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We will give an outline of the computation of the QCD corrections to
the spin structure function g1(x, Q2) and the spin fragmentation function
gH
1

(x, Q2) which are measured in deep inelastic electron-proton scattering
and in electron-positron annihilation respectively. In particular we show
how to deal with the γ5-matrix and the Levi–Civita tensor, appearing in the
amplitudes of the parton subprocesses, when the method of N -dimensional
regularization is used.

PACS numbers: 12.38. Bx

1. Deep inelastic electron–proton scattering

Deep inelastic electron-proton scattering proceeds via the following re-
action (see Fig. 1)

e−(l1, σ1) + P (p, s)→ e−(l2, σ2) + ‘X’ . (1.1)

Here ‘X’ denotes any inclusive hadronic final state and V in Fig. 1 stands for
the neutral intermediate vector bosons given by γ,Z. For simplicity we will
assume that the momentum transfer is very small with respect to the mass
of the Z-boson so that the process in Fig. 1 is dominated by the one photon
exchange mechanism only. In the case the proton is polarized parallel (→)
or anti-parallel (←) with respect to the spin of the incoming electron we
obtain the cross section

d2σ(→)

dx dy
−

d2σ(←)

dx dy
=

4πα2

Q2

[

{2− y}g1(x,Q2)
]

, (1.2)
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where g1(x,Q2) denotes the longitudinal spin structure function. Further
we have defined the scaling variables

x =
Q2

2p q
, y =

p q

p l1
, q2 = −Q2 < 0 . (1.3)

The spin structure functions show up in the antisymmetric part of the

e−

e−

P

V

‘X’
p, s

l1, σ1

l2, σ2

↓ q

Fig. 1. Kinematics of polarized deep inelastic electron–proton scattering.

hadronic tensor

Wµν(p, q, s) =
1

4π

∫

d4z eiq·z〈p, s | Jµ(z)Jν(0) | p, s〉 , (1.4)

which is given by

W A
µν(p, q, s) =

m

2p q
ǫµναβqα

[

sβg1(x,Q2) + (sβ −
s q

p q
pβ)g2(x,Q2)

]

. (1.5)

Here g2(x,Q2) denotes the transverse spin structure function which is kine-
matically suppressed in cross section (1.2). Since the leading power cor-
rections are of twist two, one can give a parton model description of the
longitudinal structure function which can be written as

g1(x,Q2) =
1

nf

nf
∑

k=1

e2
k

1
∫

x

dz

z

[

∆fS
q

(x

z
, µ2

)

∆CS
1,q(z,

Q2

µ2
)

+∆fS
g

(x

z
, µ2

)

∆CS
1,g(z,

Q2

µ2
) + nf∆fNS

q,k

(x

z
, µ2

)

∆CNS
1,q (z,

Q2

µ2
)
]

. (1.6)

Unfortunately there does not exist such a simple formula for g2(x,Q2) be-
cause of twist three contributions which are not power suppressed with re-
spect to the twist two parts. Hence one cannot give a simple parton model
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interpretation for the transverse spin structure function and we will there-
fore not discuss it in the subsequent part of this paper.
In Eq. (1.6) we have used the following notation. The charge of the light
quarks is denoted by ek and nf stands for the number of light flavours.
The spin parton densities ∆fi(z, µ2) (i = q, g) depend on factorization scale
µ which is put to be equal to the renormalization scale. The spin parton
coefficient functions ∆C1,i depend on the same scale µ. The quark parton
densities and the quark coefficient functions can be split in non-singlet (NS)
and singlet (S) parts with respect to the flavour group. The singlet and
non-singlet combinations of parton densities are given by

∆fS
q (z, µ2) =

nf
∑

k=1

[∆fk(z, µ2) + ∆fk̄(z, µ2)] , (1.7)

and

∆fNS
q,k (z, µ2) = ∆fk(z, µ2) + ∆fk̄(z, µ2)−

1

nf
∆fS

q (z, µ2) , (1.8)

respectively. Since it turns out that the equations are easier to study when
one performs a Mellin transform defined by

