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In the infinite mass limit for a heavy quark its spin decouples from the
QCD dynamics, which leads to the heavy-quark spin symmetry. After a
short discussion of spin symmetry some applications are considered.
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1. Introduction

Over the last ten years the heavy mass limit has become a standard tool
in heavy quark physics [1]. The main impact of the 1/mQ expansion is that
the strong interaction connecting weak processes of heavy quarks with those
of heavy hadrons can be handled in a more efficient way. This is mainly
due to the presence of symmetries which appear in the heavy quark limit [2]
and which restrict the nonperturbative quantities severely, at least in some
cases. Furthermore, off the symmetry limit, i.e. the limit mQ → ∞, one may
compute or at least parametrize the corrections in a systematic fashion.

These corrections are characterized by two quantities, namely αs and
ΛQCD/mQ, both of which are small for a sufficiently heavy quark. The αs

corrections are perturbative and may be calculated systematically using the
Feynman rules of Heavy Quark Effective Theory (HQET) [3]. The other
kind of corrections, the ΛQCD/mQ corrections, are nonperturbative and are
usually parametrized in terms of certain matrix elements.

One of the two symmetries of the heavy mass limit is the so-called spin
symmetry, which mainly tells us that in the heavy mass limit the spin of
the heavy quark decouples from the dynamics. The second symmetry of the
heavy mass limit is a heavy flavour symmetry which allows us to replace
an infinitely heavy quark in some heavy hadron by another infinitely heavy
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hadron with the same four-velocity, but with a different flavour, without
changing anything. This is true because in full QCD the dependence on the
quark flavour enters only through the different masses.

We shall first give a brief account on the heavy flavour symmetries and
then discuss a few applications of the heavy quark spin symmetry, such as
the relations between B → Dℓν̄ℓ and B → D∗ℓν̄ℓ, the polarization of b
hadrons in Z0 decays, some polarization effects in Λc decays and finally the
quark helicities in Λb → Λγ.

2. Heavy quark limit and its symmetries

Because of space and time limitations we shall not deduce the heavy
quark limit from QCD, rather we refer the reader to one of the numerous
reviews which are available on this subject [1]. The final result of some
algebraic manipulations of the QCD Lagrangian and the field of the heavy
quark is their expansion in powers of 1/mQ, taking a limit in which the
heavy quark velocity pQ/mQ is kept fixed. More precisely, the heavy quark
momentum is split into a “large” part scaling as mQ and a small residual
part k, independent of mQ, i.e. one writes pQ = mQv + k. In this limit the
relevant degree of freedom is the static heavy quark field hv(x) moving with
the fixed velocity v and having a residual momentum khv(x)=̂iDhv(x).

If Q(x) is the heavy quark field of full QCD, one obtains the 1/mQ

expansions

Q(x) = e−imQv·x

[

1 +
1

2mQ
(i /D⊥) +

1

4m2
Q

(
(v · D) /D⊥ − 1

2
/D2
⊥

)
+ · · ·

]

hv(x)

(1)
and

L = h̄v(iv · D)hv + K̃1 + M̃1 + Ẽ1 + K̃2 + M̃2 + Ẽ2 + · · · , (2)

where we have defined the abbreviations

K̃1 = h̄v
(iD)2

2mQ
hv , M̃1 =

(−i)

2mQ
h̄vσµν(iDµ)(iDν)hv , Ẽ1 = h̄v

(ivD)2

2mQ
hv ,

K̃2 =
1

8m2
Q

h̄v[(iD
µ), [(−ivD), (iDµ)]]hv , (3)

M̃2 =
(−i)

8m2
Q

h̄vσµν{(iDµ), [(−ivD), (iDν )]}hv , Ẽ2 = h̄v
(ivD)3

8m2
Q

hv .

