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1. Introduction

In a sequence of previous works [1] a semiclassical theory for effective
gravity in flat space time was proposed. Key ingredients were: (a) a new
SU(2)× U(1) gauge of the handed chirally represented particle/antiparticle
doublet, (b) replacing the usual scalar Higgs field of the standard model
by assigning the Pauli matrix fields1 σ̃(x) the role of a nonscalar Higgs
field. By analyzing the resulting new set of field equations one finds that (c)
the excitations of this new Higgs field effectively describe Einstein’s gravity
in lowest order, (d) passive gravitational and inertial mass of particles and
antiparticles alike are generically identical, and (e) the gravitational constant
G is defined through choosing the ground state.

These results need to be extended in primarily two directions: (1) going
from the lowest linear order to the by now experimentally verified higher
(2-nd) order and (2) by taking the other fundamental interactions into ac-
count. New works in these two areas will be presented in the subsequent
two sections.2

2. The second order3

The expression for the kinetic energy of the new nonscalar Higgs field
σ̃(x)

tr [(ηρβηµνDρσ̃µR)(Dβ σ̃νL)] + (index permutations) (2.1)

in [1] is quadratic in σ̃(x) (Dρ is the new SU(2)×U(1) gauge covariant deriva-

tive and
(0)

σ̃µ
R/L= v

4 (1,±σi), v = const. defines the groundstate). The result-
ing field equations are therefore only linear in σ̃, respectively its excitations

εµν · (σ̃µ = (δµ
ν + εµν)

(0)

σ̃ν). Nonlinear effects like a gravitational self inter-
action, peri helion shift, gravitational waves, etc. require to generalize the
Lagrange density so as to include 2-nd order effects.

2.1. Generalization

The principle applied here is to replace in (2.1):

ηρβ → a tr(σ̃ρ
R σ̃

β
L) , . . . (2.2)

where a is at this stage just a constant to be determined suitably. In this
way the number of terms in (2.1) increases greatly and it proved suitable

1 Already spacetime dependent because of (a).
2 See [2] for previous works in direction (2).
3 This section is based on [3].
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to utilize the package Mathtensor of Mathematica in order to deduce and
expand the field equations. As the comparison with gravity in higher orders
is the main concern of this section, everything is simplified by neglecting
matter- and gauge fields. Similarly no attention was paid to the possible
handedness of the excitations εµν .

The expansion of the Higgs field equations

Hµν =
(1)

Hµν +
(2)

Hµν + . . . = 0 (vacuum!) (2.3)

in terms of εµν :

σ̃µ = (δµ
ν+

(1)

εµν +
(2)

εµν)
(0)

σ̃ν , |
(2)

εµν | ≃ |
(1)

εµν |2 ≪ |
(1)

εµν | ≪ 1 (2.4)

yields order by order:

(1)

Hµν= 0
see [1]−→ 2

(1)
ε µν =

(1)

εµ
α
|α|ν +

(1)

εν
α
|α|µ , (2.5)

(2)

Hµν= 0. (2.6)

As previously shown [1]
(1)

εαα=
(1)
ε = 0 corresponds to 1st order energy–momen-

tum conservation. Expecting the same for the 2nd order should yield
(2)
ε = 0.

Further analysis proved that
(1)
ε αβ

(1)
ε αβ = 0 should hold in addition, in order

to achieve some reasonable comparison with gravity. Whether both of these
2nd order trace conditions are to be explained by ways of some conservation
law remains to be investigated.

2.2. Comparing
(2)

Hµν= 0 with GR

The strategy adopted is to extract an effective metric from (2.6)

g
µν
eff = ηµν +A

(1)
ε µν

︸ ︷︷ ︸

lin.case

+C
(2)
ε µν +D

(1)
ε µ

α
(1)
ε αν (2.7)

and to express
(2)

Hµν= 0 explicitly in terms of it. This then allows to formally
compare (2.6) with Einstein’s equations in vacuum

(1)

Rµν = 0 (lin. case [1]) (2.8)

and
(2)

Rµν = 0 , (2.9)
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where Rµν is calculated in terms of the Christoffel symbols formally associ-
ated with gµν

eff .
The result is an agreement of (2.6) with (2.9) up to an antisymmetric

divergence term

Bµν = Xµνσ
|σ , Xµνσ = −Xµσν , (2.10)

Xµνσ = −v ε [νρ εµ
ρ
|σ] − v εµρ ε [ν

ρ
|σ] − v ερ

γ ηµ[ν εσ]
ρ
|γ − v ε [σρ ηµν] ε

ργ
|γ .

