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Theoretical expectations concerning small x behaviour of the spin de-
pendent structure function g1 are summarised. This includes discussion of
the Regge pole model predictions and of the double ln2(1/x) effects implied
by perturbative QCD. The quantitative implementation of the latter is de-
scribed within the unified scheme incorporating both Altarelli–Parisi evo-
lution and the double ln2(1/x) resummation. The double ln2(1/x) effects
are found to be important in the region of x which can possibly be probed
at HERA. Predictions for the polarized gluon distribution ∆G(x, Q2) at
low x are also given.

PACS numbers: 12.38. Bx

Understanding of the small x behaviour of the spin dependent structure
functions of the nucleon, where x is the Bjorken parameter is interesting both
theoretically and phenomenologically. Present experimental measurements
do not cover the low x values and so the knowledge of reliable extrapolation
of the structure functions into this region is important for estimate of inte-
grals which appear in the Bjorken and Ellis–Jaffe sum rules [1]. Theoretical
description of the structure function gp

1(x,Q2) at low x is also extremely
relevant for the possible polarised HERA measurements [2]. The purpose
of this talk is to summarize the theoretical QCD expectations concerning
the small x behaviour of the spin dependent structure function g1 of the nu-
cleon. After brief reminder of the Regge pole expectations we shall discuss
the effects of the double ln2(1/x) resummation and its phenomenological
implementation. Besides the structure function g1 we shall also discuss the
spin dependent gluon distribution ∆G.

∗ Presented at the Cracow Epiphany Conference on Spin Effects in Particle Physics

and Tempus Workshop, Cracow, Poland, January 9–11, 1998.

(1201)



1202 J. Kwieciński

The small x behaviour of spin dependent structure functions for fixed Q2

reflects the high energy behaviour of the virtual Compton scattering (spin
dependent) total cross-section with increasing total CM energy squared W 2

since W 2 = Q2(1/x − 1). This is, by definition, the Regge limit and so
the Regge pole exchange picture [3] is therefore quite appropriate for the
theoretical description of this behaviour. Here as usual Q2 = −q2, where q
is the four momentum transfer between the scattered leptons. The relevant
Reggeons which describe the small x behaviour of the spin dependent struc-
ture functions are those which correspond to the axial vector mesons [4, 5].

The Regge pole model gives the following small x behaviour of the struc-
ture functions gi

1(x,Q2), where gi
1(x,Q2), i = s, ns denote either singlet

(gs
1(x,Q2) = gp

1(x,Q2) + gn
1 (x,Q2)) or non-singlet (gns

1 (x,Q2) = gp
1(x,Q2)−

gn
1 (x,Q2)) combination of structure functions:

gi
1(x,Q2) = γi(Q

2)x−αi(0) , (1)

where gi
1(x,Q2) denote either singlet (gs

1(x,Q2) = gp
1(x,Q2) + gn

1 (x,Q2)) or
non-singlet (gns

1 (x,Q2) = gp
1(x,Q2) − gn

1 (x,Q2)) combination of structure
functions.

In Eq. (1) αs,ns(0) denote the intercept of the Regge pole trajectory
corresponding to the axial vector mesons with I = 0 or I = 1, respectively.
It is expected that αs,ns(0) ≤ 0 and that αs(0) ≈ αns(0) i.e. the singlet spin
dependent structure function is expected to have similar low x behaviour as
the non-singlet one.

It may be instructive to confront this behaviour with the Regge pole
expectations for the spin independent structure function F1(x,Q2):

F i
1(x,Q2) = βi(Q

2)x−αi(0). (2)

The singlet part F S
1 = F p

1 + Fn
1 of the structure function F1 is controlled at

small x by pomeron exchange, while the non-singlet part FNS
1 = F p

1 − Fn
1

by A2 reggeon. The pomeron intercept is significantly different from that
of the A2 Reggeon i.e. αP (0) = 1 + ε with ε ≈ 0.08 while αA2

(0) ≈ 0.5 as
determined from the fits to the total hadronic and photoproduction data [6].
This implies that in the spin independent case the singlet part F S

1 (x,Q2) of
the structure function F1(x,Q2) dominates at low x over the non-singlet
component.

