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The effect of constraints on the initial value and acausal propagation
problems in the Poincaré Gauge Theory is considered with the aid of the
linearized theory and the Hamiltonian analysis. To linear order there are no
difficulties, however non-linearities in any extra “if” constraints can cause
serious problems involving a change in the number and type of constraints
as well as acausal propagation modes. Specific examples are given. Only
very special parameter choices are expected to avoid these problems. A
similar story is predicted for most other gauge theories of gravity. This
type of analysis holds promise as a strong test for alternate gravity theories.
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1. Introduction

With the exception of Einstein’s geometric gravity theory, the funda-
mental interactions are described by gauge theories. Consequently “gauge
theories of gravity” have been proposed. Here we focus on the Poincaré
Gauge Theory (PGT) as developed by Hayashi and Shirafuji [1] and by
Hehl [2, 3], but our considerations have a much wider application.

A viable theory should satisfy certain theoretical criteria such as hav-
ing non-tachyonic propagating linearized modes carrying positive energy.
Moreover theories should have an appropriate mathematical structure. This
includes a well-posed initial value problem: the basic requirement is the
Cauchy–Kovalevska theorem; beyond that, the propagation of dynamic
modes should be described by hyperbolic evolution equations with well be-
haved characteristics.
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Kopczyński [4] provided an early hint of the difficulties. He noted that
the one-parameter teleparallel theory (NGR [5]) had predictability problems.
Further analysis [6] revealed that the problem was not generic: strangely,
it occurred only for a special class of solutions. Cheng verified this via a
Hamiltonian analysis using the Dirac constraint algorithm [7]. His investi-
gation revealed a curious effect: the chain of constraints could “bifurcate”
for certain field values, so that the number and/or type of constraints would
depend on the phase space variables. We have long suspected that the PGT
was vulnerable to this disease. Here we report on our discoveries.

The next section summarizes the PGT. In Section 3 the “problems” found
by Dimakis [8] and Lemke [9,10] are described. These problems were recon-
sidered in [11], which is the basis for much of our presentation here. Section 4
summarizes the result of the linearized PGT analysis. The Dirac constraint
algorithm is discussed in Section 5; a crucial feature of non-linear constraints
is noted. Section 6 describes the PGT Hamiltonian analysis of Blagojević
and Nicolić. An instructive example, the non-linear Proca field, is discussed
in Section 7. Section 8 describes the new results of H. Chen, concerning a
special PGT case with only one constrained mode. Section 9 reports on new
computations of H.J. Yo regarding two specific dynamic PGT cases. The
final section is our concluding discussion.

2. The Poincaré gauge theory

In the PGT ( [1–3]) the gauge potentials for translations and Lorentz
transformations are the orthonormal frame field (tetrads) ei

α and the metric
compatible connection Γiα

β. The associated field strengths are the torsion
Tij

α = ∂iej
α + ej

βΓiβ
α − (i ↔ j), and the curvature Rijα

β = ∂iΓjα
β +

Γiµ
βΓjα

µ − (i ↔ j). Our metric signature is (− + + +), we use i, j, k, . . .
to denote coordinate indices, and α, β, γ, . . . for the frame indices. Indices
denoted by a, b, . . . refer to spatial coordinates.

The Lagrangian V = VG(e,R, T ) is assumed to be at most quadratic in
the field strengths. Varying with respect to the potentials gives (vacuum)
field equations of the form

Fα
i := Dj Hα

ij − εα
i = 0, Fαβ

i := Dj Hαβ
ij − εαβ

i = 0, (1)

where εα
i := ei

αVG − Tαj
γ Hγ

ji −Rαj
γδHγδ

ji, and εαβ
i := H[βα]

i. The field
momenta

Hα
ij :=

∂VG

∂Tji
α

=
e

l2

3∑

n=1

an

(n)

T ji
α, (2)

Hαβ
ij :=

∂VG

∂Rji
αβ

= −
ea0

l2
ei

[αej
β] +

e

κ

6∑

n=1

bn

(n)

R ji
αβ , (3)
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are linear in the field strengths. The three (n)T ji
α and the six (n)Rji

αβ are
the irreducible parts of the torsion and the curvature respectively. The ai

and bi are free coupling constants.