(2.11)

The necessary restrictions on g
µν

eff. are simply A 6= 0 and D = 1
2A

2 − 1.
C remains free. The antisymmetry of X means that it plays no role in
the energy-momentum conservation. By further restricting A = C = 2 it
becomes possible to write

g
µν
eff 1 =

(
4

v

)2

σ̃
(µ
R σ̃

ν)
L . (2.12)

Furthermore (2.6) may be rewritten as

(2)

S µν
α
|α = const.

(
(2)
t (µν) (σ̃) − 1

2

(2)
t (σ̃) ηµν

)

;

tµ
ν =

∑

R,L

∂LHiggs

∂σ̃α
|ν

σ̃α
|µ − δµ

νLHiggs

if A2 = 2 C. This strongly resembles analogous expressions in GR [4] and
shows the analogy with respect to self interaction in both theories. In the
case of gravitational waves, it finally turns out that by applying the so-called
short wave formalism [5] the Bµν-discrepancy averages out to zero.

3. Isospinorially extended theory4

3.1. The Lagrangian

We start with a chirally symmetric representation in which we put lep-

tons and quarks in a 4-iso spinor ψL/R =







ν

e

u

d







L/R

, where each entry itself

is a 2-spinor νL/R =

(
ν

ν̄

)

. Most parts of the Lagrangian have now the

4 Compare gr-qc/9712074 for further details.
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same form as in the isoscalar version:

The fermionic term: LM = ψ̃
†
Lσ̃

µ
LDµψ̃L + h.c.+ (L ↔ R) .

The Higgs field term:

LH1 = tr(Dασ̃
µ
LD

ασ̃Rµ −Dασ̃
α
LDµσ̃

µ
R −Dασ̃

α
LDµσ̃

µ
R)

−µ2tr(σ̃µ
Lσ̃µR) − λ

12
tr(σ̃µ

Lσ̃µR)2 .

The Yukawa coupling term: LI = −k(ψ̃†
Lσ̃Lµσ̃

µ
Rψ̃R + h.c.)

To be able to generate all fermionic and bosonic masses we need an additional
scalar Higgs field, whose Lagrange density is

LH2 = (Dαφ)†(Dαφ) − µ̄

2
φ†φ− λ̄

4
(φ†φ)2 .

And of course we need the kinetic term for the gauge bosons, which has the
usual form since we do not yet couple them to gravity:

LF = − 1

16π
FµνaF

µνa .

This Lagrangian is invariant under U(1)×SU(2)spin× SU(2)isospin transfor-
mations with the generators

τi = 1
2 1 spin

(
σi 0
0 σi

)

, i = 0 . . . 3 , τi = 1
2 1 isospinσi−3 , i = 4 . . . 6 ,

where σi are the usual Pauli-matrices (σ0 ≡ 1).

3.2. Spontaneous symmetry breaking

First we choose a Basis:

Spin space as usual σµ
R/L = (σ0,±σi) ,

Isospin space Na =

(
σa 0
0 0

)

, a = 0 . . . 3 , Na =

(
0 0
0 σa

)

,

a = 4 . . . 7 ,

where possible quark-lepton mixing is neglected for simplicity.

We now write the tensor-field as ground- and exited state:

σ̃
µ
L/R =

(0)

σ̃
µ
L/R + ε

µ
L/Rνaσ

ν
L/RN

a .
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The Dirac equation is best reproduced if we choose following ground-state:

(0)

σ̃
µ
L/R

= σ
µ
L/R

(0)

N L/R with
(0)

N L/R = diag (n1, n2, n3, n4)L/R ,

where
(0)

NL/R cannot depend on µ because of the isotropy of space. Now we
can generate chiral asymmetry by choosing nR1 = −nR2. As result we have
a right-handed neutrino, that does not couple to the W± bosons, but to the
Z-Boson, which is not in contradiction to experiments, since these give only
evidence to the fact, that right-handed neutrinos do not participate in week
decay (see Wu-experiment [6]).