F (n) =

1
∫

0

dz zn−1F (z) , (1.9)

we will present all the following formulae in this representation.
The parton densities and the coefficient functions above satisfy the renor-
malization group equations. Let us first define the differential operator

D =
D

µ
∂

∂µ
+ β(g)

∂

∂g
, β(g) = −β0

g3

16π2
+ · · · . (1.10)

Using this notation the renormalization group equations for the parton den-
sities read

D ∆f
NS,(n)
q,k = −∆γNS,(n)

qq ∆f
NS,(n)
q,k , k = u, d · · · ,

D ∆f
S,(n)
i = −∆γ

S,(n)
ij ∆f

S,(n)
j , i, j = q, g , (1.11)

and for the coefficient functions

D ∆C
NS,(n)
1,q = ∆γNS,(n)

qq ∆C
NS,(n)
1,q ,

D ∆C
S,(n)
1,i = ∆γ

S,(n)
ji ∆C

S,(n)
1,j , i, j = q, g . (1.12)
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From the equations above it follows that the structure function is a renor-
malization group invariant i.e.

D g
(n)
1 (Q2) = 0 , (1.13)

which implies that it is a physical quantity independent of the scale µ.
The anomalous dimensions and the coefficient functions are calculable

order by order in perturbation theory. Let us first sketch the derivation of
the anomalous dimensions before we pay attention to the coefficient func-
tions. In [1] the anomalous dimensions appearing in the spin dependent
quantities have been derived from the calculation of the operator matrix
elements (OME’s). For an alternative derivation see [2]. These OME’s are
obtained by sandwiching local operators between quark and gluon states.
These operators appear in the lightcone expansion of the product of the
electromagnetic currents in Eq. (1.4). Suppressing some irrelevant Lorentz
indices the expansion reads as follows

J(x)J(0) =
x2→0

∞
∑

n=0

∑

i

c
(n)
1,i (x2)O

(n)
i (0) , i = q, g . (1.14)

Here n denotes the spins of the local operators O
(n)
i and c

(n)
1,i (x2) are the

Fourier transforms of the coefficient functions in position space. The opera-
tors of twist two, which can also be split into singlet and non-singlet parts,
are given in the literature (see e.g. Eqs (2.5)–(2.7) in [1]). Since, in the
Bjørken limit, the integrand in Eq. (1.4) is dominated by the light cone we
can replace the current–current product by the above expansion so that one
has to compute the renormalized OME’s

A
r,(n)
ij

(

−p2

µ2

)

= 〈j(p) | O
(n)
i | p(j)〉 , (1.15)

where i, j = q, g and p denotes the external momentum of the quarks and
gluons and r = NS,S. In [1] and recently also in [3] the above operator
matrix element (OME) has been computed up to second order in the strong
coupling constant αs. The calculation proceeds as follows. After having
derived the operator vertices (see Appendix A in [1]) one has to compute
the Feynman graphs (see Figs 1–6 in [1]) which correspond to the unrenor-
malized (bare) OME’s. The latter reveal ultraviolet singularities which are
regularized by N -dimensional regularization. The unrenormalized OME’s
indicated by a hat can be written in the form

Â
r,(n)
ij

(

−p2

µ2
,
1

ε

)

= δij + âsSε(
−p2

µ2
)ε/2

[1

ε
∆γ

(n),(0)
ij + ∆a

(n),(1)
ij + ε∆a

ε,(n),(1)
ij

]
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+ â2
sS

2
ε (
−p2

µ2
)ε

[ 1

ε2

{1

2
∆γ

(n),(0)
ik ∆γ

(n),(0)
kj − β0∆γ

(n),(0)
ij

}

+
1

ε

{1

2
∆γ

(n),(1)
ij − 2β0∆a

(n),(1)
ij + ∆γ

(n),(0)
ik ∆a

(n),(1)
kj

}

+ ∆a
(n),(2)
ij − 2β0∆a

ε,(n),(1)
ij + ∆γ

(n),(0)
ik ∆a

ε,(n),(1)
kj

]