The leading term of these expansions together with the usual Lagrangian
for the light degrees of freedom determines the dynamics of HQET. A re-
markable feature of the leading term of the Lagrangian is that it has two
additional symmetries which have not been present in full QCD.
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The first symmetry which arises is a heavy flavour symmetry. The in-
teraction of the quarks with the gluons is determined by the color quantum
numbers and the dependence on flavour enters in full QCD only through the
different quark masses. For the light quarks the fact that the light quark
current masses are small compared to the QCD scale ΛQCD yields the well
known flavour symmetry for the light quarks; in the heavy mass limit a
flavour symmetry arises in a similar manner: once the heavy quark is re-
placed by a static source of colour moving with a definite velocity the flavour
does not matter anymore. In other words, for two heavy flavours b and c
an SU(2) symmetry emerges which relates b and c quarks moving with the
same velocity.

For the case of two heavy flavours b and c one has to leading order the
Lagrangian

Lheavy = b̄v(v · D)bv + c̄v(v · D)cv , (4)

where bv (cv) is the field operator hv for the b (c) quark moving with velocity
v. This Lagrangian is obviously invariant under the SU(2)HF rotations

(
bv

cv

)
→ Uv

(
bv

cv

)
Uv ∈ SU(2)HF. (5)

We have put a subscript v for the transformation matrix U , since this sym-
metry only relates heavy quarks moving with the same velocity.

The second symmetry emerging in the heavy mass limit is the so called
spin symmetry. To leading order both spin degrees of freedom couple in the
same way to the gauge field. We rewrite the leading-order Lagrangian as

L = h̄+s
v (ivD)h+s

v + h̄−s
v (ivD)h−s

v , (6)

where h±s
v are the projections of the heavy quark field on a definite spin

direction s

h±s
v =

1

2
(1 ± γ5/s)hv , s · v = 0. (7)

This Lagrangian has a symmetry under the rotations of the heavy quark
spin, which is formally again an SU(2)SS symmetry given by

(
h+s

v

h−s
v

)
→ Wv

(
h+s

v

h−s
v

)
Wv ∈ SU(2)SS . (8)

The spin rotations may explicitely represented by

Wv = exp (−iφ/ǫ/vγ5) , (9)
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where we have introduced the rotation axis ǫ satisfying vǫ = 0 and ǫ2 = −1
and the rotaion angle φ. In the rest frame v = (1, 0, 0, 0) this reduces to the
well known representation of rotations of spinors

Wv = exp (−iφ~ǫ · ~σ) , (10)

where ~σ is the usual vector of the three Pauli matrices.
Thus in the heavy mass limit the heavy hadrons fall into spin symmetry

doublets which may be characterized by the spin of the light degrees of
freedom. Since the heavy quark spin decouples, the total angular momentum
of the light degrees of freedom becomes a good quantum number. Hence the
spin symmetry doublets of heavy hadrons are the ones with total angular
momentum j + 1/2 and j − 1/2 (j = 1, 2, 3, . . .), where j is the angular
momentum of the light degrees of freedom.

For the mesons the ground state spin symmetry doublet are the heavy
pseudoscalar mesons (0− states) and the corresponding vector meson states
(1− states). For the ground state baryons, the spin of the light degress of
freedom can either be j = 0 or j = 1. For j = 0 the corresponding baryon
has spin 1/2 and is called ΛQ, and it is the simplest object from the point
of view of heavy quark symmetry: The spin symmetry doublet are the two
polarization directions of the ΛQ. For j = 1 the baryons can have either
spin 1/2 (in which case they are called ΣQ) or spin 2/3 (in which case they
are called Σ∗

Q), and hence ΣQ and Σ∗

Q form another spin symmetry doublet
of heavy baryons.

