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In this talk I want to illustrate the many possibilities for studying the
structure of hadrons in hard scattering processes by giving a number of
examples involving increasing complexity in the demands for particle po-
larization, particle identification or polarimetry. In particular the single
spin asymmetries will be discussed. The measurements discussed in this
talk are restricted to lepton-hadron scattering, but can be found in various
other hard processes such as Drell–Yan scattering or e+e−-annihilation.

PACS numbers: 13.60. Hb

1. Introduction

In inclusive deep inelastic lepton-hadron scattering (DIS) one is familiar
with the factorization of the cross section, schematically

σeH→eX =
∑

q

fH→q ⊗ σeq→eq, (1)

which can be justified via the operator product expansion. Restricting our-
selves to quarks one finds local operators of the form ψD . . . D ψ to be
important, which can be resummed into nonlocal operators ψ(0)ψ(x), in
which the nonlocality is restricted along the lightcone. In the case of in-
clusive scattering transverse momenta are irrelevant. In semi-inclusive deep
inelastic lepton-hadron scattering (SIDIS) the factorization

σeH→ehX =
∑

q

fH→q ⊗ σeq→eq ⊗Dq→h, (2)
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Fig. 1. The leading order diagrams for inclusive lepton-hadron scattering (left) and

for semi-inclusive lepton-hadron scattering (right).

is much less well founded. There is no operator product expansion for the
process, but one starts with a hard scattering approach. Furthermore, trans-
verse momenta do matter in this process. The soft parts, the distribution
function f and the fragmentation function D involve not only operators
ψD . . .D ψ, but also operators of the form ∂(ψD . . .D ψ), which implies,
when organized into nonlocal operators ψ(0)ψ(x), that the transverse sep-
aration becomes important, although the separation remains lightlike. In
the hard scattering approach the cross section for lepton-hadron scattering
is for DIS in leading order given by the left diagram in figure 1 representing
the squared amplitude (+ a similar antiquark contribution), while for SIDIS
the cross section is given by the right diagram in Fig. 1 (again + similar
antiquark distribution). It is these contributions that will be analyzed in a
number of cases.

2. Quark distribution functions

The first soft part to consider is the one that defines the quark distribu-
tion functions. In a hard process such as leptoproduction one can introduce
two lightlike vectors, n+ and n−, satisfying n2

+ = n2
− = 0 and n+ · n− = 1.

The hadron momenta in the hard scattering process can be taken propor-
tional to one of the lightlike vectors up to mass terms that are small com-
pared to the hard scale in leptoproduction, the four momentum squared of
the virtual photon, q2 = −Q2. We will assume P ∝ Qn+ and Ph ∝ Qn−.
The lightlike vectors are used to define lightcone coordinates a± ≡ a · n∓.
The connection of hadron momenta with the momenta of quarks and gluons
is made via a soft part in which all invariants, p2 ∼ P · p ∼ P 2 = M2 ≪ Q2.
This implies that all − components of momenta in the soft distribution
part are O(1/Q). The momenta in the hard part have large + and large −
components.
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Fig. 2. The soft parts describing the quark distribution (left) and quark fragmenta-

tion (right).

In DIS the only relevant component of the quark momentum in the soft
distribution part (Fig. 2) is then the component p+ ≡ xP+. Integrating
over the other components of the quark momentum, the soft part is (in the
lightcone gauge A+ = 0) given by

Φij(x) =

∫
dξ−

2π
eip·ξ 〈P, S|ψj(0)ψi(ξ)|P, S〉

∣
∣
∣
∣
ξ+=ξT=0

. (3)

Using Lorentz invariance, hermiticity, parity (P) and time-reversal (T) one
finds that in leading order in 1/Q it can be expanded as

Φ(x) =
1

2

{

f1(x) //n+ + λ g1(x) γ5/n+ + h1(x) γ5
[/ST, n+]

2

}

+ O

(
M

P+

)

, (4)

where λ = MS+/P+ is the (lightcone) helicity and ST is the transverse spin
vector of the (spin 1/2) target (satisfying λ2 + S2

T
= 1). The quantities

f1, g1 and h1 can be readily interpreted as densities (or differences thereof)
for unpolarized quarks, longitudinally polarized or transversely polarized
quarks in a polarized target. Using Φ to calculate the cross sections for
lepton-hadron scattering one obtains the familiar cross sections,

dσOO

dxBdy
=

2πα2 s

Q4
xB



1 + (1 − y)2



∑

a,ā

e2a f
a
1 (xB)