, (1.16)

where Sε is the spherical factor characteristic of N -dimensional regulariza-
tion. Here the hat indicates that all quantities are unrenormalized with
respect to coupling constant and operator renormalization. The algebraic
structure shown by the expression above follows from the renormalization
group. In addition to the anomalous dimensions one also encounters the co-
efficients of the beta-function. For instance β0 (see Eq. (1.10)) is the lowest
order coefficient, which also appears in the coupling constant renormaliza-
tion, given by

âs = as(µ
2)

[

1 + as(µ
2)Sε

{

2β0
1

ε

}]

, as =
αs

4π
. (1.17)

From the expression above one can in principle extract the first and second
order anomalous dimension of the local operators in Eq. (1.14) which are

given by ∆γ
(n),(0)
ij and ∆γ

(n),(1)
ij respectively. However in the renormaliza-

tion of the OME’s one has to deal with two difficulties. The first one is
caused by the fact that usually the external momentum p is taken off-shell
(p2 < 0). This means that the OME in Eq. (1.15) ceases to be a genuine
S-matrix element and it becomes gauge dependent. Therefore one also has
to carry out gauge parameter renormalization. The second problem, which
is characteristic of spin operators, is the appearance of the γ5-matrix and the
Levi–Civita tensor ǫµναβ in the operator vertices (see Appendix A in [1]). In
the case of N -dimensional regularization one has to find a suitable prescrip-
tion to define these essentially four dimensional quantities in N -dimensions.
In [1] and [3] the vertex γµγ5 is replaced by

γµγ5 =
i

6
ǫµαβσγαγβγσ , (1.18)

so that only the Levi–Civita tensor appears in the OME’s. This prescription
is equivalent to the one given by ’t Hooft and Veltman [4] which is worked out
in more detail by Breitenlohner and Maison [5] (HVBM). For the replace-
ment of the γ5-matrix in Eq. (1.18) see [6, 7]. Although this prescription
preserves the cyclicity of the traces it destroys the anticommutativity of the
γ5-matrix. This will mean that some Ward-identies or theorems will be vi-
olated. For example the non-singlet axial vector current, presented by the
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operator O
NS,(1)
q in Eq. (1.14), gets renormalized in second order although

it is conserved. Furthermore the Adler–Bardeen theorem [8] concerning the
nonrenormalization of the Adler-anomaly is violated. This will affect the

renormalization of the singlet axial-vector operator O
S,(1)
q in order α3

s. To
undo these effects one has to introduce an additional renormalization con-
stant in order to obtain the correct anomalous dimensions in the MS-scheme.
The latter have now to be extracted from the renormalized rather than the
unrenormalized OME’s. After coupling constant renormalization the OME’s
are renormalized as follows

ĀNS,(n)
qq = Z̄5,NS,(n)

qq (Z̄−1)NS,(n)
qq ÂNS,(n)

qq ,

Ā
S,(n)
ij = Z5,S,(n)

qq (Z−1)
S,(n)
iq Â

S,(n)
qj + (Z̄−1)

S,(n)
ig Â

S,(n)
gj , (1.19)

where we have chosen the MS-scheme. In this scheme the constant for the
HVBM-prescription can be written up to order α2

s as

Z5,r,(n)
qq

(

1

ε

)

= 1 + asSε

[

z(n),(1)
qq

]

+ a2
sS

2
ε

[1

ε
β0z

(n),(1)
qq + zr,(n),(2)

qq

]

, (1.20)

with r = NS,S. Notice that the difference between the singlet (S) and the

non-singlet (NS) expression for Z5,r
qq shows up for the first time in second

order (see [7]). In this reference Z5,r
qq has been calculated for the first moment