Several of the Regge pole model expectations for both spin dependent
and spin independent structure functions are modified by perturbative QCD
effects. In particular as far as the spin dependent structure functions are
concernced the Regge behaviour (1) becomes unstable against the QCD
evolution which generates more singular behaviour than that given by Eq. (1)
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for αi(0) ≤ 0. In the LO approximation one gets:

gNS
1 (x,Q2) ∼ exp

[

2
√

∆Pqq(0)ξ(Q2) ln(1/x)

]

,

gS
1 (x,Q2) ∼ exp

[

2
√

γ+ξ(Q2) ln(1/x)
]

, (3)

where

ξ(Q2) =

Q2
∫

Q2
0

dq2

q2

αs(q
2)

2π
(4)

and

γ+ =
∆Pqq(0) + ∆Pgg(0) +

√

(∆Pqq(0) − ∆Pgg(0))2 + 4∆Pqg(0)∆Pgq(0)

2
(5)

with ∆Pij(0) = ∆Pij(z = 0) where ∆Pij(z) denote the LO splitting func-
tions describing evolution of spin dependent parton densities. To be precise
we have:

∆Pqq(0) =
4

3
,

∆Pqg(0) = −NF ,

∆Pgq(0) =
8

3
,

∆Pgg(0) = 12. (6)

We recall for comparison the analogous small x behaviour of the structure
function F1(x,Q2) in the LO approximation :

F S
1 (x,Q2) ∼

1

x
exp[2

√

6ξ(Q2) ln(1/x)]. (7)

The Regge behaviour of the non-singlet structure function FNS
1 (x,Q2) re-

mains stable against the QCD evolution.
The LO (and NLO) QCD evolution which sums the leading (and next-

to-leading) powers of ln Q2/Q2
0) is however incomplete at low x. In this

region one should worry about another “large” logarithm which is ln(1/x)
and resum its leading powers. In the spin independent case this is provided
by the Balitzkij, Fadin, Kuraev, Lipatov (BFKL) equation [7] which gives
in the leading ln(1/x) approximation the following small x behaviour of
F S

1 (x,Q2)

F S
1 (x,Q2) ∼ x−λBFKL , (8)
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where the intercept of the BFKL pomeron λBFKL is given in the leading
order by the following formula:

λBFKL = 1 +
3αs

π
4 ln(2) . (9)

It has recently been pointed out that the spin dependent structure func-
tion g1 at low x is dominated by the double logarithmic ln2(1/x) contribu-
tions i.e. by those terms of the perturbative expansion which correspond to
the powers of ln2(1/x) at each order of the expansion [8, 9]. Those contri-
butions go beyond the LO or NLO order QCD evolution of polarised parton
densities [10] and in order to take them into account one has to include the re-
summed double ln2(1/x) terms in the coefficient and splitting functions [11].
In this talk we will present discussion of the double ln2(1/x) resuumation
following alternative approach based on unitegrated distributions [12, 13].

The dominant contribution to the double ln2(1/x) resummation comes
from the ladder diagrams with quark and gluon exchanges along the ladder
(cf. Fig. 1). In what follows we shall neglect for simplicity possible non-
ladder bremsstrahlung terms which are relatively unimportant [8, 9].

>
p

>
p

>

>

>

x’p, k2

p, k’2x’
z

>
q >

q

Fig. 1. An example of a ladder diagram generating double logarithmic terms in the

spin structure function g1.

It is convenient to introduce the unintegrated (spin dependent) parton
distributions fi(x

′, k2) (i = uv, dv , ū, d̄, s̄, g), where k2 is the transverse mo-
mentum squared of the parton i and x′ the longitudinal momentum fraction
of the parent nucleon carried by a parton. The conventional (integrated)
distributions ∆pi(x,Q2) are related in the following way to the unintegrated
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distributions fi(x
′, k2):

∆pi(x,Q2) = ∆p
(0)
i (x) +

W 2
∫

k2
0

dk2

k2
fi

(

x′ = x

(

1 +
k2

Q2

)

, k2

)

, (10)

where ∆p
(0)
i (x) is the nonperturbative part of the of the distributions. The

parameter k2
0 is the infrared cut-off which will be set equal to 1 GeV2. The

origin of the nonperturbative part ∆p
(0)
i (x) can be viewed upon as originat-

ing from the non-perturbative region k2 < k2
0, i.e.

