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We discuss the NLO evolution of quark transversity densities and of
the parton distribution function for linearly polarized gluons in a linearly
polarized hadron. A supersymmetric relation between the NLO evolution
kernels for transversity and for linear polarization is found. We also study
the implications of NLO evolution for Soffer’s inequality and the prospects
of measuring transversity densities in polarized Drell–Yan at RHIC.

PACS numbers: 13.88. +e, 12.38. Bx

1. Introduction

Experimentally, the vast majority of data sensitive to parton densities
have been taken without fixing the polarization of the initial beams or the
target. The densities extracted in this way are usually refered to as the
‘unpolarized’ parton distributions f(x,Q2) (f = q, q̄, g).

Within roughly the last decade, also more and more data have be-
come available that are sensitive to the ‘longitudinally’ polarized (‘helicity–
weighted’) parton densities of the nucleon. The tool to obtain such informa-
tion has (almost exclusively) been deep–inelastic scattering (DIS) of longi-
tudinally polarized leptons and nucleons. The spin–asymmetry measured in
such reactions is related to the probability for finding a certain parton–type
with positive helicity in a nucleon of positive helicity minus the probability
for finding it with negative helicity. These densities, denoted as ∆f(x,Q2)
(f = q, q̄, g), contain information different from that contained in the more
familiar unpolarized ones.

For a transversely polarized spin–1/2 hadron one can define a further
quark density [1–3] in very much the same way as the longitudinally polarized
quark distributions, by taking differences of probabilities for finding quarks
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with transverse spin aligned and anti–aligned with the transverse hadron
spin. These densities are called ‘transversity’ densities and are denoted by
∆T f(x,Q2). It turns out that – unlike the situation for unpolarized and
longitudinally polarized densities — there is no gluonic analogue of quark
transversity [2]. This is due to angular momentum conservation: transver-
sity densities are related to helicity–flip amplitudes. A gluonic helicity–flip
amplitude would require the hadron to absorb two units of helicity, which
no spin–1/2 target can do.

The transversity distributions are completely unmeasured so far since
they cannot be directly accessed in DIS. It seems certain, however, that
measurements of the ∆T f will be attempted at the future polarized proton-
proton collider RHIC at Brookhaven [4]. The most suitable candidate for
such measurements is believed to be Drell–Yan dimuon production [1].

The ∆T f complete the twist–2 sector of parton densities of spin–1/2
hadrons. Nevertheless, we have not yet depleted the full set of parton densi-
ties that can be defined if spin is taken into account. There finally is a further
spin–dependent gluon distribution that to some extent can be regarded as
the gluonic counterpart of quark transversity. Unlike the ‘helicity’ density
∆g that describes circular polarization of the gluon, it is encountered if the
gluon is linearly polarized [3,5,6]. The density is denoted by ∆Lg(x,Q2) and
exists only in a linearly polarized hadron (or photon [6]), which therefore
has to have spin ≥ 1. There is no quark distribution in this case [5]. Even
though a measurement of ∆Lg does not seem very realistic at the moment,
it possesses some interesting theoretical aspects which justify its analysis.

Table I summarizes the parton densities we have defined.

TABLE I

List of twist–2 quark and gluon densities including spin–dependence. We have

suppressed the ubiquitous argument (x, Q2) of the densities. Note that ‘q’ always

runs over quarks as well as over antiquarks. Labels +,− denote helicities, ↑, ↓
transverse polarizations, and x̂ (ŷ) stands for linear polarization along the x (y)

axis, where the particle is moving along the z–direction. Subscripts refer to partons

and superscripts to the parent hadron.

polarization quarks gluons

unpolarized q ≡ q+
+ + q−+ ≡ q↑↑ + q↓↑ g ≡ g+

+ + g−+ ≡ gx
x + gx

y

long. polarized ∆q = q+
+ − q−+ ∆g = g+

+ − g−+
transversity ∆T q = q↑↑ − q↓↑ —

linearly pol. glue — ∆Lg = gx̂
x̂ − gx̂

ŷ

It is important to realize that each set of parton densities in Table I (i.e.,
each of the rows of Table I) is subject to its own set of evolution equations.
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For instance, the evolution of the longitudinally polarized densities proceeds
independently from that of the unpolarized partons, and so forth. In this
way, we are led to introducing separate sets of evolution kernels (splitting
functions) for each type of polarization.