Spin symmetry has some consequences for transition matrix elements,
and we shall consider this here for mesons only. It is convenient to represent
the mesons by representation matrices carrying a heavy quark spinor index
A and a light quark index α. In fact, the matrix

H(v) = HAα(v) =
1

2

√
mHγ5(/v − 1) (11)

represents the correct coupling of the heavy quark and the light degrees of
freedom (also carrying spin 1/2) to a pseudoscalar meson of total spin 0.
The heavy quark is on shell in the limit mH → ∞, thus we must require

(/v − 1)H(v) = 0 . (12)

Likewise, the representation for a heavy vector meson is

H∗(v, ǫ) = H∗

Aα(v, ǫ) =
1

2

√
mH/ǫ(/v − 1) . (13)
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Rotations of the heavy quark spin rotate the heavy pseuodoscalar mesons
into the corresponding heavy vector mesons and vice versa. For a 90◦ ro-
tation of the heavy quark spin around the axis ǫ in a heavy pseudoscalar
meson we obtain

Wv(ǫ, 90
◦)H(v) = γ5/v/ǫH(v) =

1

2

√
mH/ǫ(/v − 1) , (14)

which is the representation matrix of a heavy vector meson.
One may work out the group theory of heavy quark symmetries in more

detail and study their consequences for transition matrix elements [2]. With-
out going into details, the final result is the analogue of the Wigner Eckhard
theorem. If H(v) denotes either H(v) or H∗(v, ǫ) and if |H(v) > denotes
the corresponding state in the heavy mass limit, one finds

< H(v′)|h̄v′Γhv|H(v) >= ξ(v · v′)Tr
{
H(v′)ΓH(v)

}
, (15)

where Γ is some arbitrary combination of Dirac matrices and ξ(v · v′) is a
nonperturbative form factor, the so-called Isgur Wise function.

Eq. (15) is the main result of heavy quark symmetry in the mesonic sec-
tor, since it relates every matrix element of bilinear heavy to heavy currents
between two heavy mesons to the Isgur Wise function ξ(v ·v′). Furthermore,
since the current

jµ = h̄vγµhv (16)

generates the heavy flavour symmetry, we have a normalization statement
for the Isgur Wise function

ξ(v · v′ = 1) = 1 . (17)

Note, finally, that the Isgur Wise function in a group theoretical language is
just the reduced matrix element which is universal for the whole spin flavour
symmetry multiplet. The trace in (15) in the language of the Wigner Eckart
theorem is the Clebsch Gordan coefficient which is entirely determined by
the current operator and the states of the multiplet.

Furthermore, since the spin symmetry violating terms are the ones pro-
portional to the “strong Bohr magneton” g/(2mQ) one would expect that
the splitting between the partners within a spin symmetry doublet scales as
1/mQ.

For mesons we may consider the quantity

∆ = M2(1−) − M2(0−) = (M(1−) + M(0−))(M(1−) − M(0−))

≈ 2mQ(M(1−) − M(0−)) , (18)
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TABLE I

Value of the splitting ∆ for the different systems, the data is from the Particle

Data Group [4].

System ∆ in GeV2

(B∗, B) 0.53
(D∗, D) 0.54
(K∗, K) 0.55
(ρ, π) 0.57

TABLE II

Value of the splitting ∆′ for the different systems

System ∆′ in GeV2

(Σ∗

b
, Σb) 0.65

(Σ∗

c
, Σc) 0.34

(Σ∗, Σ) 0.50
(∆, N) 0.64

which we should expect to be a constant in the heavy quark systems. As can
be seen in Table I, ∆ indeed turns out to be constant in the B and D meson
systems, but to some surprise one obtains also the same constant looking
into light quark systems.

Similarly, for ΣQ–like baryons we consider

∆′ = M2(3/2) − M2(1/2) =≈ 2mQ(M(3/2) − M(1/2)) , (19)

which again should turn out to be a constant. In Table II we list the corre-
sponding quantities.

It is interesting to note that there seems to be a problem with the split-
ting for the heavy ΣQ–type baryons, since the 1/mQ scaling between the
bottom and the charm systems does not seem to be satisfied. The data
on Σb is from DELPHI [5] and is up to now only available from conference
talks. One would expect that the uncertainties in this number are still large,
at least much larger than the one on the data on the Σc and Σ∗

c , which is
dominated by CLEO data [6]. However, if one takes the numbers in the
lighter systems serious, hoping for a similar accident as for the mesons, the
data in the charm system seem to be on the low side.
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3. Applications of spin symmetry

