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The Coulomb field of the proton in a hydrogen atom is a completely
classical object. We know it from the success of the Dirac equation in which
the classical Coulomb field is put in. However, the proton’s charge, which
gives the scale of the Coulomb field, is quantized. Thus the Coulomb field
behaves like Bohr’s orbits in the old quantum theory: its spatio-temporal
shape is classical but its magnitude is quantized. The Author explains this
curious state of affairs. There are two distinct regimes of the electromag-
netic field: the regime described by the standard quantum electrodynamics
and zero-frequency regime, which is translationally invariant and has only
the Lorentz group as its symmetry group. The electric charge is a part of
the translationally invariant zero-frequency regime and as such can indeed
be quantized.

PACS numbers: 12.20. Ds

1. Introduction

The Coulomb field of the proton in a hydrogen atom is a completely
classical object. We know it. The theory of the hydrogen atom is obtained
by putting the classical Coulomb field of the proton into the Dirac equation.
The result is in perfect agreement with observations, which shows that the
purely classical treatment of the Coulomb field is indeed justified. Moreover,
we have a quantitative measure of accuracy with which the purely classical
treatment of the Coulomb field reproduces the observed spectrum. On the
other hand, the total charge of the proton is equal to the elementary charge
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i.e. it is quantized; a certain parameter of a classical object, namely its scale,
is quantized. This is a very curious state of affairs. Consider, for example, a
car factory, which produces cars having only one length; the length is strictly
correlated with a natural phenomenon apparently completely unrelated to
the process of car making. Everyone would agree, I suppose, that such a
fact calls for an explanation.

2. The inequality of Berestetsky, Lifshitz, and Pitaevsky

Berestetsky, Lifshitz, and Pitaevsky [1] say that the electromagnetic field
Fµν is approximately classical if (~ = 1 = c)

√

F 2
01

+ F 2
02

+ F 2
03

(∆x0)2 ≫ 1 ,

where ∆x0 is the observation time over which the field can be averaged
without being significantly changed. For a static field this time is obviously
infinite and therefore, conclude Berestetsky, Lifshitz, and Pitaevsky, a static

field is always classical. This conclusion explains the classical nature of the
Coulomb field in atoms but, at the same time, makes the phenomenon of
charge quantization even more mysterious: where the Planck constant ~

comes from into the expression for the elementary charge e =
√

~c/137?
I have shown some time ago [2] that there is a way to bypass the Berestet-

sky, Lifshitz, and Pitaevsky inequality, at least as far as the total charge is
concerned. The total charge “lives” at the spatial infinity, where the ob-
servation time ∆x0, formally infinite, is limited by the opening of the light
cone:

|∆x0| ≤ 2r, r =
√

(x1)2 + (x2)2 + (x3)2 .

Hence at the spatial infinity the B.L.P. inequality takes on the form

|Q|
r2

(2r)2 ≫ 1

i.e.

|Q| ≫ 1

4
,

where Q is the total electric charge. In the natural units (~ = 1 = c)
e = 1/

√
137 and therefore

|Q| ≫ 1

4

√
137 e = 2.93 e .

The total electric charge is approximately classical if it is substantially larger

then three elementary charges. This condition looks eminently sensible when
compared with the analogous condition for the harmonic oscillator; it is well
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known that the harmonic oscillator is pretty classical for n ≥ 5, where n
is the occupation number. This eminently sensible condition was obtained
from the experimentally observed value of the fine structure constant, which
is often found mysteriously small!

3. The difficulty of handling the total electric charge

as a quantum object in quantum electrodynamics

It is unfortunately impossible to handle the total electric charge as a
quantum object in the framework of the standard quantum electrodynamics.
To see this it will be convenient to introduce the definition of zero-frequency
part of classical electromagnetic field. This definition is due to Gervais and
Zwanziger [3].

I say that there is no zero-frequency part in the field Fµν if

lim
λ→∞

λ2Fµν(λx) = 0 .

If, however, this limit exists and is different from zero, as is the case for
an arbitrarily moving Coulomb field, then the field Fµν is said to have a
zero-frequency part.

I will show that if the field Fµν has a nonvanishing zero-frequency part
then its total angular momentum as well as centre of mass motion are loga-
rithmically divergent. This makes it impossible to investigate zero-frequency
fields in the framework of a Poincaré invariant theory, such as the standard
quantum electrodynamics is supposed to be.

