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QCD STRUCTURE OF THE ELECTRON∗ ∗∗
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The concept of the QCD structure of electron is presented. Advantages
of the electron structure function over that of the photon are demonstrated
in the electron induced processes. At very high momenta probabilistic
interpretation can be preserved despite strong γ-Z interference.

PACS numbers: 13.60. –r, 14.60. –z

The QCD structure of the photon is revealed in interactions with a highly
virtual ‘probe’, e.g. a virtual photon or a virtual gluon. The distribution of
quarks and gluons seen by this probe inside the photon is described by the
photon structure function. The theoretical and phenomenological predic-
tions for this function are known since long [1]. At present the data on the
photon structure are measured in experiments where the electron serves as
a target [2]. To fix our attention let us think of electron-positron scattering,
where a highly virtual photon from the positron hits the photon emitted by
the electron. The process is depicted in Fig. 1a. The black blob denotes
‘resolved’ photon and sums up all QCD contributions. The photon emitted
by the electron is, in fact, also virtual and, from the point of view of a phys-
ical process, γ∗ measures the structure (parton content) of the electron, as
depicted in Fig. 1b.

In the following we will demonstrate the advantages of introducing the
electron structure function. We will consider it as a more adequate means
to describe the actual experimental situation and, at very high energies, as
the method to preserve partonic interpretation of the cross-section.

∗ Presented at the Cracow Epiphany Conference on Spin Effects in Particle Physics
and Tempus Workshop, Cracow, Poland, January 9–11, 1998.

∗∗ Work supported by the Polish State Committee for Scientific Research (grant No.
2 P03B 081 09) and the Volkswagen Foundation.

(1253)



1254 W. Słomiński, J. Szwed

e(l)
e(l')

θ

e(k) e(k')

γ (p)
γ*(q)

}X

a)

e(l)
e(l')

θ

e(k)
e(k')

γ*(q)

b)

Fig. 1. Deep inelastic scattering on a photon (a) and electron (b) target

Let us look closer at the process depicted in Fig 1. The space-like virtu-
alities of both interacting photons in Fig. 1a are given by

Q2
≡ −q2 = −(l − l′)2 , (1)

−p2 = −(k − k′)2 ≤ P 2 (2)

according to the notation in the figure. P 2 denotes the maximal virtuality
of the “target” photon and its value is usually set by experiment (e.g. by
“anti-tagging” condition).

The measured cross-section for this deep inelastic positron-electron scat-
tering corresponds to Fig. 1b and reads

dσ

dQ2dz
=

2πα2

z Q4

[

(1+(1 − y)2)F e
2 (z,Q2, P 2) − y2F e

L(z,Q2, P 2)
]

, (3)

where

z =
Q2

2 kq
(4)

is the fractional parton momentum with respect to the target electron and

y =
kq

kl
. (5)

Experimentally y is very small and

dσ

dQ2dz
≈

4πα2

z Q4
F e

2 (z,Q2, P 2). (6)

Thus in practice we measure the electron structure function F e
2 , which equals

to
F e

2 (z,Q2, P 2) = z
∑

q

e2
qf

e
q (z,Q2, P 2). (7)
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The sum in Eq. (7) runs over all quarks and anti-quarks and f e
q (z,Q2, P 2)

denotes their distribution inside the electron. This function depends on P 2,
because the cross-section is integrated over the target photon virtualities.
Thus if we assume that only real photons contribute we need P 2 ≪ Q2.
How well this is fulfilled experimentally is another question.

The standard approach aims at extracting the photon structure function
from the experimental data. To this end one uses the Weizsäcker–Williams
approximation [3]

f e−

q

(

z,Q2, P 2
)

=

1
∫

z

dx

x
fγ

q

(

x,Q2
)

f e−

γ

( z

x
, P 2

)

, (8)

where f e−
γ is the spectrum of equivalent photons and fγ

q is the density of
quarks inside the photon.

γ*
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Fig. 2. γ, Z, W contributions to the γ∗e− scattering

At very high energies, however, also Z0 and W− bosons can be emitted
by the electron (see Fig. 2). On top of that Z0 and γ have to interfere
according to the Standard Model. The Eq. (8) becomes now [4]

f e−

q (z,Q2, P 2) =
∑

A,B=

γ,Z0,W−

1
∫

z

dx

x
fAB

q (x,Q2)F e−

AB(z/x, P 2), (9)

where F e−
AB is the density matrix of equivalent bosons and fAB

q describes the
number of quarks in this “cloud”. Although both of these functions are well
defined within QED and QCD the probabilistic (partonic) picture is lost. It
gets recovered in the language of the electron structure function. What is
important, the γ-Z interference is large and it cannot be neglected.