︸ ︷︷ ︸

2 F1(xB)=F2(xB)/xB

, (5)

dσLL

dxBdy
=

2πα2 s

Q4
xBy(2 − y)λe λ

∑

a,ā

e2a g
a
1 (xB)

︸ ︷︷ ︸

2 g1(xB)

, (6)

where xB = Q2/2P · q and y = P · q/P ·k are the usual invariants. From the
result one reads off, as indicated, the expressions for the structure functions
F1, F2 in the case of unpolarized leptons scattering off an unpolarized target
(OO). They are given by the quark distributions fa

1 weighted with the quark
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charges squared and summed over quarks and antiquarks. Similarly one
reads of the result for g1 in the case of longitudinally polarized leptons
scattering off a longitudinally polarized spin 1/2 target (LL).

3. Fragmentation functions

Next we turn to SIDIS. In the simplest case in which one detects one
hadron belonging to the current jet and determines in essence only its lon-
gitudinal momentum, i.e. measures in addition to xB and y the variable zh
= P ·Ph/P · q, one needs only to consider the dependence on the component
k− ≡ P−

h /z in the soft fragmentation part (Fig. 2). Integrating over the
other components of k the soft part is then (in lightcone gauge A− = 0)
given by

∆(z) =
∑

X

z

∫
dξ+

4π
eik·ξ 〈0|ψ(ξ)|X;Ph, Sh〉〈X;Ph, Sh|ψ(0)|0〉

∣
∣
∣
∣
∣
ξ−=ξT=0

.

(7)
The part relevant in ∆ at leading order in 1/Q is

∆(z) = z

{

D1(z) /n− + λhG1(z) γ5/n− +H1(z) γ5
[/ShT, /n−]

2

}

+ O

(
Mh

P−
h

)

,

(8)
where λh = Mh S

−
h /P

−
h and ShT determine the polarization of the detected

hadron. The fragmentation functions D1, G1 and H1 can be directly in-
terpreted as quark decay functions describing the decay for unpolarized,
longitudinally polarized or transversely polarized quarks into a polarized
hadron. Using Φ and ∆ in Fig. 1 to calculate the cross section for SIDIS one
obtains

dσOO

dxBdy dzh
=

2πα2 s

Q4
xB



1 + (1 − y)2



∑

a,ā

e2a f
a
1 (xB)Da

1(zh), (9)

dσLL

dxBdy dzh
=

2πα2 s

Q4
xBy(2 − y)λe λ

∑

a,ā

e2a g
a
1 (xB)Da

1(zh), (10)

where the structure functions are given by products of distribution and frag-
mentation functions.

We note that the cross section for SIDIS in principle can depend in
additional to the variables xB, y and zh on the transverse momentum of the
produced hadron, denoted Ph⊥ in the frame where P and q do not have
transverse components. Theoretically it is convenient to work with

qµ
T = qµ + xB P

µ −
Pµ

h

zh
= −

Ph⊥

zh
≡ −QT ĥ

µ, (11)
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which is the transverse component of q in a frame in which P and Ph do not
have transverse momenta. This vector is orthogonal to n+ and n−. We will
consider in the remainder cross sections dependending on xB, y and zh, but
obtained after weighting the full cross section with some function that may
depend on azimuthal angles as defined in Fig. 3,

〈W 〉ABC =

∫

dφℓ d2q
T
W

dσ
[~e ~H→e~hX]
ABC

dxB dy dzh dφℓ d2q
T

, (12)

where W = W (QT, φ
ℓ
h, φ

ℓ
S , φ

ℓ
Sh

). In order to see in a glance which polariza-
tions are involved, we have added the subscripts ABC for polarizations of
lepton, target hadron and produced hadron, respectively. The cross section
in Eq. (9) is then denoted 〈1〉OOO, that in Eq. 10 as 〈1〉LLO.

^

P
h h⊥

z

^

lepton scattering plane

q
k

k’ Ph
φ

Fig. 3. Kinematics for 1-particle inclusive leptoproduction. The lepton scattering

plane is determined by lepton momenta and the hadron momentum P .

4. Polarimetry in SIDIS

As an example of a weighted cross section consider the process ℓ+H↑ →
ℓ + h↑ + X (e.g. ep↑ → eΛ↑X) in which a spin 1/2 target is transversely
polarized and one looks for transversely polarized spin 1/2 hadrons in the
final state. The cross section using the expressions for Φ and ∆ in the
diagram in Fig. 1 gives

〈

cos(φℓ
S + φℓ

Sh
)
〉

OTT

=
2πα2 s

Q4
|ST| |ShT| (1 − y)

∑

a,ā

e2a xB h
a
1(xB)Ha

1 (zh). (13)

This weighted cross section [5] is the nonvanishing transverse spin correla-
tion between target hadron and produced hadron, probed via the scattering



1230 P.J. Mulders

off a transversely polarized quark, schematically target↑ =⇒ quark↑ =⇒
hadron↑. Both the (transversely polarized) quark distribution and the quark
fragmentation function are chirally odd [6].