There is nothing absurd about a system having finite mass but infinite angular
momentum. This is seen in the following example taken from the Newtonian The-
ory of Gravity. Imagine a planetary system, which consist of a large central body
like the Sun and a number of small planets moving along circular orbits in the same
plane and in the same direction. The n-th planet has the mass mn, the kinetic en-
ergy 1

2
mnv2

n = 1

2
GMmn/rn and the angular momentum mnvnrn =

√
GMmn

√
rn,

where G is the Newtonian constant, M is the mass of the central body and rn is
the radius of the orbit of the n-th planet. It is clearly possible to choose positive
numbers mn and rn so that

∞
∑

n=1

mn

rn
< ∞,

∞
∑

n=1

mn < ∞

but
∞
∑

n=1

mn
√

rn = ∞ .

The above argument depends on the assumption of infinite divisibility of matter.

For ponderable matter this assumption is not true, as the electron seems to be
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the lightest particle. For light, however, the assumption is true: a photon can

have an arbitrarily small energy while its spin is always equal to ~ = 1. This

allows to construct a packet of classical electromagnetic radiation, which has an

arbitrarily small mass but infinite angular momentum. Moreover, such packets

cannot be declared “unphysical”, as, for example, plane waves having infinite energy

are, quite correctly, declared unphysical, because such packets necessarily arise

during scattering of electrically charged particles.

Let us perform the Gervais–Zwanziger rescaling

lim
λ→∞

λ2Fµν (λx)

directly in the Noether constant of motion

Mµν =

∫

x0=0

[

dx1dx2dx3
] (

xµT 0
ν − xνT

0
µ

)

.

Assume that

Aµ(x) =
1

2π

∫

kk=0,k0>0

dk aµ(k)e−ikx + c.c. ,

where dk = (1/k0)[dk1dk2dk3] and kµaµ(k) = 0 .
Then

Mµν =
1

i

∫

dk(aλ∇µνa
λ + aµaν − aνaµ) ,

where

∇µν = kµ
∂

∂kν
− kν

∂

∂kµ
.

Perhaps several comments will be useful. The amplitude aµ(k) depends on three
variables only, namely three internal coordinates on the light cone kk = 0, k0 > 0.
Nevertheless the formally four-dimensional derivative ∇µν is well defined because
the operator ∇µν acts within the light cone kk = 0; in particular ∇µνkk = 0.

The content of the above covariant expression for Mµν is identical with nonco-
variant expressions usually given in the literature, for example by Källén on page
25 of his book [4].

Mµν is gauge invariant; it does not change if the amplitude aµ(k), kµaµ(k) = 0,
is replaced by aµ(k) + kµf(k), where f(k) is an arbitrary function on the light
cone kk = 0, k0 > 0. This, of course, should be the case since the original x-space
expression for Mµν is manifestly gauge invariant.

Most authors have some more complicated factors in front of the Fourier trans-

form, typically (2π)−3/2. This results from several unfortunate conventions, one of

them being the use of so called rationalized units. There is nothing rational about

rationalized units. They were introduced by Heaviside and Lorentz to simplify

several formulae of minor importance at the expense of complicating the Coulomb
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law, which is clearly of fundamental importance. Besides, there is only one truly

rational system of electrical units, namely the one in which the elementary charge

is taken for the unit of charge. As long as we cannot arrive theoretically at this

system it is preferable to use the traditional i.e. unrationalized Gaussian units.

These units are used in this paper.

Now, the Gervais–Zwanziger limit

lim
λ→∞

λ2Fµν (λx) ,

if different from zero, gives a field which is homogeneous of degree −2. This
means that the amplitude aµ(k) is homogeneous of degree −1:

aµ(λk) = λ−1aµ(k) for each λ > 0 .

The invariant volume

dk =
[dk1dk2dk3]

k0
,

where [ ] denotes the outer product, can be written in the form

dk =
[dk1dk2dk3]

k0
=

[

dk0

k0
d2k

]

,

where d2k is the Lorentz invariant volume of the set of null directions [5],

d2k =
k1[dk2dk3] + k2[dk3dk1] + k3[dk1dk2]

k0
.

In this way the constant Mµν takes on the form

Mµν =

∞
∫

0

dk0

k0

1

i

∫

d2k(aλ∇µνaλ + aµaν − aνaµ) .