The Q2–evolution of the unpolarized densities has been worked out up
to NLO accuracy of QCD already a long time ago [7–9], and it has become
standard since about ten years to analyse the unpolarized data within the
NLO framework. The LO evolution of the ∆f(x,Q2), the ∆T f(x,Q2), and
of ∆Lg(x,Q2) has also been known for a long time [3, 7, 10], whereas the
derivation of the NLO evolution kernels for longitudinally polarized par-
tons has been a more recent development [11, 12]. Very recently, the NLO
splitting functions for transversity were derived within three independent
calculations [13,14]. In this paper, we will discuss the NLO evolution of the
∆T f , and its implications for an inequality between the f , ∆f and ∆T f de-
rived by Soffer [15]. We will also for the first time present the NLO evolution
kernel for ∆Lg.

2. NLO evolution equations

Since there are no gluons involved in the case of the transversity distribu-
tions, their evolution equations reduce to simple non-singlet type equations.
Introducing

∆T qn
±(Q2) ≡ ∆T qn(Q2) ± ∆T q̄n(Q2) , (1)

where the Mellin moments are defined by

∆T qn(Q2) ≡
1

∫

0

xn−1∆T qn(x,Q2) , (2)

one has the evolution equations (see, for example, [16])

d

d ln Q2
∆T qn

±(Q2) = ∆TPn
qq,±(αs(Q

2))∆T qn
±(Q2) (3)

for all flavours. The splitting functions ∆T Pn
qq,±(αs(Q

2)) are taken to have
the following perturbative expansion:

∆T Pn
qq,±(αs) =

(αs

2π

)

∆T P (0),n
qq +

(αs

2π

)2
∆TP

(1),n
qq,± + . . . . (4)

As indicated, ∆TPqq,+ and ∆T Pqq,− are equal at LO.
Similarly to (3) one has for linearly polarized gluons:

d

d ln Q2
∆Lgn(Q2) = ∆LPn

gg(αs(Q
2))∆Lgn(Q2) , (5)
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where ∆LPn
gg has a peturbative expansion analogous to (4). These NLO

evolution equations can be easily solved; for details see, for instance, [13].

3. Calculation of splitting functions

Historically, the evolution kernels for parton densities have been cal-
culated within two rather different methods. On the one hand, the very
powerful, yet quite formal, technique of the ‘Operator–Product–Expansion’
(OPE) has been applied. Here the evolution kernels are derived as anoma-
lous dimensions of matrix elements of local operators. The other method
is more intuitive and relies on parton model ideas and on the factorization
of mass singularities in a physical (ghost–free) gauge [9, 17]. This is the
method we will use. Very roughly, the strategy goes as follows: The NLO
splitting functions are related to the residues of the collinear singularities in
the next–to–NLO (NNLO) calculation of a partonic subprocess cross section
for a ‘physical’ process. Being the pole part of this cross section, the singular
terms are manifestly gauge–independent. This means that we can employ a
gauge in their calculation that simplifies the extraction of the mass singular-
ities as much as possible. As was shown in [17], working in a physical gauge,
like the light–cone gauge, reduces the number of singular graphs at a given
order significantly. Thus, a full NNLO calculation is clearly not required.
In particular, only ladder–like diagrams, corresponding to a parton cascade,
contribute to the pole part in such gauges, so that the cross section σ̂ for
any physical partonic process can be diagrammatically expanded into a sum
of ladders of ‘two–particle–irreducible’ kernels that are individually finite.
Mass singularities only occur on the lines connecting the kernels (i.e., on
the ‘sides’ of the ladders) and can therefore be projected out easily using
a projector P that converts these lines into on–shell physical states. Thus,
the factorization of mass singularities can be achieved: the cross section σ̂
decomposes into a finite part σ̂F , and a function Γ that contains all the
collinear singularities and is universal since no process–dependence is left
over in it. The function Γ is then directly related to the splitting functions
one is looking for [9, 17].