(n = 1) up to order α3
s. Recently this constant has been computed up to

second order in [3] but now for general moments. In the non-singlet case it
can be computed from the ratio

Z5,NS,(n)
qq

(

1

ε

)

=
Â

NS,(n)
qq (−p2/µ2, 1/ε) |naive

Â
NS,(n)
qq (−p2/µ2, 1/ε) |HVBM

∣

∣

∣

∣

∣

p2=−µ2

, (1.21)

where in the numerator one has used the so called naive prescription in
which the γ5-matrix anticommutes with all other γ-matrices irrespective
of the value for the dimension N . The use of the naive method implies

that the numerator can be replaced by the spin averaged OME Â
NS,(n)
qq in

which the γ5-matrix does not appear. A similar derivation exists for Z
5,S,(n)
qq

where one also makes a comparison between the naive γ5 and the HVBM
prescription. From the considerations presented above one could have asked
the question why it is preferable to choose the HVBM instead of the naive

prescription since in the latter case Z
5,r,(n)
qq = 1? The reason is that the

Levi–Civita tensor appears in the OME Âgq which induces in the subgraphs
containing quark lines the HVBM prescription. Therefore the naive method
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is inconsistent and it is better to use a consistent procedure like HVBM
where all constants are fixed once and for all. The operator renormalization
constants in Eq. (1.19), presented in the MS-scheme, read as follows

(Z̄−1)
r,(n)
ij

(

1

ε

)

= δij + asSε

[

−
1

ε
∆γ

(n),(0)
ij

]

+a2
sS

2
ε

[ 1

ε2

{1

2
∆γ

(n),(0)
ik ∆γ

(n),(0)
kj − β0∆γ

(n),(0)
ij

}

+
1

2ε

{

∆γ̄
(n),(1)
ij ±∆γ

(n),(0)
ik ∆z

(n),(1)
kj

}]

. (1.22)

The above expression differs from the usual one by the appearance of the

term z
(n),(1)
kj with k = j = q which only contributes to (Z̄−1)qg (plus sign)

and (Z̄−1)gq (minus sign) up to order α2
s. If this term is omitted then the

anomalous dimensions will equal those present in Eq. (1.16), which differ by
a finite renormalization from the ones presented in the MS-scheme. Notice

that the lowest order coefficients ∆γ
(n),(0)
ij are not affected by any γ5 prescrip-

tion. Finally we want to emphasize that due to the pole term in Eq. (1.20)

Z5,r
qq does not represent a finite renormalization constant in the usual sense.

Using the above procedure one can write the following expression for the
renormalized OME in the MS-scheme

Āij

(

−p2

µ2

)

= δij + as

[1

2
∆γ

(n),(0)
ij ln

(−p2

µ2

)

+ ∆ā
(n),(1)
ij

]

+a2
s

[{1

8
∆γ

(n),(0)
ik ∆γ

(n),(0)
kj −

1

4
β0∆γ

(n),(0)
ij

}

ln2
(−p2

µ2

)

+
{1

2
∆γ̄

(n),(1)
ij − β0∆ā

(n),(1)
ij +

1

2
∆γ

(n),(0)
ik ∆ā

(n),(1)
kj

}

ln
(−p2

µ2

)

+∆ā
(n),(2)
ij

]

. (1.23)

Notice that the coefficients ∆ā
(n),(k)
ij in this expression differ from the

∆a
(n),(k)
ij present in Eq. (1.16). From the relation

∆f
(n)
i (µ2) = Ā

(n)
ij

(

−p2

µ2

)

∆f
(n)
i (−p2) , (1.24)
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and Eq. (1.11) one concludes that the renormalized Ā
(n)
ij satisfy the renor-

malization group equation given by

DĀ
(n)
ij = −∆γ̄

(n)
ik Ā

(n)
kj . (1.25)

Fig. 2. Contributions to the process γ∗ + q → ‘X’ contributing to the partonic

structure function ĝ1,q.