3.1. Relation between exclusive semileptonic b → c transitions

It is well known that heavy quark symmetry allows to relate the de-
cays B → Dℓν̄ℓ and B → D∗ℓν̄ℓ. The relevant matrix elements are the
ones involving the left handed current for a b → c transition, which are
parametrized in general by six form factors

〈D(v′)|c̄γµb|B(v)〉 =
√

mBmD

[
ξ+(y)(vµ + v′µ) + ξ−(y)(vµ − v′µ)

]
, (20)

〈D∗(v′, ǫ)|c̄γµb|B(v)〉 = i
√

mBmD∗ξV (y)εµαβρǫ
∗αv′βvρ , (21)

〈D∗(v′, ǫ)|c̄γµγ5b|B(v)〉 =
√

mBmD∗

[
ξA1(y)(vv′ + 1)ǫ∗µ − ξA2(y)(ǫ∗v)vµ

− ξA2(y)(ǫ∗v)v′µ
]

, (22)

where we have defined y = vv′.
Of particular interest from the point of view of heavy quark symmetry

is the edge of phase space where the final state D meson is at rest, i.e. the
point y = 1. At this kinematical point the decay rates take the following
form

lim
y→1

1√
y2 − 1

dΓ

dy
(B → D∗ℓν̄ℓ) =

G2
F

4π3
(mB−mD∗)2m3

D∗ |Vcb|2|ξA1(1)|2 , (23)

and

lim
y→1

(
1√

y2 − 1

)
dΓ

dy
(B → Dℓν̄ℓ) (24)

=
G2

F

48π3
(mB + mD)2m3

D|Vcb|2
∣∣∣∣ξ+(1) − mB − mD

mB + mD
ξ−(1)

∣∣∣∣
2

.

Assuming that the b and the c quark are heavy one may relate all these form
factors to a single one, the Isgur Wise function as introduced in (15)

ξi(y) = ξ(y) for i = +, V,A1, A3, ξi(y) = 0 for i = −, A2 . (25)

Furthermore, again due to heavy quark symmetries, the Isgur Wise function
is normalized at y = 1 as ξ(y = 1) = 1.

Corrections to this symmetry limit may be systematically accessed using
HQET. One important result concerning the 1/mQ corrections is Luke’s
theorem [7], which states that neither the normalization of ξA1 nor the one of
ξ+ receive corrections linear in 1/mQ. Hence the leading corrections to these
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two form factors are of the order 1/m2
c . Furthermore, radiative corrections

have been calculated up to next-to-leading order, and one obtains for ξA1(1)

ξA1(1) = ηA(1 + δ1/m2) , (26)

where ηA incorporates the (QCD and QED) radiative corrections to the
axial-vector b → c current and δ1/m2 parametrizes the corrections of order

1/m2
Q. Inserting numbers one finds

ξA1(1) = 0.92 ± 0.03 , (27)

where the uncertainty is entirely due to the parametrization of the correc-
tions of order 1/m2

Q.
Similarly, for the decay B → Dℓν̄ℓ one may write for the relevant com-

bination of form factors
∣∣∣∣ξ+(1) − mB − mD

mB + mD
ξ−(1)

∣∣∣∣ = ηV (1 + ∆1/mQ
) , (28)

where ηV incorporates the (QCD and QED) radiative corrections to the
vector b → c current and ∆1/mQ

are the 1/mQ corrections induced by ξ−(1),
which is not protected by Luke’s theorem. These corrections have been
estimated recently [8]

∣∣∣∣ξ+(1) − mB − mD

mB + mD
ξ−(1)

∣∣∣∣ = 0.98 ± 0.07 . (29)

The absolute normalizations (27) and (29) have been used to determine
the CKM matrix element Vcb using the measured spectra of both B → D∗ℓν̄ℓ

and B → Dℓν̄ℓ [9]. On the other hand, one may use the same data [10, 11]
to test the helicity structure of the weak b → c transition current, since at
y = 1 B → D∗ℓν̄ℓ is sensitive to the axial current only and B → Dℓν̄ℓ is
sensitive to the vector current only. If we modify the weak b → c current by
including coupling constants gV and gA according to

c̄γµ(1 − γ5)b −→ c̄γµ(gV − gAγ5)b (30)

the present data allow to constrain the possible values of the ratio of the
coupling constants ∣∣∣∣

gA

gV

∣∣∣∣ = 1.02 ± 0.28 . (31)