3. The problems

For many ranges of its 10 parameters the PGT was regarded as exper-
imentally and theoretically viable. Then Dimakis investigated the initial
value problem [8]. He found parameter conditions necessary for the field
equations to satisfy the Cauchy–Kovalevska theorem (and some
additional nonlinear conditions necessary to achieve certain prescribed
hyperbolic forms). These Cauchy–Kovalevska conditions assure the non-
degeneracy of the kinetic Hessian matrix. One contradicts the “viable” con-
dition, 2a1 +a2 = 0, which was presumed to be necessary for a good theory.
Soon thereafter Lemke [9] concluded that the same conditions were needed
to prevent tachyonic shock waves in the theory. Because of the conflict with
the “viable” condition, it was even proposed that the PGT should be dis-
carded. Then Hecht, Lemke and Wallner [10] considered the question “Can
the Poincaré Gauge Theory be Saved?” and arrived at an affirmative answer
having found a “cure” for the PGT shock wave problem. Their idea was that
the acausal modes can be gauged away because of a natural symmetry.

These issues have since been reconsidered (Hecht, Nester and Zhytnikov
[11]). With the aid of the linearized theory and the Hamiltonian analysis,
they concluded that all of the alleged problems stemmed from overlooking
secondary constraints. The main points of their arguments are included in
subsequent sections.

4. The linearized PGT

The linearized PGT analysis is revealing. In addition to the graviton

there are possible propagating modes with spinparity = 2+, 2−, 1+, 1−, 0+, 0−.
All possible propagating “massive” modes, with v < c (no tachyons) and
E ≥ 0 (no ghosts), were found in [1, 12]. The critical kinetic and mass
parameter combinations appear in Table I.

The PGT has many distinct cases, with the torsion modes showing dif-
ferent behavior: some modes frozen and some dynamic. The requirements
preclude the possibility of more than 3 good dynamic propagating “massive”
torsion modes. A typical propagating mode has 3 vanishing parameter con-
ditions, and the remaining parameters must satisfy several inequalities due
to the “no ghost & no tachyon” conditions. The equations are then well
posed and hyperbolic, having the Minkowski metric as their characteristic
cones.
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TABLE I

Critical parameter combinations and their associated constraints

Jp Kinetic Parameter
Combinations

Primary and
Secondary Constraints

Mass Parameter
Combinations

0+ (i) a2

(ii) b4 + b6

φa
a, χb

b

φa0
a, χb0

b
a0, 2a0 + a2

1+ (i) a1 + 2a3

(ii) b2 + b5

φ[ab], χ[ab]

φ[a0b], χ[a0b]
a1 − a0, a0/2 + a3

2+ (i) a1

(ii) b1 + b4

φ(ab), χ(ab)

φ(a0b), χ(a0b)
a0, a1 − a0

1−
(i) 2a1 + a2

(ii) b4 + b5

φa0, χb0

φab
b, χab

b a1 − a0, 2a0 + a2

0− b2 + b3 φA, χA a0/2 + a3

2− b1 + b2 φT
abc, χT

abc a1 − a2

For each of these cases the kinetic Hessian matrix is degenerate but the
propagating modes always satisfy a good flat space hyperbolic wave equation.
Hence, there are never any acausal shocks. It appears that the PGT initial
value problem is well posed—at least to the linear order.