Fig. 3. Contributions to the process γ∗ + g → ‘X’ contributing to the partonic

structure function ĝ1,g.

After having discussed the renormalization of the OME’s we now explain the
procedure to compute the coefficient functions appearing in the spin struc-
ture function of Eq. (1.6). They are obtained from the partonic subprocesses
denoted by

γ∗ + i→ ‘X’ , (1.26)

where i stands either for a quark (q) or a gluon (g) and ‘X’ represents an
inclusive multi-partonic state. The above processes have been calculated up
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to order α2
s in [9]. Some Feynman graphs are depicted in Fig. 2 (i = q) and

in Fig. 3 (i = g). The computation of the QCD corrections reveal ultraviolet,
infrared and colinear divergences which appear in the Feynman integrals and
in the phase space integrals. Like in the case of the operator matrix elements
we regularize them by means of N -dimensional regularization. Further we
use the HVBM prescription for the γ5-matrix as discussed below Eq. (1.18).
Adding all contributions one observes that the infrared singularities cancel
and the radiative corrections are described by the parton structure functions
which in general can be presented by the expression

ĝ
r,(n)
1,i

(

Q2

µ2
,
1

ε

)

= δqi

+âsSε

(

Q2

µ2

)ε/2
[

−
1

ε
∆γ

(n),(0)
qi + ∆c

(n),(1)
1,i + ε∆c

ε,(n),(1)
1,i

]

+â2
sS

2
ε

(

Q2

µ2

)ε
[ 1

ε2

{1

2
∆γ

(n),(0)
qj ∆γ

(n),(0)
ji + β0∆γ

(n),(0)
qi

}

+
1

ε

{

−
1

2
∆γ

(n),(1)
qi − 2β0∆c

(n),(1)
1,i −∆c

(n),(1)
1,j ∆γ

(n),(0)
ji

}

+∆c
(n),(2)
1,i − 2β0∆c

ε,(n),(1)
1,i −∆c

ε,(n),(1)
1,j ∆γ

(n),(0)
ji

]

, (1.27)

with r = NS,S. The above expression still contains ultraviolet and colinear
divergences both represented by the pole terms (1/ε)k . The former are
removed by coupling constant renormalization (see Eq. (1.17)). The residues
of the colinear divergences are usually denoted by the DGLAP spin splitting
functions ∆Pij which are related to the anomalous dimensions via a Mellin
transform i.e.

∆γ
(n)
ij = −

1
∫

0

dz zn−1 ∆Pij(z) . (1.28)

The colinear divergences are removed by applying mass factorization which
proceeds as follows

∆C̄
NS,(n)
1,q = (Z5,NS,(n)

qq )−1(Γ̄−1)NS,(n)
qq ĝ

NS,(n)
1,q

∆C̄
S,(n)
1,q = (Z5,S,(n)

qq )−1
[

(Γ̄−1)S,(n)
qq ĝ

S,(n)
1,q + (Γ̄−1)S,(n)

gq ĝ
S,(n)
1,g

]

∆C̄
S,(n)
1,g = (Γ̄−1)S,(n)

qg ĝ
S,(n)
1,q + (Γ̄−1)S,(n)

gg ĝ
S,(n)
1,g , (1.29)
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and the transition functions (Γ̄−1)
r,(n)
ij are given by (see Eq. (1.22))

(Γ̄−1)NS,(n)
qq = Z̄NS,(n)

qq , (Γ̄−1)
S,(n)
ij = Z̄

S,(n)
ij . (1.30)

Using these expressions the longitudinal spin coefficient functions can be
written as

∆C̄
r,(n)
1,i

(

Q2

µ2

)

= δqi + as

[

−
1

2
∆γ

(n),(0)
qi ln

(

Q2

µ2

)

+ ∆c̄
(n),(1)
1,i

]