∆p
(0)
i (x) =

k2
0

∫

0

dk2

k2
fi(x, k2) . (11)

The spin dependent structure function gp
1(x,Q2) of the proton is related in

a standard way to the (integrated) parton distributions:

gp
1(x,Q2) = 1

2

[

4
9(∆uv(x,Q2) + 2∆ū(x,Q2))

+1
9(∆dv(x,Q2) + 2∆ū(x,Q2) + 2∆s̄(x,Q2))

]

, (12)

where ∆uv(x,Q2) = ∆puv
(x,Q2) etc. We assume ∆ū = ∆d̄ and confine

ourselves to the number of flavours NF equal to three.
The valence quarks distributions and asymmetric part of the sea

fus(x
′, k2) = fū(x′, k2) − fs̄(x

′, k2) (13)

will correspond to ladder diagrams with quark exchange along the ladder.
The singlet distributions

fS(x
′, k2) = fuv

(x′, k2) + fdv
(x′, k2) + 4fū(x′, k2) + 2fs̄(x

′, k2) (14)

and the gluon distributions fg(x
′, k2) will correspond to ladder diagrams

with both quark (antiquark) and gluon exchanges along the ladder.
The sum of double logarithmic ln2(1/x) terms corresponding to ladder

diagrams is generated by the following integral equations (see Fig. 1):

fk(x
′, k2) = f

(0)
k (x′, k2) +

αs

2π
∆Pqq(0)

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2
fk

(

x′

z
, k′2

)

(15)

(k = uv, dv, us)
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fS(x
′, k2) = f

(0)
S (x′, k2)

+
αs

2π

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2

[

∆Pqq(0)fS

(

x′

z
, k′2

)

+ ∆Pqg(0)fg

(

x′

z
, k′2

)]

,

fg(x
′, k2) = f (0)

g (x′, k2)

+
αs

2π

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2

[

∆Pgq(0)fS

(

x′

z
, k′2

)

+ ∆Pgg(0)fg

(

x′

z
, k′2

)]

(16)

with ∆Pij(0) = ∆Pij(z = 0) given by Eq. (6).

The variables k2(k′2) denote the transverse momenta squared of the
quarks (gluons) exchanged along the ladder, k2

0 is the infrared cut-off and

the inhomogeneous terms f
(0)
i (x′, k2) will be specified later. The integration

limit k2/z follows from the requirement that the virtuality of the quarks (glu-
ons) exchanged along the ladder is controlled by the tranverse momentum
squared.

The origin of the double logarithmic ln2(1/x) terms in g1(x,Q2) can be
traced to the fact that the conventional single logarithmic terms coming
from the logarithmic integration over the longitudinal momentum fraction z
are enhanced by the logarithmic integration over the transverse momentum
up to the z dependent limit k2/z in equations (15), (16) and up to the x
dependent limit W 2 = Q2(1/x − 1) in Eq. (10).

Equation (15) is similar to the corresponding equation in QED describ-
ing the double logarithmic resummation generated by ladder diagrams with
fermion exchange [14]. The problem of double logarithmic asymptotics in
QCD in the non-singlet channels was also discussed in Ref. [15].

Equations (15), (16) generate singular power behaviour of the spin de-
pendent parton distributions and of the spin dependent structure functions
g1 at small x i.e.

gNS
1 (x,Q2) ∼ x−λNS ,

gS
1 (x,Q2) ∼ x−λS ,

∆G(x,Q2) ∼ x−λS , (17)

where gNS
1 = gp

1 − gn
1 and gS

1 = gp
1 + gn

1 , respectively, and ∆G is the spin
dependent gluon distribution. This behaviour reflects similar small x′ be-
haviour of the unintegrated distributions. Exponents λNS,S are given by the
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following formulas:

λNS = 2

√

[αs

2π
∆Pqq(0)

]

,

λS = 2

√

[ αs

2π
γ+

]

, (18)

where γ+ is given by Eq. (5). The power-like behaviour (17) with the ex-
ponents λNS,S given by Eq. (18) remains the leading small x behaviour of
the structure functions provided that their non-perturbative parts are less
singular. This takes place if the latter are assumed to have the Regge pole
like behaviour with the corresponding intercept(s) being near 0.