For the case of transversity, the projector ∆TP is found to be

∆TP ∼ 1

4n · k 6n6sγ5 , (6)

where k is the momentum of the particle emerging from the top of a kernel,
n is the gauge vector with n · A = 0, n2 = 0 for the light–cone gauge,
and s is the transverse spin vector. More details on the calculation in the
transversity case can be found in [13].
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For linearly polarized gluons one has

∆LPαβ
x̂ŷ ≡ 1

2

(

ǫα
x̂ǫβ

x̂ − ǫα
ŷ ǫβ

ŷ

)

, (7)

where the polarization vectors

ǫx̂ ≡ (0, 1, 0, . . . , 0) , ǫŷ ≡ (0, 0, 1, 0, . . . , 0) (8)

have non–vanishing entries only in the x and y components, respectively. A

more detailed account of our calculation of ∆LP
(1)
gg will be given in a future

publication [18].

4. Results

Our results for ∆T P
(1)
qq,±(x) can be found in [13] and need not be repeated

here. The one for ∆LP
(1)
gg is new and reads in the MS scheme

∆LP (1)
gg (x) = N2

C

[

(

67

18
+

1

2
ln2 x − 2 ln x ln(1 − x) − π2

6

)

δLP (0)
gg (x)

+
1 − x3

6x
+ S2(x)δLP (0)

gg (−x) +

(

8

3
+ 3ζ(3)

)

δ(1 − x)

]

+ NCTf

[

−10

9
δLP (0)

gg (x) +
1 − x3

3x
− 4

3
δ(1 − x)

]

− CF Tf

[

2
1 − x3

3x
+ δ(1 − x)

]

, (9)

where

δLP (0)
gg (x) =

2x

(1 − x)+
, (10)

S2(x) =

1

1+x
∫

x

1+x

dz

z
ln (

1 − z

z
)

= −2Li2(−x) − 2 ln x ln(1 + x) +
1

2
ln2 x − π2

6
, (11)

with Li2(x) being the dilogarithm. Furthermore, we have as usual CF = 4/3,
NC = 3, and Tf = nf/2, nf being the number of active flavours. Finally,
ζ(3) ≈ 1.202057. We note that in [6] a result for the part ∼ CF Tf in
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(9) at x < 1 was presented, which corresponds to the two–loop splitting
function for transitions between linearly polarized gluons and photons. The
result of [6] disagrees with ours by a an additional factor 1/x in [6]. The
calculation of [6] therefore has to be in error, since a behaviour ∼ 1/x2 of
the splitting function – more singular than the unpolarized one – cannot be
correct.

There are two aspects of the result (9) that deserve further attention.
Firstly, the small–x behaviour of the splitting function for linear polarization
changes quite dramatically when going from LO to NLO. At LO, the splitting
function behaves ∼ x as x → 0. At NLO, there are terms ∼ 1/x in the
splitting function (as one also encounters in the unpolarized case); we have

∆LP (1)
gg (x) ≈ 1

3x

[

1

2
N2

C + NCTf − 2CF Tf

]

+ O(x) (x → 0) . (12)

We note that all logarithmic terms ∼ x ln2 x cancel out in this limit.
The other interesting point concerns the ‘supersymmetric’ limit CF =

NC = 2Tf ≡ N [19] which has already been investigated for the unpolarized
and the longitudinally polarized NLO splitting functions in [11, 12, 20] and
for the ‘time–like’ ones in [21]. One first of all finds that in the supersym-
metric limit the LO splitting functions for quark transversity and for linearly
polarized gluons become equal [3, 6]:

∆TP (0)
qq (x) = N

[

2x

(1 − x)+
+

3

2
δ(1 − x)

]

= ∆LP (0)
gg (x) . (13)

Thus, we have found the supersymmetric ‘counterpart’ of transversity: lin-
ear polarization (see also [19]). This nicely completes the supersymmetry
relations found in the case of unpolarized and longitudinally polarized par-
ton densities and fragmentation functions. The fact that two rather different
polarizations are linked here is not too surprising as both of them are trans-
verse in a certain sense.

To see whether the supersymmetric relation also holds at NLO, we have
to transform the splitting functions to a regularization scheme that respects
supersymmetry, dimensional reduction. The procedure here follows closely
that discussed in [12, 21]. The task is simplified by the fact that there
are no parts ∼ ǫ in the d–dimensional LO splitting functions for transver-
sity or linearly polarized gluons at x < 1. Such terms – which are always
absent in dimensional reduction, but can be present for dimensional regu-

larization – are the reason why, for instance, the longitudinally polarized
NLO splitting functions do not directly satisfy the supersymmetric relation
in dimensional regularization, but have to be transformed to dimensional
reduction first (see [12] for a more detailed discussion). The fact that the
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LO ǫ–terms are absent at x < 1 in our case, means that our final results

for the NLO transversity splitting function ∆T P
(1)
qq,+ of [13] and for the NLO

splitting function for linearly polarized gluons, Eq. (9), already coincide for
x < 1 with their respective MS expressions in dimensional reduction. We
can therefore immediately compare these expressions in the supersymmetric
limit. Indeed, we find for CF = NC = 2Tf ≡ N :