5. Transverse momentum dependent quark distributions

In the previous example, the transverse momentum of the outgoing
hadron, did not play a role. If measured, it requires consideration of trans-
verse momenta in the soft part. Instead of Eq. (3) one needs

Φ(x,p
T
) =

∫
dξ−d2ξ

T

(2π)3
eip·ξ 〈P, S|ψ(0)ψ(ξ)|P, S〉

∣
∣
∣
∣
ξ+=0

, (14)

for which the relevant part in leading order is given by [3, 7]

Φ(x,p
T
) =

1

2

{

f1 //n+ + g1s γ5/n+

+h1T γ5
[/ST, /n+]

2
+ h⊥1s γ5

[/pT, /n+]

2M

}

, (15)

with arguments f1 = f1(x,p
2
T
) etc. The quantity g1s (and similarly h⊥1s) is

shorthand for

g1s(x,pT
) = λ g1L(x,p

2
T
) +

p
T
· ST

M
g1T(x,p2

T
). (16)

The two functions g1L and g1T are interpreted as the quark helicity distri-
bution in a longitudinally and transversely polarized target, respectively.
Integrating over p

T
only g1(x) =

∫
d2pT g1L(x,p

2
T
) survives. In the pT-

weighted result, Φα
∂ =

∫
d2pT pα

T
Φ only the p2

T
-moment defined as g

(1)
1T (x)

=
∫
d2pT (p2

T
/2M2) g1T(x,p2

T
) survives. This function appears for instance

in the following weighted cross section [8, 9] in ~ℓ + H↑ → ℓ + h + X (e.g.
~ep↑ → eπ+X),

〈
QT

M
cos(φℓ

h − φℓ
S)

〉

LTO

=
4πα2 s

Q4
λe |ST| y

(

1 −
y

2

) ∑

a,ā

e2a xB g
(1)a
1T (xB)Da

1(zh). (17)

This weighted cross section correlates the transverse polarization of the tar-
get with the azimuthal distribution of unpolarized hadrons via the scattering
of a longitudinally polarized quark, target↑ =⇒ quark→ =⇒ unpolarized
hadron.
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6. Extension to subleading order

When going to subleading order, i.e. 1/Q contributions in the cross sec-
tion, it is necessary to use for Φ the parametrization up to 1/P+,

Φ(x) =
1

2

{

f1(x) /n+ + λ g1(x) γ5/n+ + h1(x) γ5
[/ST, /n+]

2

}

+
M

2P+

{

e(x) + gT(x) γ5/ST + λhL(x) γ5
[/n+, /n−]

2

}

+ O

(
M2

(P+)2

)

. (18)

The twist-three functions e, gT and hL do not have a simple partonic inter-
pretation. From the Lorentz structure of Φ and the constraints imposed on
it by Hermiticity, P and T one obtains (at tree-level) relations [1,10] with the
transverse momentum dependent functions discussed in the previous section,

gT − g1
︸ ︷︷ ︸

g2

=
d

dx
g
(1)
1T , (19)

hL − h1
︸ ︷︷ ︸

1

2
h2

= −
d

dx
h
⊥(1)
1L . (20)

The first relation has been used to get an estimate of g1T from the
g2-data [11].

P P

p
1

p

q q

P P

k

p
1

p

k
q

Ph Ph

Fig. 4. Examples of diagrams for DIS (left) and for SIDIS (right) needed at sub-

leading order.

At subleading order one needs to include soft parts containing gluon
fields [6] as shown in Fig. 4. These, however, can be dealt with via the
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QCD equations of motion and they do not introduce new functions. Their
contribution is important to obtain a gauge invariant result. The most well-
known example is the structure function g2 in DIS, or given as a weighted
cross section,

〈

cos(φℓ
S)

〉

LT
= −

4πα2 s

Q4
λe |ST| y

√

1 − y
∑

a,ā

e2a
Mx2

B

Q
ga

T
(xB). (21)

7. T-odd fragmentation functions

In the soft part discussed for the quark fragmentation, no constraints
arise from T invariance, because the states |Ph,X〉 are out-states, which
change into in-states under T. This allows additional fragmentation func-
tions in the case that transverse momentum is taken into account. Restrict-
ing ourselves to unpolarized hadrons, we can see that in the p