The QCD content of electron can be calculated in perturbative QCD with
the same accuracy as for the photon. The first step is to derive the splitting
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Fig. 3. Feynman diagrams contributing to the electron → quark/anti-quark split-

ting functions

functions of the electron into quark and anti-quark. For fully polarized case

we denote them by P
e−λ
qη (P 2), where η and λ are quark and electron helicities,

respectively. The corresponding Feynman diagrams are shown in Fig. 3 and
for unpolarized electron the result reads [4]

Pe−

q+
(z, P 2) =

3α

4π

{

e2
q [Φ+(z) + Φ−(z)] log µ0

+e2
q tan4 θW

[

Φ+(z) + ρ2
WΦ−(z)

]

log µZ

−2e2
q tan2 θW [−Φ+(z) + ρWΦ−(z)] log µZ

}

, (10a)

P
e−

q− (z, P 2) =
3α

4π

{

e2
q [Φ+(z) + Φ−(z)] log µ0

+z2
q tan4 θW

[

Φ−(z) + ρ2
WΦ+(z)

]

log µZ

+2eqzq tan2 θW [−Φ−(z) + ρWΦ+(z)] log µZ

+ (1 + ρW)2Φ+(z)δqd log µW

}

, (10b)

where

Φ+(z) =
1 − z

3z
(2 + 11z + 2z2) + 2(1 + z) log z ,

Φ−(z) =
2(1 − z)3

3z
,
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and

µ0 =
P 2

m2
ez

2/(1 − z)
, µZ/W =

P 2 + M2
Z/W

M2
Z/W

. (11)

zq =
T q

3

sin2 θW

− eq , ρW =
1

2 sin2 θW

− 1 (12)

with eq = quark charge/e, T q
3 = 3-rd weak isospin component and θW — the

Weinberg angle. These splitting functions depend on P 2 and for very large
P 2 the contributions from the weak bosons become comparable to that of
photon.

The next step consists in solving the evolution equations for polarized
electron structure function [4]:

df
e−
λ

qη (t)

dt
=

α

2π
P

e−
λ

qη (P 2) +
αs(t)

2π

∑

k,ρ

P
kρ
qη ⊗ f

e−
λ

kρ
(t) , (13)

df
e−
λ

Gη
(t)

dt
=

αs(t)

2π

∑

k,ρ

P
kρ

Gη
⊗ f

e−
λ

kρ
(t), (14)

where t = log(Q2/Λ2
QCD), αs(t) is the QCD running coupling constant and

P
kρ

iη
denote the polarized QCD splitting functions (Altarelli–Parisi probabil-

ities).
For Λ2

QCD ≪ P 2 ≪ Q2 the “asymptotic” solutions can be found in the
form

f e−

k (z,Q2, P 2) ≃
1

2

( α

2π

)2

fas
k (z) log

Q2

Λ2
QCD

log
P 2

Λ2
QCD

, (15)

where fas
k (z) can be found numerically [4].

In Fig. 4 we show the quark content of polarized electron. At finite en-
ergies the contributions from weak bosons are suppressed by the logarithmic
factors present in Eq. (10). Nevertheless the γ-Z interference term remains
of the same order of magnitude as the Z-Z one. The pure γγ contribution
cancels out in the left-right asymmetry, (e−R −e−L )/2. It would be interesting
to measure it in next generation experiments.

At presently available energies only photons contribute to the electron
structure function and thus for small P 2 it can be expressed in terms of
the photon structure function fγ

k

(

x,Q2
)

, where x is the fractional parton
momentum with respect to the photon. To extract it from the experimental
data we use the formula (for P 2 ≪ Q2)

x =
Q2

M2
X + Q2

, (16)
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Fig. 4. Asymptotic electron structure function. The positively valued curves show

the quark content of unpolarized electron, (e−
R

+ e−
L

)/2. The negative ones —

the left-right asymmetry, (e−
R
− e−

L
)/2. Full lines give the asymptotic result with

all γ, Z and W included. The other curves give the contributions from: γγ —

dashed-dotted; γZ — dotted; ZZ — short dashed; WW — long dashed.

where MX is the invariant mass of final hadronic state X shown in Fig. 1a.
This mass is difficult to measure which results in big errors on x. On the
contrary, there is no need to measure x to obtain the electron structure func-
tion. It seems thus that the same experiment should provide more precise
data for the electron structure than for the photon one.

Let us add a final remark on the virtual photon structure function [5]. In
terms of the electron structure function the effects of the photon virtuality
are taken into account by the dependence on P 2. This time, however, we
study a real, convention independent object. Even when there is no Z
admixture, the whole range of target photon virtualities is properly taken
into account.
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