In order to understand origin of the power-like behaviour (17) it is useful
to go to the moment space and inspect the singularities of the moment
functions f̄i(ω, k2) and ∆p̄i(ω,Q2)

f̄i(ω, k2) =

1
∫

0

dx′x′ω−1fi(x
′, k2) ,

∆p̄i(ω,Q2) =

1
∫

0

dxxω−1∆pi(x,Q2) (19)

in the ω plane. It follows from Eq. (10) that the moment functions ∆p̄i(ω,Q2)
are related in the following way to f̄i(ω, k2):

∆p̄i(ω,Q2) = ∆p̄
(0)
i (ω) +

∞
∫

k2
0

dk2

k2

(

1 +
k2

Q2

)−ω

f̄i(ω, k2) , (20)

where ∆p̄
(0)
i (ω) denote the moment functions of the nonperturbative distri-

butions ∆p
(0)
i (x). Let us first consider the case i = uv, dv , us. Equation (15)

implies the following equation for the moment functions f̄i(ω, k2)

f̄i(ω, k2) = f̄
(0)
i (ω, k2)+

ᾱs

ω







k2
∫

k2
0

dk′2

k′2
f̄i(ω, k′2) +

∞
∫

k2

dk′2

k′2

(

k2

k′2

)ω

f̄i(ω, k′2)






.

(21)

In this equation f̄
(0)
i (ω, k2) denote the moment functions of f

(0)
i (x′, k2) and

ᾱs is defined by :

ᾱs = ∆Pqq(0)
αs

2π
. (22)
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Equation (21) follows from (15) after taking into account the following rela-
tion:

1
∫

0

dz

z
zωΘ

(

k2

k′2
− z

)

=
1

ω

[

Θ(k2 − k′2) +

(

k2

k′2

)ω

Θ(k′2 − k2)

]

. (23)

For fixed coupling ᾱs equation (21) can be solved analytically. Assuming
for simplicity that the inhomogeneous term is independent of k2 (i.e. that

f̄
(0)
i (ω, k2) = Ci(ω) ) we get the following solution of Eq. (21):

f̄i(ω, k2) = Ri(ᾱs, ω)

(

k2

k2
0

)γ̃NS(αs,ω)

, (24)

where

γ̃NS(αs, ω) =
ω −

√
ω2 − 4ᾱs

2
, (25)

and

Ri(ᾱs, ω) = Ci(ω)
γ̃NS(αs, ω)ω

ᾱs
. (26)

Equation (26) defines the non-singlet anomalous dimension in which the
double logarithmic ln2(1/x) terms i.e. the powers of αs

ω2 have been resummed
to all orders. It can be seen from (26) that this anomalous dimension has a
(square root) branch point singularity at ω = λNS

λNS = 2
√

ᾱs. (27)

This singularity will of course be also present in the moment functions
f̄i(ω, k2) and ∆p̄i(ω,Q2). It generates singular power-like behaviour of
the non-singlet structure function gNS

1 (x,Q2) (cf. Eq. (17)). For Ci(ω) =
ᾱs

ω ∆p̄
(0)
i (ω) the moment functions ∆p̄i(ω,Q2) can be shown to have a famil-

iar RG form

∆p̄i(ω,Q2) = R̄i(ω,αs)

(

Q2

k2
0

)γ̃NS(αs,ω)

+ O

(

k2
0

Q2

)

, (28)

where

R̄i(ω,αs) = ∆p̄
(0)
i (ω)

Γ (γ̃NS(αs, ω) + 1))Γ (ω − γ̃NS(αs, ω))

Γ (ω)
. (29)

It may be seen from Eq. (29) that the singularity at ω = λNS which is present
in the anomalous dimension γ̃NS(αs, ω) does also appear in the functions R̄i.
It is therefore present in the moment functions ∆p̄i(ω,Q2) for arbitrary
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values of the scale Q2 including Q2 = k2
0. The situation in this case is

similar to that in the solution of the BFKL Eq. (16).
The formula for the exponent λS which controls the small x behaviour of

gS
1 (x,Q2) and of ∆G(x,Q2) can be obtained by inspecting the singularities

in the ω plane of the moment functions f̄S(ω, k2) and f̄g(ω, k2) which are
generated by the corresponding equations for those functions. They can be
obtained from Eqs. (16) and have the following form:

f̄S(ω, k2) = f̄
(0)
S (ω, k2) +

αs

2πω

∞
∫

k2
0

dk′2

k′2

[

Θ(k2 − k′2) + Θ(k′2 − k2)

(

k2

k′2

)ω]

×
[

∆Pqq(0)f̄S(ω, k′2) + ∆Pqg(0)f̄g(ω, k′2)
]