T
-dependent

distribution part only one function f1(x,p
2
T
) remains. The relevant part in

∆ in leading order for unpolarized final states contains two functions,

z ∆(z,kT) = D1 /n− +H⊥
1

i [/kT, /n−]

2Mh
+ O

(
Mh

P−
h

)

, (22)

with arguments D1 = D1(z, z
2k2

T
) etc. Note that k′

T
= −z kT is the trans-

verse momentum of the produced hadron with respect to the quark.
It turns out that the so-called T-odd functions (in this case H⊥

1 ) lead to
single spin asymmetries [2,8,9,12]. For example the above function appears
in the production of unpolarized hadrons in leptoproduction in the case of
unpolarized leptons and a (longitudinally or transversely) polarized target,
e.g. ep↑ → eπ+X,

〈
QT

Mh
sin(φℓ

h + φℓ
S)

〉

OTO

=
4πα2 s

Q4
|ST|(1 − y)

∑

a,ā

e2a xBh
a
1(xB)H

⊥(1)a
1 (zh), (23)

〈
Q2

T

4MMh
sin(2φℓ

h)

〉

OLO

= −
4πα2 s

Q4
λ (1 − y)

∑

a,ā

e2a xBh
⊥(1)a
1L (xB)H

⊥(1)a
1 (zh). (24)

The interpretation is a correlation between the (transverse or longitudinal)
polarization of the target and the azimuthal distribution of the produced un-
polarized hadrons, probed via scattering off a transversely polarized quark,
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target↑/→ =⇒ quark↑
T-odd
=⇒ unpolarized hadron. The same fragmentation

function actually also appears in the scattering of a polarized lepton from
an unpolarized target [14], but in that case appears in a subleading sinφℓ

h

asymmetry proportional to e(xB)H
⊥(1)
1 (zh).

8. T-odd distribution functions

For the distribution functions, it has been conjectured that T-odd quan-
tities also might appear without violating time-reversal invariance [15–18].
This might be due to soft initial state interactions or, as suggested re-
cently [18], be a consequence of chiral symmetry breaking. Within QCD
a possible description of the effects may come from gluonic poles [4]. Here,
let’s simply assume the functions exist [2] in which case Eq. (15) is extended
with

Φ(x,p
T
) = . . . +

1

2

{

f⊥
1T

εµνρσγ
µnν

+p
ρ
TS

σ
T

M
+ h⊥1

i [/pT, /n+]

2M

}

, (25)

A single spin asymmetry in which the function f⊥
1T

appears is in the process
ℓ+H↑ → ℓ+ h+X (e.g. ep↑ → eπ+X). One finds

〈
QT

Mh
sin(φℓ

h − φℓ
S)

〉

OTO

=
2πα2 s

Q4
|ST|

(

1 − y −
1

2
y2

)
∑

a,ā

e2a xB f
⊥(1)a
1T (xB)Da

1(zh). (26)

This asymmetry is interpreted as a correlation between the transverse polar-
ization of the target and the azimuthal distribution of produced hadrons via

scattering off an unpolarized quark, target↑
T-odd
=⇒ unpolarized quark =⇒

unpolarized hadron. Note that this is not the only single spin asymmetry
for the OTO case (see Eq. (23)).

Finally, we note the interesting possibility that a combination of T-odd
distribution and fragmentation functions appears in unpolarized scattering.
This is the case for the cos(2φℓ

h) asymmetry in leptoproduction,
〈

Q2
T

4MMh
cos(2φℓ

h)

〉

OOO

=
4πα2 s

Q4
(1 − y)

∑

a,ā

e2a xB h
⊥(1)a
1 (xB)H

⊥(1)a
1 (zh), (27)

interpreted as unpolarized target
T-odd
=⇒ quark↑

T-odd
=⇒ unpolarized hadron.

This is a leading asymmetry, which in the absence of T-odd distribution
functions would start at order 1/Q2 (twist 4).
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9. Summary

In this talk many new possibilities have been outlined to probe the quark
and gluon structure of hadrons. The emphasis was on the transverse mo-
mentum dependence in distribution and fragmentation functions that appear
in semi-inclusive deep inelastic scattering at leading order. Some of these

functions or to be more precise their p2
T
-moments (e.g. g

(1)
1T and h

⊥(1)
1L ) are

at tree-level simply related to twist-three functions (such as gT and hL). Fi-
nally, the systematic investigation of the soft parts formalizes many effects,
such as the Collins effect or final state interactions in leptoproduction.
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