∆T P
(1)
qq,+(x) ≡ ∆LP (1)

gg (x) (x < 1) . (14)

The satisfaction of the supersymmetric relation at x = 1 is trivial; see [12],
where the appropriate factorization scheme transformation to dimensional
reduction at x = 1 is given.

We thus find that indeed the supersymmetric relation between the trans-
versity splitting function and the evolution kernel for linearly polarized glu-
ons is also verified at NLO. We note that the relation involves as expected

the ‘+-combination’ ∆T P
(1)
qq,+ ≡ ∆T P

(1)
qq +∆T P

(1)
qq̄ which corresponds to ‘sin-

glet’ evolution. Finally, also note the miraculous cancellation of the terms

∼ 1/x in ∆LP
(1)
gg in the supersymmetric limit (see Eq. (12)) – after all, such

terms are not present in ∆T P
(1)
qq,+.

5. Soffer’s inequality and the transversely

polarized Drell–Yan process

The unpolarized, longitudinally and transversely polarized quark dis-
tributions (q, ∆q, ∆T q) of the nucleon are expected to obey the rather
interesting relation

2|∆T q(x)| ≤ q(x) + ∆q(x) (15)

derived by Soffer [15]. It has recently been clarified that Soffer’s inequation
is preserved by leading order (LO) QCD evolution, i.e. if (15) is valid at
some scale Q0, it will also be valid at Q > Q0 [22]. To NLO the situation is
not as simple. The parton distributions are now subject to the choice of the
factorization scheme which one may fix independently for q, ∆q and ∆T q.
One can therefore always find ‘sufficiently incompatible’ schemes in which
a violation of (15) occurs. However, it was shown in [13] with analytical
methods that the inequality for valence densities is preserved by NLO QCD
evolution in a certain ‘Drell-Yan scheme’ in which the NLO cross sections for
dimuon production maintain their LO forms, and also in the MS scheme. In
this section, which is taken from [23], we shall show numerically that Soffer’s
inequation for sea quarks is also preserved under NLO (MS) evolution. We
note that there is also a recent analytical proof of the preservation of Soffer’s
inequality [24] at NLO.
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For our study, we will assume saturation of Soffer’s inequality at the
input scale for parton evolution. Our choice for the r.h.s. of (15) will then
be the NLO MS radiative parton model inputs for q(x,Q2

0) of [25] and for
the longitudinally polarized ∆q(x,Q2

0) of the ‘standard’ scenario of [26] at
Q2

0 = µ2
NLO = 0.34 GeV2. For simplicity we will slightly deviate from the

actual q(x,Q2
0) of [25] in so far as we will neglect the breaking of SU(2)

in the input sea quark distributions originally present in this set. This
seems reasonable as SU(2) symmetry was also assumed for the ∆q̄(x,Q2

0)
of [26], which in that case was due to the fact that in the longitudinally
polarized case there are no data yet that could discriminate between ∆ū
and ∆d̄. We therefore prefer to assume ∆T ū(x,Q2

0) = ∆T d̄(x,Q2
0) also for

the transversity input.
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Fig. 1. The ratio Rq(x, Q2) as defined in (16) for q = uv, ū, dv, d̄ and several fixed

values of Q2.

In order to numerically check the preservation of (15), Fig. 1 shows the
ratio

Rq(x,Q2) =
2|∆T q(x,Q2)|

q(x,Q2) + ∆q(x,Q2)
(16)

as a function of x for several different Q2 values for q = uv = u−, ū =
(u+ − u−)/2, dv = d−, d̄ = (d+ − d−)/2 (cf. Eq. (1)). If NLO evolution
preserves Soffer’s inequality, then Rq(x,Q2) should not become larger than
1 for any Q2 ≥ Q2

0. As we already know from [13] this is the case for
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the two valence distributions. Figure 1 confirms that Soffer’s inequality is
indeed also preserved for sea distributions. Furthermore, we see in Fig. 1
that evolution leads to a strong suppression of Rq(x,Q2) at small values of
x, in particular for the sea quarks.