The large uncertainty in this number is due to the theoretical uncertainty
in the 1/mQ corrections to B → Dℓν̄ℓ and to the experimental uncertainties
also in B → Dℓν̄ℓ .
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3.2. Polarization of b hadrons from Z0 decay

There is a large data sample of b hadrons which originates from hadroniza-
tion of b quarks produced from the decay Z0 → b̄b at LEPI. The interesting
feature of these bottom quarks is that their weak couplings are such that
they are produced with a very high polarization

P =

∣∣∣∣
gAgV

g2
a + g2

V

∣∣∣∣ ≈ 94% , (32)

and thus the question arises how much of this polarization is retained in the
polarization of the final state b hadrons.

Of course here the relevant symmetry is the spin symmetry. If one as-
sumes that hadronization is a soft process, then we can describe it in the
limit mb → ∞, where the spin of the heavy quark decouples. This has al-
ready the obvious consequence that the Λb baryons from Z0 decay should be
polarized to a similarly high degree as the b quark itself, and the corrections
should be effects of order 1/mQ. We shall give an estimate of this effect
below.

However, only one out of ten b quarks hadronise into a Λb baryon and
hence much more data is available on mesons, and we shall first analyze the
situation for mesons along the lines of Falk and Peskin [12]. We start from
a fully polarized b quark and represent the 100% left handed state as | ⇓ 〉.
Fragmentation means that the heavy quarks gets dressed with light degrees
of freedom which have to have spin 1/2. Since there is no preferred spin
direction for the light degrees of freedom, both | ↑ 〉 and | ↓ 〉 should have the
same probability amplitude.

From these quark states we can form the following mesonic states

| ⇓ 〉| ↓ 〉 = |B∗(λ = −1)〉 ,

| ⇓ 〉| ↑ 〉 =
1√
2

[|B〉 − |B∗(λ = 0)〉] , (33)

where λ is the helicity of the B∗ meson. Since the B∗ decays only elec-
tromagnetically, it has a very small width compared to the mass difference
between the B∗ itself and its spin symmetry partner B, which has an even
smaller width. Hence the two meson states involved in (33) do not overlapp
and hence they become incoherent before any decay can occur. Thus we
may obtain from (33) the following table of probabilities

P [B] =
1

4
,

P [B∗(λ = −1)] =
1

2
, P [B∗(λ = 0)] =

1

4
, P [B∗(λ = 1)] = 0 . (34)
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The B∗ is identified by its decay B∗ → Bγ which occurs after the time
1/Γ (B∗). Since the B mesons are pseudoscalar objects, no polarization in-
formation can be carried by them. One possibility would be the angular
distribution of the photon emission, for which one obtains

dΓ

d cos θ
[B∗(λ = ±1) → Bγ] ∝ 1

2
(1 + cos2 θ) , (35)

dΓ

d cos θ
[B∗(λ = 0) → Bγ] ∝ sin2 θ , (36)

where the constant of proportionality is the same in both cases and θ is
the angle between the boost direction of the B∗ and the photon momentum.
Using the table of probabilities (34), we end up with an isotropic distribution
which again does not carry any polarization information.

Thus for the mesons the information on the polarization of the initial
b quark is entirely transferred into the polarization of the emitted photon
which is indeed left handed. The photon polarization can, however, not be
measured with any of the LEP detectors, so not much can be done for the
mesons.

As mentioned above the situtaion is more promising for baryons, in par-
ticular for the Λb. Here one would naï vely expect a polarization of the
order of 90%, since the b quark polarization should be carried over to the
Λb up to corrections of the order 1/mQ. This expectation is not supported
by data [13], since much lower values are found experimentally. Thus one
needs to analyze the 1/mQ effects quantitatively.