5. Dirac constraint algorithm and constraint bifurcation

The Hamiltonian analysis is also a revealing approach. The Dirac con-
straint algorithm [13,14] applies to any theory. It always guarantees that the
necessary time derivatives for the dynamic variables are all found, thereby
satisfying the key requirement of the Cauchy–Kovalevska theorem. The
starting point is a Lagrangian with a degenerate kinetic Hessian matrix.
Consequently there are some primary constraints, φA ≈ 0 (i.e., they vanish
“weakly”). The Hamiltonian, H = H0 + V AφA, includes these with undeter-
mined multipliers. The time derivative of any function has the form

ḟ ≈ {f,H0} + V A{f, φA}. (4)

In particular, the primary constraints must be preserved in time:

φ̇B ≈ {φB ,H0} + V A{φB , φA} ≈ 0. (5)

This condition generally gives some information regarding the undetermined
multipliers V A and/or gives rise to some secondary constraints which then
must also be preserved. After the constraints are all found they can be clas-
sified. The classification separates the dynamical degrees of freedom from
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those which are frozen and all of the gauge symmetries are identified. Gauge
symmetries are associated with first class constraints which have vanishing
(“on shell”) Poisson brackets with all other constraints. The remaining (sec-
ond class) constraints occur in pairs with non-vanishing Poisson brackets;
each pair can be used to eliminate a nondynamical conjugate pair of vari-
ables.

The main feature for our work is that the “matrix” of the Poisson brackets
of the constraints, {φA, φB}, may not have constant rank. This can happen
only if the constraints are non-linear. This matrix is the key to whether one
can determine the multipliers (which usually turn out to be the velocities
missing in the Lagrangian). Strange behavior may occur as one approaches
a point in the phase space where the rank changes (as we already noted
above in connection with the NGR theory). At such points the number and
type of constraints (and thus the number of gauges and physical degrees
of freedom) are not constant. To appreciate this let us consider the PGT
Hamiltonian analysis.

6. The PGT Hamiltonian analysis

For the PGT, we must certainly have the (first class) constraints asso-
ciated with the local Poincaré gauge symmetry of space time. In addition,
for each of the kinetic coefficient parameter combinations in Table I which
vanishes, there is an extra degeneracy. Thus for the PGT there are nu-
merous possible degenerate cases: any combination of the kinetic coefficient
parameters could vanish. All of these possibilities have been systematically
investigated by Blagojević and Nikolić [15] who developed a wonderful “if”
constraint technique which enabled them to identify all possible constraints,
at least in the “generic” cases. Associated with the torsion there are four
primary “if” constraints:

φa
a := Ha0

a = −
e

l2
a2T0a

a, (6a)

φ[ab] := H[ab]0 +
e

3l2
(a1 − a2)Tab0 =

e

3l2
(a1 + 2a3)T0[ab], (6b)

φ(ab) := H(ba)0 =
e

l2
a1T 0(ab), (6c)

φa0 := H0a0 +
e

3l2
(a1 − a2)Tab

b =
e

3l2
(2a1 + a2)T0a0. (6d)

Associated with the curvature there are six primary “if” constraints:

φa0
a := 2Ha0

a
0 +

e

2κ
(b4 − b6)Rab

ab −
3e

l2
a0 =

e

κ
(b4 + b6)Ra0

a0, (7a)

φ[a0b] := 2H[boa]0 −
e

κ
(b2 − b5)R[b

c
a]c =

e

κ
(b2 + b5)R[b0a]0, (7b)
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φ(a0b) := 2H0(ab)0 −
e

κ
(b1 − b4)R(bca)

c =
e

κ
(b1 + b4)R(b0a)0, (7c)

φab
b := 2Hab

b
0 −

e

κ
(b4 − b5)Rab0

b =
e

κ
(b4 + b5)R0ba

b, (7d)

φA := 2HA −
e

κ
(b2 − b3)ǫ

abcRabc0 =
e

κ
(b2 + b3)ǫ

abcR0abc, (7e)

φT
abc := 2HT

abc0 +
e

κ
(b1 − b2)R

T
abc0 =

e

κ
(b1 + b2)R

T
0cab. (7f)

In each case, ‘if’ the critical kinetic parameter combination on the rhs
vanishes the corresponding “if” constraint is included in the list of primary
constraints.