As is obvious from (15), Soffer’s inequality only restricts the absolute
value of the transversity distribution. Therefore, we are free to choose the
sign when saturating (15), and we have to check the results for the two
distinct possibilities ∆T qv(x,Q2

0) > 0, ∆T q̄(x,Q2
0) > 0 and ∆T qv(x,Q2

0) >
0, ∆T q̄(x,Q2

0) < 0. Our results do not noticeably depend on the actual
choice. Neither does it matter whether we decide to saturate Soffer’s inequal-
ity for the valence densities qv or for the full quark (q ≡ qv + q̄) distributions
at the input scale.

One can utilise a saturated Soffer inequality to derive upper bounds on
the transverse double–spin asymmetry ATT to be measured in transversely
polarized Drell-Yan muon pair production at RHIC. ATT is defined as ATT =
dδσ/dσ where the polarized and unpolarized hadronic cross sections are

dδσ ≡ 1

2

(

dσ↑↑ − dσ↑↓
)

, dσ ≡ 1

2

(

dσ↑↑ + dσ↑↓
)

. (17)

We employ the same input distributions as before, along with the same value
for the initial scale Q0. We choose QF = QR = M for the factorization and
renormalization scales, where M is the invariant mass of the muon pair.
Further details of the calculation of the Drell–Yan cross section to LO and
NLO can be found in [23].
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Fig. 2. NLO and LO maximal polarized Drell-Yan cross sections and asymmetries

for RHIC at
√

S = 150 GeV. The error bars have been calculated assuming L =

240 pb−1, 70% beam polarization and 100% detection efficiency.
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Figure 2 shows the transversely polarized pp cross section and the ‘max-
imal’ double–spin asymmetry ATT at LO and NLO for

√
S = 150 GeV,

corresponding to the RHIC pp collider. We note that the region 9 GeV
.M.11 GeV will presumably not be accessible experimentally since it will
be dominated by muon pairs from bottomonium decays. The predicted max-
imal asymmetry is of the order of a few per cent. The expected statistical
error bars have been included in the plot; they have been calculated for
70% beam polarization, an integrated luminosity L = 240 pb−1, and 100%
detection efficiency. One concludes that asymmetries of this size should be
well measurable at RHIC. Similar asymmetries are found [23] for another
conceivable experimental situation, namely a proposed fixed–target exper-
iment at HERA that would utilise the possibly forthcoming polarized 820
GeV HERA proton beam on a transversely polarized target, resulting in√

S = 40 GeV.
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Fig. 3. As in Fig. 2, but for
√

S = 500 GeV and L = 800 pb−1.

Figure 3 shows similar results for the high-energy end of RHIC,
√

S =
500 GeV, where the integrated luminosity is expected to be L = 800 pb−1.
It turns out that the asymmetries become smaller as compared to the lower
energies, but thanks to the higher luminosity the error bars become relatively
smaller as well, at least in the region 5 GeV.M.25 GeV where the errors
are approximately 1/10 of the maximal asymmetry. One can also clearly see
in Fig. 3 the effect of Z exchange and the Z resonance.

A comparison of the LO and NLO results in Figs. 2 and 3 answers one
key question concerning the transversely polarized Drell-Yan process: our
predictions for the maximal ATT show good perturbative stability, i.e. the
NLO corrections to the cross sections and ATT are of moderate size, albeit
not negligible.
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Fig. 4. Scale dependence of the LO and NLO asymmetries at
√

S = 150 GeV.

The renormalization and factorization scales were chosen to be QR = QF =

M/2, M, 2M . The solid line is as in Fig. 2.

Finally, we also find a significantly reduced scale dependence of the re-
sults when going from LO to NLO. This is shown in Fig. 4 for the case√

S = 150 GeV. We plot here the maximal asymmetry in LO and NLO,
varying the renormalization and factorization scales in the range M/2 ≤
QF = QR ≤ 2M . One can see that already the LO asymmetry is fairly
stable with respect to scale changes, which is in accordance with the finding
of generally moderate NLO corrections. The NLO asymmetry even shows
a significant improvement, so that ATT becomes largely insensitive to the
choice of scale.

I am grateful to O. Martin, A. Schäfer and M. Stratmann for fruitful
collaborations on parts of this work.
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