,

f̄g(ω, k2) = f̄ (0)
g ω, k2) +

αs

2πω

∞
∫

k2
0

dk′2

k′2

[

Θ(k2 − k′2) + Θ(k′2 − k2)

(

k2

k′2

)ω]

×
[

∆Pgq(0)f̄S(ω, k′2) + ∆Pgg(0)f̄g(ω, k′2)
]

. (30)

For k2 independent inhomogeneous terms (f̄
(0)
S,g(ω, k2) = CS,g(ω)) these

equations have the following solution:

f̄S,g(ω, k2) = R+
S,g(ω,αs)

(

k2

k2
0

)γ̃+(ω,αs)

+ R−

S,g(ω,αs)

(

k2

k2
0

)γ̃−(ω,αs)

. (31)

The (singlet) anomalous dimensions γ̃±(ω,αs) are given by the following
equations:

γ̃±(ω,αs) =
ω −

√

ω2 − 4αs

2πγ±

2
, (32)

where γ+ is defined by equation (5) while γ− is:

γ− =
∆Pqq(0) + ∆Pgg(0) −

√

(∆Pqq(0) − ∆Pgg(0))2 + 4∆Pqg(0)∆Pgq(0)

2
.

(33)
The functions R±

S,g(ω,αs) can be expressed in terms of CS,g(ω) and the

anomalous dimensions γ̃±(ω,αs). The moment functions ∆p̄S,g(ω,Q2) can
be shown to have the RG form:

∆p̄S,g(ω,Q2) = R̄+
S,g(ω,αs)

(

Q2

k2
0

)γ̃+(ω,αs)

+R̄−

S,g(ω,αs)

(

Q2

k2
0

)γ̃−(ω,αs)

+O

(

k2
0

Q2

)

.

(34)
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It may be seen from Eq. (32) that the anomalous dimensions γ̄±(ω,αs) have
(branch point) singularities at ω̄±

ω̄± = 2

√

αs

2π
γ± (35)

with ω̄+ > ω̄− i.e. ω̄+ = λS (cf. Eqs. (17) and (18)) is the leading sin-
gularity. We also have λS >> λNS since γ+ >> ∆Pqq(0) (γ+ ≈ 1.18 and
∆Pqq(0) = 4/3). This means that singlet distributions and singlet structure
functions dominate over the non-singlet ones at low x. Since this singularity
is also present in the functions R̄±

S,g(ω,αs) it appears in ∆p̄S,g(ω,Q2) for

arbitrary value of the scale Q2. It should be noticed that the effect of the
double ln2(1/x) resummation can be quite strong and, in particular the ex-
ponent λS can easily become of the order of unity. This will be seen more
explicitely in the quantitative implementation of the double ln2(1/x) con-
tributions which we are going to discuss below. In the exact leading double
ln2(1/x) approximation the anomalous dimensions γ̃NS and γ̃± and the ex-
ponents λNS and λS acquire additional contributions due to bremsstrahlung
diagrams. Their effect on λNS,S was estimated in Refs. [8, 9] where it was
found that the bremmstrahlung terms can enhance λNS by about 4% and
reduce λS by about 10%.

In order to make the quantitative predictions one has to constrain the
structure functions by the existing data at large and moderately small values
of x. For such values of x however the equations (15) and (16) are inaccurate.
In this region one should use the conventional Altarelli–Parisi equations with
complete splitting functions ∆Pij(z) and not restrict oneself to the effect
generated only by their z → 0 part. Following Refs. [12,13] we do therefore
extend equations (15), (16) and add to their right hand side the contributions
coming from the remaining parts of the splitting functions ∆Pij(z). We
also allow the coupling αs to run setting k2 as the relevant scale. In this
way we obtain unified system of equations which contain both the complete
LO Altarelli–Parisi evolution and the double logarithmic ln2(1/x) effects at
low x. The corresponding system of equations reads:

fk(x
′, k2) = f

(0)
k (x′, k2) +

αs(k
2)

2π

4

3

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2
fk

(

x′

z
, k′2

)

+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

4

3

1
∫

x′

dz

z

(z + z2)fk(
x′

z , k′2) − 2zfk(x
′, k′2)

1 − z



Spin Dependent Structure Function g1 at Low x 1211

+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

[

2 +
8

3
ln(1 − x′)

]

fk(x
′, k′2) (36)