+a2
s

[{1

8
∆γ

(n),(0)
qj ∆γ

(n),(0)
ji +

1

4
β0∆γ

(n),(0)
qi

}

ln2

(

Q2

µ2

)

+
{

−
1

2
∆γ̄

(n),(1)
qi − β0∆c̄

(n),(1)
1,i −

1

2
∆γ

(n),(0)
ji ∆c̄

(n),(1)
1,j

}

ln

(

Q2

µ2

)

+∆c̄
(n),(2)
1,i

]

, (1.31)

so that they satisfy the renormalization group equations in Eq. (1.12). Notice

that in the above expression the coefficients ∆c̄
(n),(k)
1,i differ from ∆c

(n),(k)
1,i in

Eq. (1.27). From the discussion above one infers that the renormalization
of the operator matrix elements determine the way one has to perform the

mass factorization on ĝ
r,(n)
1,i and not vice versa. The reason is that the

renormalization of the former (but not of the latter) is ruled by the Ward-
identities and some theorems which are violated by the HVBM-prescription.

This has forced us to introduce the additional constant Z
5,r,(n)
qq in Eq. (1.20)

to restore the wanted properties on the level of the renormalized operator
matrix elements presented in Eq. (1.23). If we would have accidentally

put Z
5,r,(n)
qq = 1 the coefficient functions and the renormalized operator

matrix elements get different anomalous dimensions and the relations in Eq.
(1.30) would be violated. From Eqs (1.24), (1.25) it also follows that the
parton densities and the coefficient functions would have different anomalous
dimensions. Hence the structure function g1(x,Q2) (1.6) would not satisfy
Eq. (1.13) anymore so that it is no longer a physical quantity. Therefore

this choice for Z5,r
qq is unacceptable.
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2. Fragmentation into polarized hadrons

in electron–positron annihilation

Single hadron (denoted by H) inclusive production in electron-positron
annihilation is given by the reaction

e−(l1, σ1) + e+(l2, σ2)→ V (q)→ H(p, s) + ‘X’ . (2.1)

Here we have introduced a similar notation to the one in reaction (1.1).
However the Bjørken scaling variable is defined by

x =
2p q

Q2
, q2 = Q2 > 0 , 0 < x ≤ 1 , (2.2)

for timelike momenta of the vector boson V . The annihilation process can
be depicted as in Fig. 1 where now the incoming hadron is outgoing and
the electron in the final state becomes a positron in the initial state. In
the case the incoming electron in reaction (2.1) is longitudinally polarized
downwards, i.e. σ1 =↓, and the positron is unpolarized then one can simplify
the cross section when the process becomes purely electromagnetic. In this
case V = γ and we get

dσH(↓)(↓)

dx d cos θ
−

dσH(↑)(↓)

dx d cos θ
= NC

πα2

Q2
cos θ gH

1 (x,Q2) . (2.3)

The above expression represents the difference between the cross sections
where the detected hadron H is polarized parallel s =↓ or anti-parallel
s =↑ with respect to the electron. Further NC denotes the colour factor
in SU(NC) and θ is the polar angle describing the direction of the momen-
tum of H in the C.M. frame with respect to the incoming electron. Notice
that the hadron fragmentation function gH

1 (x,Q2) can be also measured in
unpolarized electron–positron scattering provided reaction (2.1) is mediated
by the Z-boson. Here it appears via the axial-vector coupling of this boson
to the lepton-pair. The above hadron fragmentation function shows up in
the anti-symmetric part of the hadronic structure tensor

Wµν(p, q, s) =

1

4π

∫

d4z eiq·z〈0 | Jµ(z) | H(p, s),X〉〈H(p, s),X | Jν(0) | 0〉 , (2.4)

which can be decomposed in the same way as shown for Eq. (1.5) in deep-
inelastic scattering. Since H is exclusive the above expression is not a Fourier
transform of a current–current correlation function which implies that we
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cannot insert the lightcone expansion of Eq. (1.15). Therefore we can only
work in the QCD improved parton model picture in which the fragmentation
function has the following form

gH
1 (x,Q2) =

1

nf

nf
∑

k=1

e2
k

1
∫

x

dz

z

[

∆DH,S
q

(x

z
, µ2

)