For simplicity we now choose the following ground-state, which sets both
quark masses to be equal:

NL =

(
l1 0
0 q1

)

, NR =

(
−lσ3 0
0 q1

)

.

A direct consequence of the parity violation is the fact, that the neutrino
receives a negative mass from the tensorial Higgs field. This can be com-
pensated by the scalar Higgs field, whose ground-state we choose as

0
φ= v







1
0
0
0






.

3.3. Fermionic field equations

The field equations for the fermions are

iσ̃
µ
R/LDµψR/L +

i

2
(Dµσ̃

µ
R/L)ψR/L − kσ̃

µ
R/Lσ̃µL/RψL/R − k̃φ(φ†ψL/R) = 0 .

To be able to compare this to the Dirac equation of the standard theory we
need to renormalize the fermionic spinor components:

ν̃L,R =
√
lνL,R, ẽL,R =

√
leL,R, ũL,R =

√
quL,R, d̃L,R =

√
qdL,R

For the ground state this gives

0 = iσ
µ
R
∂µ






ν̃
ẽ
ũ

d̃






R

− k






lν̃
lẽ
qũ

qd̃






L

+ k̄ v2

l






ν̃
0
0
0






L

− 1

2






g1ωµ0σ

µ
R






ν̃
ẽ
ũ

d̃






R

+g2ωµ3σ
µ
R






ν̃
−ẽ
ũ

−d̃






R

+ g2ωµ1σ
µ
R






0
0
ũ

d̃






R

+ ig2ωµ2σ
µ
R






0
0
ũ

d̃






R







+ 1

4
Ωi

i






ν̃
ẽ
ũ

d̃






R
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and

0 = iσ
µ
L
∂µ






ν̃
ẽ
ũ

d̃






L

− k






−lν̃
lẽ
qũ

qd̃






R

− k̄ v2

l






ν̃
0
0
0






R

− 1

2






g1ωµ0σ

µ
L






ν̃
ẽ
ũ

d̃






L

+g2ωµ3σ
µ
L






ν̃
−ẽ
ũ

−d̃






L

+ g2ωµ1σ
µ
L






ν̃
ẽ
ũ

d̃






L

+ ig2ωµ2σ
µ
L






ν̃
ẽ
ũ

d̃






L







− 1

4
Ωi

i






ν̃
ẽ
ũ

d̃






L

,

where Ωi
i is the trace of the spin-gauge bosons Ωµa = ωµ3+a with i = 1 . . . 3.

Obviously for the masses of the fermions follows

mν =
k̃v2

l
− 4kl

!
= 0, me = 4kl, mu = md = 4kq .

After implementing the Weinberg mixture, which is the same as in the stan-
dard model, one gets the Dirac equations which differ from the standard
model in following points:

• There exists a right-handed neutrino, but it couples to the Z-boson
only (which may have measurable consequences for the boson’s life-
time).

• All fermions couple to the spin-gauge bosons. Since these are Planck
massive (see below) this plays no role in the low energy limit.

• The coupling constants of the right- and left-handed quarks can be
influenced separately by the choice of ground-state, but a “complete”
asymmetry as for the neutrino would be linked to zero or negative
mass.

Boson masses

The mass-square matrix M2µ
ν
ij for the gauge bosons is

2πĝ(i)(j)

(

4tr

{[

τ (i,
◦
σ̃

ρ

L

][

τ j),
◦
σ̃λR

]

+ (L ↔ R)

}

(δµ
ρ δ

λ
ν − 1

2δ
µ
ν δ

λ
ρ )

+δµ
ν

◦
φ
†
{

τ i, τ j

}
◦
φ

)

with ĝ(i)(j) = 2πg(i)g(j). This leads to Planck massive spin-gauge bosons [1].
Unfortunately it seems impossible to generate the Z-boson mass with the
tensorial Higgs fields, so that all masses of the electroweak gauge bosons
have to be generated with help of the scalar Higgs field.
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3.4. Tensor-field excitations

To investigate the structure of field equations of the tensor-field we ne-
glect the gauge-bosons. The first order field equations for the excitations
ενa
µ of the tensor field are:

∂α∂
αε

µνa
R − 2∂α∂

µεανa
R − µ2

4q2
ηµν(qδa4 − lδa3)

(

ε
α(−l3+q4)
Lα + ε

α(l0+q4)
Rα

)

=
i

8
(ψ†

LN
aσν

L∂
µψL − h.c.) − k

4

(

ψ
†
LN

aσν
Lσ

µ
R

(0)

NR ψR + h.c.