(k = uv, dv, us),

fS(x
′, k2) = f

(0)
S (x′, k2) +

αs(k
2)

2π

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2

4

3
fS

(

x′

z
, k′2

)

+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

4

3

1
∫

x′

dz

z

(z + z2)fS(x′

z , k′2) − 2zfS(x′, k′2)

1 − z

+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

[

2 +
8

3
ln(1 − x′)

]

fS(x
′, k′2)

+
αs(k

2)

2π
NF






−

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2
fg

(

x′

z
, k′2

)

+

k2
∫

k2
0

dk′2

k′2

1
∫

x′

dz

z
2zfg

(

x′

z
, k′2

)






,

fg(x
′, k2) = f (0)

g (x′, k2) +
αs(k

2)

2π

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2

8

3
fS

(

x′

z
, k′2

)

+
αs(k

2)

2π







k2
∫

k2
0

dk′2

k′2

1
∫

x′

dz

z
(−

4

3
)zfS

(

x′

z
, k′2

)

+ 12

1
∫

x′

dz

z

k2/z
∫

k2
0

dk′2

k′2
fg

(

x′

z
, k′2

)







+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

1
∫

x′

dz

z
6z





fg

(

x′

z , k′2
)

− fg(x
′, k′2)

1 − z
− 2fg

(

x′

z
, k′2

)





+
αs(k

2)

2π

k2
∫

k2
0

dk′2

k′2

[

11

2
−

NF

3
+ 6 ln(1 − x′)

]

fg(x
′, k′2) . (37)

The inhomogeneous terms f
(0)
i (x′, k2) are expressed in terms of the input

(integrated) parton distributions and are the same as in the case of the LO
Altarelli–Parisi evolution [12]:
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f
(0)
k (x′, k2) =

αs(k
2)

2π

4

3

1
∫

x′

dz

z

(1 + z2)∆p
(0)
k (x′

z ) − 2z∆p
(0)
k (x′)

1 − z

+
αs(k

2)

2π

[

2 +
8

3
ln(1 − x′)

]

∆p
(0)
k (x′) (38)

(k = uv, dv, us),

f
(0)
S (x′, k2) =

αs(k
2)

2π

4

3

1
∫

x′

dz

z

(1 + z2)∆p
(0)
S (x′

z ) − 2z∆p
(0)
S (x′)

1 − z

+
αs(k

2)

2π



(2 +
8

3
ln(1 − x′))∆p

(0)
S (x′) + NF

1
∫

x′

dz

z
(1 − 2z)∆p(0)

g

(

x′

z

)



 ,

f (0)
g (x′, k2) =

αs(k
2)

2π

×





4

3

1
∫

x′

dz

z
(2 − z)∆p

(0)
S (

x′

z
) + (

11

2
−

NF

3
+ 6 ln(1 − x′))∆p(0)

g (x′)





+
αs(k

2)

2π
6

1
∫

x′

dz

z

[

∆p
(0)
g (x′

z ) − z∆p
(0)
g (x′)

1 − z
+ (1 − 2z)∆p(0)

g

(

x′

z

)

]

. (39)

Equations (36), (37) together with (38), (39) and (10) reduce to the LO
Altarelli–Parisi evolution equations with the starting (integrated) distribu-
tions ∆p0

i (x) after we set the upper integration limit over dk′2 equal to k2

in all terms in equations (36), (37) and if we set Q2 in place of W 2 as the
upper integration limit in the integral in Eq. (10).

Equations (36), (37) were solved in Refs. [12,13] assuming the following
simple parametrisation of the input distributions:

∆p
(0)
i (x) = Ni(1 − x)ηi (40)

with ηuv
= ηdv

= 3, ηū = ηs̄ = 7 and ηg = 5. The normalisation constants

Ni were determined by imposing the Bjorken sum-rule for ∆u
(0)
v − ∆d

(0)
v

and requiring that the first moments of all other distributions are the same
as those determined from the recent QCD analysis [17]. All distributions

∆p
(0)
i (x) behave as x0 in the limit x → 0 that corresponds to the im-

plicit assumption that the Regge poles which correspond to axial vector
mesons, which should control the small x behaviour of g1 [4, 5] have their
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intercept equal to 0. It was checked that the parametrisation (40) com-
bined with equations (10), (12), (36), (37) gives reasonable description of
the recent SMC data on gNS