This has been done by Falk and Peskin [12], who discuss the Λb depo-
larization through Σb and Σ∗

b intermediate states, i.e. through the process

Z0 → b̄b → Σ
(∗)
b → Λb.

In the case of baryons the hadronization process has to dress the b quark
with light degrees of freedom of either spin S = 0 or S = 1, if we restrict
ourselves to the ground state baryons. Unlike for the simple case of mesons
here two parameters enter the analysis. First there is the relative probability
A to have S = 0 for the light degrees of freedom compared to the S = 1
case, and the second parameter is the relative probability ω to have the light
degrees transversely polarized S3 = ±1 compared to S3 = 0. In terms of
these parameters one may again set up a table of probabilities for the various
helicity states of the baryons, assuming again a fully left handed polarized
b quark in the initial state and incoherence of the various states. One finds
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state λ = −3
2 λ = −1

2 λ = 1
2 λ = −3

2

Σ∗

b
1
2ωA 2

3(1 − ω)A 1
6ωA 0

Σb −− 1
3(1 − ω)A 1

3ωA −−

Λb −− 1 0 −−





1

1 + A
, (37)

where the bracket means that all entries should be multiplied by the overall
normalization 1/(1 + A).

Similarly as for the mesons one now has to analyze the subseqent decays

which are the decays Σ
(∗)
b → Λbπ. We shall not discuss any of the details here

and only quote the final result. For “reasonable” values (actually motivated
by the Lund string model) of A = 0.45 and ω = 0 one finds a significant
depolarization of the Λb baryons, namly

P(Λb@LEPI) ≈ 68% (38)

which is still not enough to explain the low experimental values. On the
other hand, the analysis of Falk and Peskin has to be taken as an estimate
depending on the two parameters A and ω, and if the experimental values
remain as low as they are now, some more theoretical work is needed.

3.3. Polarization in Λc decays

Heavy Quark Symmetries also restrict heavy to light tyransitions. While
for mesons the number of form factors for e.g. B → π and B → ρ transitions
is not reduced, some relations may be found for baryons. The ΛQ baryons
are the simplest objects from the point of view of heavy quark symmetry and
indeed spin symmetry imposes interesting constraints. Consider for example
the matrix element of a current q̄Γhv between a heavy ΛQ and a light spin-
1/2 baryon Bℓ, where q is a light quark. This matrix element is described
by only two form factors [14] according to

〈Bℓ(p)|ℓ̄Γhv|ΛQ(v)〉 = ūℓ(p){F1(v · p) + /vF2(v · p)}ΓuΛQ
(v). (39)

Thus in this particular case spin symmetry dratically reduces the number of
independent Lorentz-invariant amplitudes which describe the heavy to light
transitions.

This has some interesting implications for exclusive semileptonic Λc de-
cays. For the case of a left handed current Γ = γµ(1− γ5), the semileptonic
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decay Λc → Λℓν̄ℓ is in general parametrized in terms of six form factors

〈Λ(p)|q̄γµ(1 − γ5)c|Λc(v)〉 = ū(p) [f1γµ + if2σµνqν + f3q
µ] u(p′)

+ ū(p) [g1γµ + ig2σµνqν + g3q
µ] γ5u(p′),(40)

where p′ = mΛcv is the momentum of the Λc whereas q = mΛcv − p is the
momentum transfer. From this one defines the ratio GA/GV by

GA

GV
=

g1(q
2 = 0)

f1(q2 = 0)
. (41)

In the heavy c quark limit one may relate the six form factors fi and gi

(i = 1, 2, 3) to the two form factors Fj (j = 1, 2)

f1 = −g1 = F1 +
mΛ

mΛc

F2 , (42)

f2 = f3 = −g2 = −g3 =
1

mΛc

F2 , (43)

from which one reads off GA/GV = −1. This ratio is accessible by measuring
in semileptonic decays Λc → λℓν̄ℓ the polarization variable α

α =
2GAGV

G2
A + G2

V

, (44)

which is predicted to be α = −1 in the heavy c quark limit. The subleading
corrections to the heavy c quark limit have been estimated and found to be
small [15]

