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Motivated by the invariance of actions under gauge symmetries the
definitions of standard clocks in theories of gravitation are discussed. We
argue that standard Einsteinian clocks can be defined in non-Riemannian
theories of gravitation and that atomic clocks may be adopted to measure
proper time in the presence of non-Riemannian gravitational fields. These
ideas are illustrated in terms of a recently developed model of gravitation
based on a non-Riemannian space-time geometry.

PACS numbers: 04.20. Cv, 04.50. +h

1. Introduction

The experimental evidence for Einstein’s theory received considerable
enhancement with the recent observation of the rate of slowing of the binary
pulsar PSR 1913+16. However it appears that certain other astrophysical
observations do not rest so easily with classical gravitation. In particular
some velocity distributions of stars in galaxies are hard to reconcile with
the observed matter distributions if they follow from Newtonian dynamics.
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Since Einstein’s theory reproduces Newtonian gravity in a non-relativistic
weak-field limit this has led some to conjecture that such galaxies may con-
tain significant amounts of dark matter [2, 3]. An alternative explanation
is that Newtonian dynamics requires modifications in this context. If this
alternative is taken seriously it invites one to consider alternatives to Ein-
stein’s metric theory that may be testable in an astrophysical domain.

Some of the earliest generalizations to Einstein’s theory were entertained
by Cartan and Weyl. The former suggested that the Levi–Civita connection
used by Einstein remained metric-compatible but relaxed to admit torsion
while the latter made an attempt to unify electromagnetism with gravity in
terms of a theory based on a non metric-compatible connection with zero
torsion. Although Weyl’s efforts proved abortive, modern string-inspired
low energy effective actions for gravity and matter can be formulated in
terms of a non-Riemannian connection with prescribed torsion and non-
metricity. [1, 6–13,15]

2. Non-Riemannian geometry

Let us briefly recall that a non-Riemannian space-time geometry is de-
fined by a pair (g,∇) where g is a metric tensor with Lorentzian signature
and ∇ is a general linear (Koszul) connection. From this pair one can con-
struct S = ∇g the gradient of g, T , the torsion tensor and RX,Y , the
curvature operator. If X,Y,Z are arbitrary vector fields on space-time then
T (X,Y ) = ∇XY − ∇Y X − [X,Y ] and RX,Y Z = ∇X∇Y Z − ∇Y ∇XZ −
∇[X,Y ]Z. If ∇ is chosen so that S = 0 and T = 0 the geometry is pseudo-
Riemannian and the gravitational field is associated with the Riemann cur-
vature tensor R where R(X,Y,Z, β) = β(RX,Y Z) for an arbitrary 1-form
β. This tensor is then determined solely by the metric and the connection is
called the Levi–Civita connection. Just as the Levi–Civita connection of a
pseudo-Riemannian geometry can be expressed in terms of g alone a general
∇ can be expressed in terms of g,T and S:

2g(Z,∇XY ) = X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

−g(X, [Y,Z]) − g(Y, [X,Z]) − g(Z, [Y,X])

−g(X,T (Y,Z)) − g(Y,T (X,Z)) − g(Z,T (Y,X))

−S(X,Y,Z) − S(Y,Z,X) + S(Z,X, Y ) . (2.1)

3. Weyl’s theory

In 1918 Weyl [4, 5] proposed a theory based on an action functional
S[g,A] where ∇ was a non-Riemannian connection constrained to have
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T = 0 and S = A ⊗ g for some 1-form A. Since his action was invariant
under the substitutions:

g → eλg , (3.1)

A → A + dλ , (3.2)

for any 0-form λ, this theory determined a class of solutions [g,A]; ele-
ments being equivalent under what Weyl termed the gauge transformations

(3.1), (3.2). Classical observables predicted by this theory should be gauge
invariant.

In Einstein’s pseudo-Riemannian description of gravitation a standard
clock is modeled by any time-like curve C parameterized with a tangent

vector Ċ of constant length
√

(−g(Ċ, Ċ)). Such a clock can be calibrated
to measure proper time τ with a standard rate independent of C, by fixing
the parameterization of C so that

g(Ċ, Ċ) = −1 , (3.3)

(in a metric with signature (−,+,+,+)). The notion of a standard clock
makes precise the notion of a freely falling observer, namely an affinely
parameterized autoparallel (geodesic) integral curve of the Levi–Civita con-
nection. Since such a connection is compatible with a prescribed metric,
(S = 0), the normalization of Ċ is preserved for any C. Thus although
the elapsed proper time between events connected by C is path dependent,
any particular standard Einsteinian clock admits a proper time parameter-
ization independent of its world line. In Weyl’s geometry no particular g

in the class [g,A] is preferred so the identification of a clock as a device
for measuring proper time requires more care. The condition (3.3) is not
invariant under Weyl’s gauge group. However in Weyl’s geometry T = 0
and it then follows from (2.1) that under the transformations (3.1), (3.2)
Weyl’s connection ∇ remains invariant. Thus if g and A determine ∇