For the generic PGT they found that there are only primary and sec-
ondary constraints (no tertiary constraints). The pattern is given in Table I.
The Poisson bracket between either the paired primaries (if both exist), or
a primary and the secondary it generates, was found to be generically non-
vanishing and hence “second class”. The value of these Poisson brackets
are just the (generally nonvanishing) constant “mass” parameters of Table
I plus some field dependent terms of non-linear origin. (The possibility of
modifications due to these nonlinear terms was mentioned but they did not
hint at their overwhelming importance.) Aside from such nonlinear effects,
the Hamiltonian analysis is in complete accord with the linearized theory
analysis of the propagating modes [1, 12].

7. An instructive example

Difficulties are to be expected in non-linear systems, based on past expe-
rience with coupling problems and acausal modes [16,17]. Some time ago it
was realized that there are generally problems with interacting higher spin
fields. In addition to a change in the number and type of constraints and
degrees of freedom (see, e.g. , [14, 17]), they are especially vulnerable to
acausal propagation modes. An early example [16] is a good model for some
effects we expect in the PGT.

Consider the non-linear Proca field:

L = −
1

4
F ijFij −

1

2
m2AiAi −

1

4
λ(AiAi)

2, (8)

where, Fij = ∂iAj−∂jAi and m and λ are constants. We note the qualitative
similarity to terms in the PGT Lagrangian ∼ (∂Γ + ΓΓ ) + (∂e + Γe)2 +
(∂Γ + ΓΓ )2. The field equations are

∂iF
ij − m2Aj − λAiAiA

j = 0. (9)

But this is not 4 independent dynamic field equations for Äi; in fact Ä0

does not appear explicitly. Applying ∂j to the field equation reveals that it
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implicitly imposes the condition

(m2 + λAiAi)∂jA
j + 2λAiAj∂jAi = 0. (10)

One way to find the characteristics is to solve Eq. (10) for ∂jA
j , substitute

the result into the field equation (9) to get a second order equation for
all components of Ai. The characteristics can then be found by standard
procedures. The result is that, in addition to the usual null cone, there is a
characteristic surface with normal ni satisfying

(m2 + λAjAj)n
ini = −2λ(njA

j)2. (11)

This characteristic is spacelike if λ > 0, then the system has acausal propa-
gation modes.

Instead the Hamiltonian formulation can be used. The canonical mo-
menta πi := ∂L/∂Ȧi are πb = F0

b, π0 ≡ 0, and the Hamiltonian density
is

1
2πaπa + 1

4F abFab − A0∂cπ
c + 1

2m2(AbAb − A2
0) + 1

4λ(AbAb − A2
0)

2. (12)

The primary constraint π0 ≈ 0 gives rise to the secondary constraint

χ := ∂cπ
c + m2A0 + λ(AbAb − A0A0)A0 ≈ 0. (13)

Their Poisson bracket has the value

{π0(x), χ(y)} = δ3(x − y)(m2 + λ(AbAb − 3A0A0)). (14)

Hence this constraint pair is second class — unless the rhs vanishes. The
breakdown of the second class constraint condition (which is essentially the
implicit function condition for the solvability of (13) for A0) once again
reveals the condition (in 3+1 form) for x0=constant to be a characteristic
surface.

Note that the m = 0 case of the system (8) has gauge freedom to lin-
ear order but not non-linearly. This example casts doubts upon conclusions
based upon linearized theory especially for “massless” cases with gauge free-
doms.

8. One mode suppressed

The special PGT case with (2a1 + a2) = 0 = (b4 + b5) with all other
parameters having generic values was considered by Chen [18]. Although
this configuration suppresses only the 1− mode, and thus is not physically
acceptable due to “ghosts” and “tachyons”, it nevertheless affords a simple
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illustration of the phenomena we wish to understand. There are only two
relevant primary “if” constraints: φa0 and φab

b and they form a second class
pair. For even greater simplicity he considered the specific parameter values
a1 = a3 = b1 = b2 = b3 = b6 = −1, a2 = 2 and b4 = b5 = 0. The significant
quantity is the Poisson bracket of these two constraints:

{φc
0(x), φab

b(y)} = (−
2e

ℓ2
δc

a −H0a
0c + H0b

0bδc
a)δ(x, y). (15)

Generically, this combination is nonvanishing, the two constraints are second
class and the two “velocity” multipliers are then determined. However the
chain of constraints can ‘bifurcate’. As one approaches those special field
values where the bracket vanishes, the constraints change their type, and
(unless certain additional quantities vanish) some of the “velocity” multi-
pliers will become unbounded, which appears to be an acausal propagation
mode. Although this seems to happen only for extreme field values, because
the value of the bracket is not 4-covariant, it should occur when ordinary val-
ues are boosted to some suitable Lorentz transformed frame. In that frame
the spacelike hypersurface would be tangent to the acausal characteristic.