α < −0.95 , (45)

and recent measurements yield

α = −0.91 ± 0.49 ARGUS [16] , (46)

α = −0.89+0.17+0.09
−0.11−0.05 CLEO [17] , (47)

and are in satisfactory agreement with the theoretical predictions.
Recently the CLEO collaboration also measured the ratio of the form

factors F1 and F2, averaged over phase space. Heavy quark symmetries do
not fix this form factor ratio, at least not for a heavy to light decay, while
for a heavy to heavy decay the form factor F2 vanishes in the heavy mass
limit for the final state quark. CLEO measures [18]

〈
F2

F1

〉

phase space
= −0.25 ± 0.14 ± 0.08 , (48)

which is in good agreement with various model estimates.
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3.4. Quark helicities in Λb → Λγ

Another interesting application of relation (39) is the rare decay Λb → Λγ
which is a flavour changing neutral current process of the type b → sγ. The
interesting part of this process is its short distance contribution due to the
effective Hamiltonian

Heff =
4GF√

2
VtsV

∗

tbC7O7 , (49)

where C7 is some short distance coefficient and

O7 =
e

32π2
mbs̄σµν(GV − GAγ5)b Fµν , (50)

where Fµν is the ususal electromagnetic field strength tensor.
The parameters C7, GV and GA may be computed in the standard model

where one finds C7 ≈ 0.3 and GV = 1+ ms/mb and GA = −1+ ms/mb, i.e.

the b quark is practically right handed.
It has been speculated that b → sγ may open a window to physics

beyond the standard model and the value of C7 has already been tested to
some extent in the decays B → Xsγ and also B → K∗γ. However, the
helicity stucture of the effective Hamiltonian cannot be measured in the
mesonic decays, they will only be accessible in the decays of Λb baryons. In
particular, the decay Λb → Λγ is a good candidate, since the decay of the
final state Λ is self-analyzing.

The decay Λb → Λγ has been analyzed in detail in [19]. Apart from the
long distance effects, which have been estimated to be small, there is also a
problem with the application of (39). This relation is expected to work best
in the region of phase space where the final state light baryon moves slowly
in the rest frame of the decaying Λb. Unfortunately, the relevant kinematic
region of Λb → Λγ is at the opposite side of phase space, since q2 = 0 for the
real photon implies for the energy E of the light baryon E ≈ mb/2 which
becomes large in the infinite mass limit. However, it has been argued in [19]
that it is very likely that relation (39) still holds for the decay Λb → Λγ.

Assuming an unpolarized Λb one may measure the polarization vari-
able α′

Γ = Γ0

[
1 + α′~n · ~SΛ

]
, (51)

where ~n is the direction of the outgoing Λ in the rest frame of the Λb.
Computing the polarization variable using the CLEO mesurement of the

form factor ratio (48) as input one obtains [19]

α′ = 0.387
2GV GA

G2
V + G2

A

, (52)

which will allow some test of the helicity structure of the effective short
distance Hamiltonian, once enough data on Λb → Λγ becomes available.
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4. Conclusion

The fact that in the heavy mass limit the spin of the heavy quark decou-
ples has many interesting consequences for processes involving heavy quarks.
In the decays one may analyze the helicity structure of the transition oper-
ator for which the standard model makes definite predictions. Analogous to
the Michel parameter analysis of the µ and τ decays one may check the left-
handedness of the hadronic currents of heavy quarks in a model independent
way. However, for stringent tests one has to wait for the data coming from
B-factories.

As far as production of heavy hadrons is concerned, LEPI provided
the interesting possibility to observe the hadronization of highly polarized
b quarks. For the b quarks hadronizing into mesons the polarization in-
formation is effectively lost, while some of the polarization is retained for
hadronization into baryons. The amount of depolarization for the Λb seems
to be quite high, if the experimental values settle in the region as given
in [13]. Unfortunately, for more data on polarized b quark fragmentation
one prabably has to wait for the era of polarized hadron colliders.
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