[g,A]

and g = eλg1, A = A1 + dλ then for any X,Y,Z:

g(Z,∇
[g

1
,A1]

X Y ) = g(Z,∇
[g,A]
X Y ) . (3.4)

A definition of a Weyl standard clock should then refer to the gauge
invariant connection rather than the gauge non-invariant condition (3.3).
Thus one may model a Weyl standard clock to be a time-like (with respect
to any g in [g,A]) curve C such that

g(∇ĊĊ, Ċ) = 0 . (3.5)
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This condition is manifestly gauge invariant under (3.1) and (3.2)İt fol-
lows that for each time-like curve there exists a standard clock parameteri-
zation of C that is unique up to the affine reparametrisation

τ 7→ aτ + b

with real constants a and b [14]. However, if dA 6= 0 one cannot choose a = 1
for all such curves. (If this were possible one could construct a Weyl parallel
normalized tangent vector on any closed curve. That this is impossible with
dA 6= 0 follows by differentiating (3.3) with ∇.) Thus the relative rates of
two such standard clocks depend on their relative histories in general. (This
effect should not be confused with the dependence of elapsed time between
events produced by the difference in paths linking such events.)

If one assumes that a standard clock in Weyl’s geometry [g,A] corre-
sponds to an atom emitting light of a definite frequency then two identical
atoms that diverged from a unique space-time event and returned to any
later event, could not have the same frequency at such an event if

∫
Σ dA 6= 0,

where Σ is any world sheet bounded by the world lines of the two atoms.
Weyl attempted to identify F = dA with the Maxwell electromagnetic field
before the U(1) nature of the coupling to charged fields was recognized.
Hence the spectra emitted by atoms in an ambient electromagnetic field
would be predicted to depend on their histories contrary to observation.
This was the reason that his unified theory of gravitation and electromag-
netism fell prey to the early criticisms by Einstein and Pauli. Note however
that such criticisms remain valid whether or not F is identified with the
electromagnetic field. They rely only on the gauge invariant definition of
the time parameterization of a Weyl standard clock and the assumed cor-
respondence of an atomic spectral line with the rate associated with such a
clock [18].

Thus the criticism of Weyl’s theory is essentially based upon the notion
used for identifying standard clocks. By contrast to Einstein’s theory which
works with a well defined metric, the necessity of making observables class
invariant necessitates a definition of a standard clock based on the identi-
fication of atomic clocks with parameterized curves defined by (3.5). The
criticisms made by Einstein, Pauli and others remain in force however one
identifies the metric-gradient field S in Weyl’s theory. We stress that the
essence of these criticisms lies in the fundamental gauge symmetry associ-
ated with Weyl’s action principle not with the identification of F with the
Maxwell field. This symmetry, in turn, follows from Weyl’s particular choice
of a non-Riemannian geometry having zero torsion and S = A ⊗ g. How-
ever by relaxing the constraint that leads to Weyl’s particular geometry and
demanding that the metric be uniquely determined one may use Einsteinian
clocks without ambiguity. Motivated by a rather remarkable simplification
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that occurs in the variational equations from a broad class of actions for
a non-Riemannian geometry we have explored [16, 17] certain astrophysical
consequences of non-Einsteinnian components of the gravitational field.

4. Non-Riemannian gravitational fields

Given the success of the gauge description of the Yang–Mills interac-
tions in which the connection associated with any Yang–Mills gauge group
is unconstrained in a variational principle, a more natural approach to a
non-Riemannian description of gravitation is to seek a purely gravitational
action S[g,∇] that gives field equations determining a unique metric g with-
out constraining T and S.

Based on the reduction of the non-Riemannian action to a theory of
gravity in terms of the standard Levi–Civita torsion free, metric compatible
connection ∇

◦

, we have investigated [17] a model of gravity and matter that
gives rise to a Proca field in the gravitational sector. As befits its origin
in terms of purely geometrical concepts the Proca field is regarded as a
gravitational vector field that is expected to modify the gravitational effects
produced by the tensor nature of Einsteinian gravity.

In general we consider matter to be composed of ordinary matter defined
to have zero coupling to the Proca field and “dark matter” defined to have a
non-zero coupling. We call this coupling Proca charge and denote the basic
unit of Proca charge by q. For our discussion of cosmology we model both
types of matter by fluids with standard stress tensors T0 and Tq respectively.

Denoting the standard Levi–Civita Einstein tensor by Ein
◦

and the contri-
bution of the Proca potential α to the Einstein equation by σΣ, σ = ±1 we
have

Ein
◦

+ σ Σ =
8π G

c4
(T0 + Tq) , (4.1)

where
T0 = (c2 ρ0 + P0)V0 ⊗ V0 + P0 g ,

Tq = (c2 ρq + Pq)Vq ⊗ Vq + Pq g ,

g(V0, V0) = −1 ,

g(Vq, Vq) = −1 .