It is seen to be a product of an infinite constant
∫

∞

0
dk0/k0 and of a perfectly

well defined, Lorentz an gauge invariant expression

1

i

∫

d2k(aλ∇µνaλ + aµaν − aνaµ) ,

in which the amplitude aµ(k) is homogeneous of degree −1,

aµ(λk) = λ−1aµ(k) for each λ > 0 ;

this makes this integral Lorentz invariant. In this way we have proved that
for a field having a generic zero-frequency part the Noether constant Mµν is
actually infinite i.e. does not exist in the usual sense.
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4. The weaker transversality condition

The Noether constant

Mµν =
1

i

∫

dk(aλ∇µνaλ + aµaν − aνaµ)

is known to be gauge invariant if kµaµ(k) = 0. The tensor

1

i

∫

d2k(aλ∇µνaλ + aµaν − aνaµ) ,

in which the amplitude aµ(k) is homogeneous of degree −1, remains invariant
under gauge transformations which replace aµ(k) by aµ(k) + kµf(k), where
f(k) is an arbitrary function homogeneous of degree −2, if kµaµ(k)=const.
The mechanism of this relaxation of gauge invariance is this: the set of
null directions with the invariant measure d2k is a two-dimensional sphere.
On a sphere the integral of each gradient field vanishes identically; this
allows to weaken the transversality condition to the form kµaµ(k)=const.
The real part of the constant kµaµ(k) is the total electric charge Q divided
by 2π. In this way, simply by relaxing the transversality condition to the
form kµaµ(k) = Q/2π we can build in the total electric charge into the

generators of proper, ortochronous Lorentz transformations i.e. to give a

purely kinematical meaning to the total electric charge.
Interpreting the tensor

1

i

∫

d2k(aλ∇µνaλ + aµaν − aνaµ)

as a generator of proper , ortochronous Lorentz transformations I have dropped the

infinite constant
∫

∞

0
dk0/k0. This cannot be called “renormalization”, even allowing

for the rather vague meaning of this term. It is rather an independent normalization

in a subspace and may be best illustrated by the following elementary example.

Take a particle in a spherically symmetric potential. The energy eigenfunctions

may be normalizable or not, depending on the shape of the potential. However,

the angular part of the wave function can always be normalized and the usual

quantum mechanics of angular momentum can be constructed. Many prominent

authors, Condon and Shortley and Landau and Lifshitz among them, use such an

independent normalization of the angular part of the wave function although a

logical purist could insist that only normalization of the whole wave function is

physically meaningful. My dropping of the infinite constant
∫

∞

0
dk0/k0 is in no

way different from normalization of spherical functions to 1 and certainly does not

deserve the name of “renormalization”.
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5. The principle of charge quantization

The generator

1

i

∫

d2k(aλ∇µνaλ + aµaν − aνaµ)

contains two parts, the electric part and the magnetic part, which can be
completely and Lorentz invariantly separated from each other. I have shown
in [2] that the magnetic part has a property which is completely harmless
classically but fatal in quantum mechanics. It can be summarized by say-
ing that the magnetic counterpart of the fine structure constant is negative.
This is inconsistent with several important physical principles, in particu-
lar with unitarity of Lorentz transformations. Thus there is an important
physical reason to put the magnetic part equal to zero i.e. to exclude mag-
netic monopoles. However, I do not wish to elaborate upon this point here
because, as I said, the electric part and the magnetic part are completely
independent and I can consider the electric part alone.

The really important point which I wish to make is this. The total
electric charge is a linear functional of the field while the angular momentum
and centre of mass motion are quadratic functionals of the field. However,
they cannot contain Q2 because the coefficient of Q2 would have to be an
invariant, antisymmetric c-number tensor. Such a tensor does not exist.
Therefore the tensor Mµν which contains the total charge Q must be of the
form

Mµν = M tr
µν + Q(a+

µν + aµν) ,

where M tr
µν contains only transversal degrees of freedom in the usual sesqui-

linear form while a+
µν (respectively aµν) contains only transversal creation

(respectively annihilation) operators. The operator a+
µν +aµν cannot annihi-

late a normalizable state. Therefore the only way to have a Lorentz invariant
vacuum state is to put

Q|0〉 = 0 , 〈0|Q = 0 .

If, however, the vacuum state |0〉 is to be normalizable, the coordinate canon-
ically conjugate with the total charge Q must be periodic. This gives imme-
diately quantization of the total electric charge in terms of a single universal
constant.
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