〉〈ρ| = 1. (10)

It is obvious that any field theory on ML and its dual PL will be free from
both infrared and ultraviolet divergences, one could call them the “physical
spaces” to be distinguished from the mathematical space H = G/HI =
G/HI in which they are contained.
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3. Role of conformal inversion

In quantum field theory dynamical variables and fields are preferably
represented in momentum space P = R

1,3 (see S-matrix theory). This rep-
resentation is obtained through Fourier integrals in Minkowski space-time
M = R

1,3. As such the space P obtained in this way should be more prop-
erly called wave-number space. (The actual momentum space is obtained
through the adoption, ad hoc, of the De Broglie relation between wave num-
ber and momentum.)

In our case, besides the Fourier transforms given by Eq. (9) we have also
a direct correlation between the dual lattices ML and PL (which in the limit
will become the usual, continuous spaces M and P ). In fact, we know that
IMc = PcI, and conformal inversion I, represented, in the quotient rational
formalism, by

I =

∣

∣

∣

∣

0 −α
α−1 0

∣

∣

∣

∣

, (11)

with α = (RK)1/2, transforms every point of ML in a point of PL as follows:

ML ∋ xmn = Re
i
R

(tn−xm) → I(xmn) = K
−i
K

(∈n−pm) = pmn ∈ PL . (12)

We have then that to each function f(xmn) taking values on ML, there
corresponds its Fourier dual F (pmn) taking values on PL defined by Eq. (9),
and vice versa, and this is in agreement with the familiar case of flat spaces M
and P . But now we have also a direct transformation from the configuration
lattice ML to the momentum lattice PL operated by conformal inversion I
by which every point xmn ∈ ML is brought to a point pmn ∈ PL as shown in
(12) and this is new1. It may have a meaning that we will try to interpret.

Let us remind that in ordinary Minkowski space-time conformal inversion
I operates as follows:

xµ → I(xµ) =
xµ

x2
, µ = 0, 1, 2, 3 , (13)

which is usually interpreted by affirming that, for xµ space-like, every point
P (x) inside of the sphere S2 : x2 = 1, centered in 0, is transformed to a
point P (x−1), on the same ray form 0, outside S2 at a distance [x]−1 from
0. One could then be tempted to call the “inside” and “outside” sectors of
S2 in R

3 as “small” and “large”, respectively, if it were not that xµ has to be
dimensionless for (13) to have a meaning (alternatively those words have a

1 In terms of functions this simply means that, in general, to every function f on
ML ∈ Mc there corresponds an (identical) function f on PL ∈ Pc which is possible
since Mc and Pc are two copies of the same homogeneous space (unless f represents
a tensor quantity to be transformed by I).
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meaning only with respect to an arbitrary unit of length α2 = L appearing
in I given in Eq. (11)).

It is easy to see that in our two-dimensional case the above conformal
inversion obtained from I given in (11) with α = 1 becomes:

x → I(x) =
1

x
= k and k → I(k) =

1

k
= x (14)

which is compatible with (13). This means that conformal inversion trans-
forms every point of configuration space to a point of wave number space.

In order to obtain momentum space, of interest for physics, we need only
to adopt I given by (11) with α = ~

1/2 and we obtain

x → I(x) = ~k = p (15)

and (extended to the four-dimensional case) the sphere S2 has radius ~

and the above words “large” and “small” would then refer to the product
xp referred to the Planck action ~; but then the “large” would refer to the
classical mechanics-world while the “small” to the quantum mechanics-world.
In the above hypothesis then conformal inversion would connect the two
and since, as astronomy suggests, configuration space is the appropriate
space for the description of classical mechanics, momentum space should be
appropriate space for the description of quantum mechanics.

We will now try to bring some more arguments, from spinor geometry,
on why momentum space should be appropriate for dealing with quantum
mechanics.

4. Quantum mechanics in momentum space

According to Cartan [6] Euclidean geometry, one of the pillars of classical
mechanics, may be bilinearly derived from spinor geometry which should
then be considered as the most elementary form of geometry, an opinion
shared by many authors.

Consider the 2n-dimensional pseudo Euclidean space V = R
n−1,n+1 and

the corresponding Clifford algebra Cl(n − 1, n + 1) = EndS, where S is
the space of spinors ϕ ∈ S. If γµ(µ = 1, 2, . . . 2n) are the generators and
γ2n+1 = γ1, γ2 . . . γ2n the volume element of Cl(n − 1, n + 1) the Cartan
equation:

pµγµ(1 ± γ2n+1)ϕ = 0 , (16)

where pµ ∈ V , define the Weyl spinors 1
2(1 ± γ2n+1)ϕ = ϕ± associated with

V . For ϕ 6= 0 the vectors pµ ∈ V are null and define a projective quadric:

PQ(pµpµ = 0) =
Sn × Sn−1

Z2
. (17)
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For n = 2 Eq. (16) gives the most elementary equation of quantum
mechanics: the one for massless neutrinos in momentum space, and also
Maxwell’s equation for the electromagnetic tensor Fµν bilinearly represented
in terms of spinors [7] if ϕ± are identified as minimal left ideals.

For n = 3 Eq. (16) represents twistor’s equation [8] in momentum space
and (17) the copy Pc of H given by Eq. (3) and representing, in our hypoth-
esis, compactified momentum space. Furthermore one may easily obtain
from Eq. (16): the Dirac equation for massive fermions, and, for n = 4, the
equation for the proton–neutron doublet interacting with the (pseudoscalar)
pion triplet [7]. All of them in momentum space.