The mass densities ρf , f = 0, q of ordinary and dark matter respectively are
functions of the particle densities nf and the entropies sf per particle:

ρ0 = ρ0(n0, s0) ,

ρq = ρq(nq, sq) .
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The pressure Pf and temperature Tf may be derived from Gibb’s relation

c2 dρf = c2 µf d nf + nf Tf dsf , (4.2)

where µf =
ρf +Pf /c2

nf
is the associated chemical potential. Denoting the

Weyl 1-form A by the Proca potential α the modification to the Einstein
tensor is

Σ =
(cmα

~

)2 (
α ⊗ α − 1

2 α(α̃) g
)

+
(
ic F ⊗ ic F − 1

2 ⋆−1 (F ∧ ⋆ F ) g
)

where F = dα is the Proca field strength and α(α̃) = g(α̃, α̃). Equation
(4.1) for the metric must be supplemented by field equations for the Proca
field α and the fluid variables together with their equations of state. We
adopt as matter field equations

∇
◦

· T0 = 0 (4.3)

and

∇
◦

·

(
8π G

c4
Tq − σ Σ

)
= 0 (4.4)

which are certainly compatible with the Bianchi identity ∇
◦

· Ein = 0 and
give rise to the expected Lorentz forces on charged matter due to vector
fields. Since the Proca field couples to a current jq of Proca charged matter
we have

d ⋆ F +
(cmα

~

)2
⋆ α + σ jq = 0 . (4.5)

The Proca charge current will be assumed to take the convective form

jq = q nq ⋆ Ṽq (4.6)

with constant Proca charge, q (of dimension length).
In a similar manner we assume that the Proca neutral particle current

is given by
j0 = n0 ⋆ Ṽ0 .

We postulate conservation of Proca charged particles

d(nq ⋆ Ṽ ) = 0 ⇔ djq = 0 (since q is constant) . (4.7)

If the neutral Proca matter is also conserved (as befits behaviour in the late
post inflationary epoch)

dj0 = 0 (4.8)

and one may then interpret the matter field equations as equations of motion
for the fluid flows.
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5. Discussion

Motivated by the structure of a class of actions that involve (in addition
to the generalized Einstein–Hilbert action) terms including the torsion and
metric gradient of a general connection on the bundle of linear frames over
space-time, the consequences of Einstein–Proca gravitation coupled to mat-
ter have been examined. This theory may be written entirely in terms of
the traditional torsion free, metric compatible connection where all the ef-
fects of torsion and non-metricity reside in a single vector field satisfying the
Proca equation. In such a theory the weak field limit admits both massless
tensor gravitational quanta (traditional gravitons) and massive vector grav-
itational quanta. The mass of the Proca field is determined by the coupling
constants in the parent non-Riemannian action. The interaction mediated
by the new Proca component of gravitation is expected to modify the tra-
ditional gravitational interaction on small scales. In order to confront this
expected modification with observation we have constructed an Einstein–
Proca–Fluid model in which the matter is regarded as a perfect thermody-
namic fluid. We have suggested that in addition to ordinary matter that
couples gravitationally through its mass the conjectured dark matter in the
Universe may couple gravitationally through both its mass and a new kind
of gravitational charge. The latter coupling is analogous to the coupling of
electric charge to the photon where the analogue of the Maxwell field is the
Proca field strength (the curl of the Proca field). If one assumes that the
amount of dark matter dominates over the ordinary matter in the later phase
of evolution of the Universe, that the Proca field mass is of the order of the
Planck mass and the appropriate coupling to the dark matter is of the same
order as the fine structure constant then one finds that such hypotheses are
consistent with both the inflationary scenario of modern cosmology as well as
the observed galactic rotation curves according to Newtonian dynamics. The
latter follows by assuming that stars, composed of ordinary (as opposed to
dark matter), interact via Newtonian forces to an all pervading background
of massive gravitationally charged cold dark matter in addition to ordinary
matter. The novel gravitational interactions are predicted to have a signif-
icant influence on pre-inflationary cosmology. For attractive forces between
dark matter charges of like polarity the Einstein–Proca–matter system ex-
hibits homogeneous isotropic eternal cosmologies that are free of cosmolog-
ical curvature singularities thus eliminating the horizon problem associated
with the standard big-bang scenario. Such solutions do however admit dense
hot pre-inflationary epochs each with a characteristic scale factor that may
be correlated with the dark matter density in the current era of expansion.

The Einstein–Proca–Fluid model offers a simple phenomenological de-
scription of dark matter gravitational interactions. It has its origins in a
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geometrical description of gravitation and the theory benefits from a varia-
tional formulation in which the connection is a bona fide dynamical variable
along with the metric. The simplicity of the model is a consequence of
the structure of a class of non-Riemannian actions whose dynamical conse-
quences imply that the new physics resides in a component of gravitation
mediated by a Proca field. It will be of interest to confront the theory with
other aspects of astrophysics such as localized gravitational collapse, the
nature of the inflation mechanism and the origin of dark matter.
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