∆CS
1,q

(

z,
Q2

µ2

)

+∆DH,S
g

(x

z
, µ2

)

∆CS
1,g

(

z,
Q2

µ2

)

+nf∆DH,NS
k

(x

z
, µ2

)

∆CNS
1,q

(

z,
Q2

µ2

)

]

. (2.5)

The spin parton fragmentation densities denoted by ∆DH
i (z, µ2) are the ana-

logues of the parton densities in Eq. (1.6) and they satisfy the same renor-
malization group equations. However beyond lowest order the anomalous
dimensions are different for these two densities (see [10–12]). The anoma-
lous dimensions ruling the evolution of the spin fragmentation densities have
recently been calculated up to second order in [12]. To obtain the timelike
spin coefficient functions one has to calculate the timelike photon analogues
of the graphs in Figs 2, 3. Here the incoming quark and gluon become out-
going and they now fragment into the hadron H. Furthermore the spacelike
photon turns into a timelike one. The calculation of these coefficient func-
tions was recently done up to second order in [13]. It proceeds in the same
way as for deep inelastic scattering in Section 1 where again the HVBM
prescription for the γ5-matrix is chosen. After having calculated the parton

fragmentation functions denoted by ĝ
H,r,(n)
1,i one has to perform mass factor-

ization analogously to Eq. (1.29). However our calculation reveals that the

renormalization constant Z5,r
qq is different for timelike (fragmentation func-

tion) and spacelike (structure function) quantities. In [13] one has obtained
the non-singlet part of this constant for the timelike (T) process (2.1) by
computing the ratio

Z5,NS,T,(n)
qq =

ĝ
H,NS,(n)
1,q (Q2/µ2, 1/ε)

F̂
H,NS,(n)
3,q (Q2/µ2, 1/ε)

∣

∣

∣

∣

∣

µ2=Q2

, (2.6)

where F̂
H,NS,(n)
3,q is the parton fragmentation function in unpolarized electron-

positron annihilation. It arises due to the axial-vector coupling of the Z-
boson to the outgoing quark anti-quark pair (see Fig. 1). If the γ5 anticom-
mutes with the other γ-matrices one can show that the coefficient functions
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∆CNS
1,q and CNS

3,q are equal up to order α2
s. Since the HVBM prescription de-

stroys this property for ĝ
H,NS,(n)
1,q we have to multiply the latter by Z5,NS,T

qq in
order to obtain the correct coefficient functions. If we assign to the constant
in Eq. (1.20) the superscript S (here spacelike), the following relation holds
for the inverse Mellin transforms

Z5,NS,T
qq (z) = −zZ5,NS,S

qq

(

1

z

)

+ a2
s

[

β0z
NS,(1)
qq (z) ln z

]

. (2.7)

The above equality demonstrates the breakdown of the Gribov–Lipatov re-
lation [14] in order α2

s. The above relation is also found for the timelike
and spacelike non-singlet splitting functions PNS

qq in unpolarized scattering

in Eqs. (6.37) and (6.38) of [10] where z
(1)
qq is replaced by the lowest order

DGLAP splitting function P
NS,(0)
qq . Notice that the same relation holds for

the spin splitting functions because ∆PNS
qq = PNS

qq (see [12]). The depen-

dence of Z5,NS
qq on the quantity under consideration reveals that it is not an

universal constant. Therefore aside from the pole term already mentioned
above Eq. (1.23), it does not represent a genuine renormalization constant
in the usual sense.

We would like to thank J. Smith and Y. Matiounine for the careful
reading of the manuscript and for giving us some useful comments.
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