)

with the left-handed equation respectively. Here εµ
ν(ax+by) means aεµ

νx +
bεµ

νy and the source is developed to 0th order only. These equations can be
divided in two classes.

The first class consists of excitations with isospin-index aε{0, 3, 4, 7} and
is a gravitation like interaction (see also [1]), where each kind of fermions
generates its own gravitation. With the redefined isospinors (3.3) and the
0-th order energy–momentum tensor the equation for the “quark-gravity” is

∂α∂
αε

µν(4+7)
L − 2∂α∂

µε
αν(4+7)
L − µ2

4q
ηµν

(

ε
α(−l3+q4)
Lα + ε

α(l0+q4)
Rα

)

=
1

2q

(

T µν(ũR) − ηµν

2
Tα

α(ũR) +
me

4

(

ũ
†
Lσ

[ν
L σ

µ]
R ũR + h.c.

))

.

We get similar equations for other combinations of the excitations εµ
νa with

aε{0, 3, 4, 7} with the other fermions as source. Herein the neutrino is mak-
ing an exception since its (zero) mass is partially generated by the scalar
Higgs field, i.e. it provides in the (0+3) equation an additional source term
for the gravitation-like interaction

ηµν

2
me

(

ν̃
†
Lν̃R + ν̃

†
Rν̃L

)

,

thus violating the equivalence-principle. However, this term cancels out in
the classical limit.

The second class consists of excitations with isospin-index aε{1, 2, 5, 6}.
These fields carry electrical charge. The source terms of these equations
have the form of energy-momentum tensors but they contain the fermions
in a mixed form:

∂α∂
αεLµ

ν(1+i2) −2∂α∂µε
αν(1+i2)
L =

−i
4l

((

ν̃
†
Rσ

ν
R∂µẽR − h.c.

)

−2kl
(

ν̃
†
LσLµσ

ν
RẽR − ν̃

†
Rσ

ν
RσLµẽL

))

.
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In the equations of the first class we see that quarks and leptons couple with
different coupling-constants to gravity. Moreover, the fact that each kind
of fermions produces a different gravity and couples to its own gravity only
(as can be seen by investigating the Dirac equation for the excited Higgs
field) is a contradiction to experiment. Due to the different distribution of
u- and d-quarks in the Earth, this would cause a measurable violation of the
equivalence principle of the order of κ ≃ 10−6 in the Eötvös-type experiments
(for the same materials even the “famous” result of Fischbach [7] is 2 orders
of magnitude lower).

3.5. Transition to a uniform gravitational field

By putting certain constraints on the Higgs field it is possible to construct
one uniform gravity for all fermions. We want, that in the Dirac equation all
fermions couple to the same Higgs-field exited by the energy-momentum ten-
sors of all fermions and that all other excitations can be neglected. This can
be done by constraining the excitations to be multiples of the groundstate.

We then get a Dirac-equation and one Higgs field equation that have the
same form as in the iso-scalar case. It is not clear if the classical limit applies
to neutrinos also, since they are chirally asymmetric. If we neglect the effects
of this asymmetry in the fermionic energy momentum the classical limit is
exactly analogous to the iso-scalar case [1].

Unfortunately we have not yet been able to find an appropriate Lagrange
density to realize these constraints.

4. Conclusions

This work has shown how a nonscalar Higgs field can be interpreted as
a gravity transmitting field on a flat background spacetime. In the 2-nd
order appears a discrepancy to Riemannian gravity (but not in the case of
gravitational waves) which needs to be interpreted. One way may be to
include torsion [3].

The isospinorial extension allowed to generate the chiral asymmetry as
well. But an additional scalar Higgs field had to be introduced, and new
predictions like a possible coupling of a right handed neutrino to Z bosons
need to be investigated. Beyond this only the excitations proportional to
the groundstate seem relevant for gravity.

Whether the additional scalar Higgs field is really essential and how the
excitations might, if at all, be properly constrained is left to future research,
as well as attempts of quantization of this theory.
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