Now these are notoriously some of the equations which were postulated
ad hoc for the description of some elementary phenomena of quantum me-
chanics.

The remaining ones (like Schrödinger’s one) may be derived as particu-
lar cases of them. Here they are all naturally derived from the fundamental
Cartan equation (16) of spinor geometry if V is interpreted as momentum
space, Fourier dual of configuration space. This fact might be not an ac-
cidental coincidence and, as a consequence of the above arguments, might
instead suggest the following scenario:

I. Quantum mechanics is the elementary form of mechanics apt to de-
scribe physical systems involving actions comparable with the Planck
constant h, and its fundamental, elementary equations for fermions
(or fermion-fields), may be identified with those of Cartan for spinor
geometry in momentum space. Bosons (or boson fields), as well as vec-
tors of momentum space, may be bilinearly constructed from spinors
representing fermions (or fermion fields) and in this way also Maxwell
equations naturally derive from the elementary ones for fermions.

II. For actions much larger then the Planck constant h Maxwell’s equa-
tions bring us, through optical geometry, to Euclidean geometry of
space-time (bilinearly derivable from spinor geometry), where classi-
cal mechanics of macroscopic systems may be properly described (as
derived from quantum mechanics).

The correlation between the two forms of mechanics and between the
two dual spaces is operated by conformal inversion.

This would then support the conjecture, formulated at the end of the
previous paragraph, that momentum space is the appropriate one for the
description of (spinor) quantum mechanics.
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5. Higher spaces

For the realistic case of Minkowski space-time M = R
1,3 = P the com-

pactified spaces are Mc and Pc copies of H given by (2) and (3), which
densely contain (but for two points) M and P . For them a Fourier trans-
form may only be approximated [9]. Exact Fourier transform may be instead
obtained if we adopt the compact form:

Mc =
S1 × S1 × S1 × S1

Z2
= Pc (18)

which also densely contain (but for 4 points) M and P and which may serve
for computations since, for realistic radii R and K, the lattices ML and PL

contained in Mc and Pc, building up the “physical spaces”, should be very
dense.

Otherwise, in order to search for a rigorous definition of Fourier trans-
forms in Mc and Pc one should adopt some drastic change of the standard
mathematical algorithms. Anyhow, both infrared and ultraviolet conver-
gence in “physical spaces” will be granted, in accordance with Hilbert’s con-
jecture.

6. Further consequences

There are several consequences of the scenario proposed above, we will
briefly mention a few of them.

Some derive from conformal symmetry, the starting point of our study,
conceived as SO(2,4) symmetry. Its maximal compact group of symmetry
SO(4) should manifest its presence in both classical- and quantum-non rela-
tivistic systems and in fact it does so in planetary orbits and in the hydrogen
atom, respectively, and the first in space-time, while the second in momen-
tum space, as well known and, as it should, according to our conjecture.

But there is another fascinating possibility. Recent observations on the
distribution of distant galaxies have revealed periodicities (eleven peaks in
the direction of North and South galactic poles equally spaced by ∼ 400
million lights years) [10] which seem to violate the cosmological principle. In
fact they could manifest its spontaneous violation due to an eigenvibration
of S3 of Robertson–Walker space given by Eq. (1) in consequence of the
mentioned SO(4) symmetry. In fact, the up to now known astronomical
observations are well explained by an eigensolution of the Laplace–Beltrami
equation for S3: the most symmetric Gegenbauer polynomial:

Yn,o,o = C1
n(cos ρ) = kn

sin(n + 1)ρ

sin ρ
; n = 46 , (19)

where ρ is the geodesic distance from the center of the eigenvibration on
S3 [11].
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Should further observations confirm this interpretation then it could con-
stitute a strong support to our hypothesis. In fact, it was shown long ago
by Fock [12] that Gegenbauer polynomials given by Eq. (19) are precisely
the most symmetric eigenfunctions of the H-atom in stationary states, how-
ever, in momentum space. And this is precisely in agreement with our
model which implies that conformal inversion correlates configuration space
of classical systems and momentum space of quantum systems, and then
the Universe and the H-atom would constitute a natural realization of this
correlation.

Should conformal symmetry have the important role in physics as conjec-
tured in this paper, then one should expect that both conformal reflections
implied by O(2,4) will be of importance; that is in the Clifford Algebra
language, both γ5 and iγ6 generators (remember that if the sixth axis is
time-like iγ6 is the generator of reflections since the square of a reflection
must be the identity). In fact, together with the volume element γ7 they
build up the algebra SU(2). Now, it appears from the equation represent-
ing the nuclear isodoublet interacting with the pion isotriplet obtained from
Cartan — equation (16), that those are at the origin of isospin internal
symmetry algebra [7].

It was recently shown by Bandyopadhyay and his group [13] that a
conformal-reflection origin of internal symmetry can be extended and ap-
plied to a soliton model of baryons with results in very good agreement with
experimental data.

Notoriously quantum mechanics is very well experimentally verified while
its interpretation in configuration space presents well known paradoxical
aspects.

Perhaps in momentum space some of those antinomies could be elimi-
nated. As an example a plane wave (or an eigenfunction) is represented by a
well defined point (or a function) in momentum space. A position measure-
ment naturally destroys that knowledge in momentum space (the Fourier
transform of a delta function is a constant) while in configuration space one
has to introduce the concept of wave function-reduction, source of several
antinomies.
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