1 (x,Q2) and on gp
1(x,Q2) [18]. In Fig. 2 we

show the nonsinglet part of g1(x,Q2) for Q2 = 10GeV2 in the small x re-
gion [12]. We show predictions based on equations (36), (10) and confront
them with the expectations which follow from solving the LO Altarelli–Parisi

0

2

4

6

8

10

10
-5

10
-4

10
-3

10
-2

10
-1

1

Q2=10 GeV2

g1

x

Fig. 2. Non-singlet part of the proton spin structure function g1(x, Q2) as a func-

tion of x for Q2 =10 GeV2. Continuous line corresponds to the calculations

which contain the leading ln2(1/x) resummation, broken line is a leading or-

der Altarelli–Parisi prediction, and a dotted one shows the non-perturbative part

g
NS(0)
1 = gA/6(1 − x)3, where gA denotes the axial vector coupling. The Figure is

taken from Ref. [12].

evolution equations with the input distributions at Q2
0 = 1GeV2 given by

equation (40). We also show the nonperturbative part of the non-singlet

distribution g
NS(0)
1 (x) = gA/6(1−x)3, where gA is the axial vector coupling.

In Fig. 3 we show gp
1(x,Q2) for Q2 = 10GeV2, where we again confront

predictions based on equations (36), (37), (10) with those based on the LO
Altarelli–Parisi evolution equations. We also show in this Figure the “ex-
perimental” points which were obtained from the extrapolations based on
the NLO QCD analysis together with estimated statistical errors of possi-
ble polarised HERA measurements [2]. We see that the structure function
gp
1(x,Q2) which contains effects of the double ln2(1/x) resummation begins

to differ from that calculated within the LO Altarelli–Parisi equations al-
ready for x ∼ 10−3. It is however comparable to the structure function
obtained from the NLO analysis for x > 10−4 which is indicated by the “ex-
perimental” points. This is presumably partially an artifact of the difference
in the input distributions but it also reflects the fact that the NLO approx-
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g1
p

x

Fig. 3. The structure function gp

1(x, Q2) for Q2 = 10GeV2 plotted as the function

of x. Solid line represents this structure function with the double ln2(1/x) terms

included and the dashed line corresponds to gp

1 obtained from the LO Altarelli-

Parisi equations The “experimental” points are based on the NLO QCD predictions

with the statistical errors expected at HERA [2]. The Figure is taken from Ref. [13].

∆G

x

Fig. 4. The spin dependent gluon distribution ∆G(x, Q2) for Q2 = 10GeV2 plotted

as the function of x. Solid line represents ∆G(x, Q2) with the double ln2(1/x)

terms included and the dashed line corresponds to the ∆G(x, Q2) obtained from

the LO Altarelli–Parisi equations. The Figure is taken from Ref. [13].
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imation contains the first two terms of the double ln2(1/x) resummation
in the corresponding splitting and coefficient functions. It can also be seen
from Fig. 3 that the (complete) double ln2(1/x) resummation generates the
structure function which is significantly steeper than that obtained from the
NLO QCD analysis and the difference between those two extrapolations be-
comes significant for x < 10−4. In Fig. 4 we show the spin dependent gluon
distribution which contains effects of the double ln2(1/x) resummation and
confront it with that which was obtained from the LO Altarelli–Parisi equa-
tions. It can be seen that the former exhibits characteristic x−λS behaviour
with λS ∼ 1. Similar behaviour is also exhibited by the structure function
gp
1(x,Q2) itself.

To sum up we have presented theoretical expectations for the low x be-
haviour of the spin dependent structure function g1(x,Q2) which follows
from the resummation of the double ln2(1/x) terms. We have also pre-
sented results of the analysis of the “unified” equations which contain the
LO Altarelli–Parisi evolution and the double ln2(1/x) effects at low x. As
the first approximation we considered those double ln2(1/x) effects which are
generated by ladder diagrams. The double logarithmic effects were found to
be very important and they should in principle be visible in possible HERA
measurements (cf. Fig. 3).

I would like to congratulate Marek Jeżabek for organizing an excellent
meeting. I thank Barbara Badełek and Beata Ziaja for the most enjoy-
able research collaboration on some of the problems presented in this talk.
I thank them as well as Albert De Roeck and Marco Stratmann for use-
ful and illuminating discussions. This research has been supported in part
by the Polish Committee for Scientific Resarch grants 2 P03B 184 10 and
2 P03B 89 13.
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