9. Dynamic modes with spin 1
− or 2

−

Cases with only a 1− or a 2− propagating mode were also investigated.
Only the results of the Poisson brackets (PB) of the primary second-class
constraints are shown and compared with those of the linearized theory.

For the spin 1− case the parameters were chosen to satisfy a1 + 2a3 = 0,
b5 < 0, b1 = b2 = b3 = b4 = b6 = 0. Unspecified parameters have generic
values. The corresponding if-constraints are φ[ab], φA, φT

abc, φa0
a and φ(a0b).

The non-zero PB’s of these constraints are of the form

{φA, φ′
[ab]} = 2δxx′ǫabcH

cd
d0, {φT

abc, φ
′
[de]} = −δxx′ [Hcf

f
0ga[dge]b]

T ,

{φc0
c, φ′

[ab]} = 2δxx′H[b0a]0, {φ(a0b), φ
′
[cd]} = δxx′g{a[d

∧
Hb}0c]0 . (16)

Generically there is no first-class constraint in the spin 1− cases. However,
since the results of those PB’s are beyond the 0th order, they vanish in the
linearized spin 1 theory. Therefore the linearized theory has extra first-class
constraints and gauge freedoms (at least at the primary level).

For the spin 2− case we considered the parameter choices

a1 + 2a3 = 0, 2a1 + a2 = 0, a0 − a1 ≤ 0,

b1 = b4 = b6 = 0, b3 = b5 = −b2 > 0. (17)
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The corresponding primary if-constraints are φa0, φ[ab], φA, φa0
a, φ[a0b] and

φ(a0b). Non-linearly they are all 2nd-class. The only PB’s with a 0th order
term are of the form

{φ[a0b], φ
′
[cd]} = δxx′e[

(a0 − a1)

l2
gd[agb]c

−
2b2

κ
(R[c[ab]d]+

∼
R[c[b ga]d] +

1

3
gd[agb]cRef

fe)] , (18)

and they become the only non-vanishing PB’s in the linearized theory:

{φ[a0b], φ
′
[cd]}

Linearization→ δxx′

(a0 − a1)

l2
ηd[aηb]c . (19)

Thus the number and type of constraints in the linear theory is different
from that of the non-linear theory.

On the other hand it has recently been shown [19] that certain special
PGT cases which have only spin 0 modes do have good propagating modes
even in the fully nonlinear theory.

10. Discussion

Non-linearities in the constraints lead to a field dependence in the matrix
of the PBs. This can cause a bifurcation in the constraint chain. The number
and type of constraints can depend on the field values. This phenomenon
has been linked to acausal propagation modes. If a theory is inherently non-
linear, the non-linear theory is likely to be qualitatively different from the
linear theory in the number and type of constraints.

In view of these difficulties we have noted with the PGT and anticipate
with other gauge theories of gravity (e.g. , the MAG [20]), we have several
alternatives:

1. We could abandon such theories (except for GR and the ECSK).

2. We could embrace the difficulties, using them to find strong conditions
on the numerous parameters. Thereby we could end up with a more
creditable fewer parameter PGT (it will include at least two spin 0
modes).

3. Perhaps this indicates the need for a more non-linear theory. After
all the linearized spin 2 theory of gravity has problems which are only
cured by the nonlinearities of GR.

In any case the type of analysis proposed here shows promise as a strong
theoretical test for alternative theories of gravity: one can require that the
matrix of PB’s has constant rank or that under linearization there is no
change in the number and type of constraints.
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