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TAYLOR DISPERSION ON A FRACTAL∗
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Taylor dispersion is the greatly enhanced diffusion in the direction of
a fluid flow caused by ordinary diffusion in directions orthogonal to the
flow. It is essential that the system be bounded in space in the directions
orthogonal to the flow. We investigate the situation where the medium
through which the flow occurs has fractal properties so that diffusion in the
orthogonal directions is anomalous and non-Fickian. The effective diffusion
in the flow direction remains normal; its width grows proportionally with
the time. However, the proportionality constant depends on the fractal
dimension of the medium as well as its walk dimension.

PACS numbers: 05.60. +w, 02.50. Ey

1. Introduction

Dynamical processes on fractals are rather different from similar process
taking place on Euclidean supports. Differences can arise either because the
elementary dynamics are fractal (Levy walks, for example) or because the
processes take place in a fractal background. In the present paper we shall
discuss a particular case of the second of these possibilities.

Diffusion is an important example of a transport process. Normal diffu-
sion is characterized by a dispersion of position of diffusing particles given
by 〈r2〉 ∼ t. Diffusion on fractals is anomalous, with 〈r2〉 ∼ t2/dw . dw is
called the dimension of the random walk underlying the diffusion; for walks
on a fractal substrate, generally dw > 2. This relation is the definition of
dw; it’s value must, of course, be determined individually for each case.

It is of interest to study how diffusion interacts with other transport
processes. The case when diffusion takes place in a flowing fluid with a

∗ Presented at the Marian Smoluchowski Symposium on Statistical Physics, Zakopane,

Poland, September 1–10, 1997.

(1539)



1540 R.M. Mazo

velocity gradient has been studied by Taylor [1]. Briefly put, when a solute is
placed in a fluid flowing in a tube, the center of the solute distribution moves
with the average velocity of the tube cross section. For a delta function
initial distribution of solute, the width of the distribution at subsequent
long times increases linearly with the time, and the distribution of solute
itself is very close to gaussian. I have given a more detailed description of
Taylor dispersion at the IV Zakopane Symposium [2].

The physics behind this phenomenon is that as the solute particles get
carried along by the fluid flow they also perform diffusive motions with
respect to the barycentric motion of the fluid. The diffusive motion in the
direction of the fluid flow gives rise to a negligible effect, and we ignore
it here. Diffusion perpendicular to the flow, however, means that over the
course of time, solute particles are exposed to many different fluid velocities.
After a time long compared to the time necessary for a particle to sample the
entire velocity distribution of the fluid, each particle acquires a distribution
of velocities that mirrors the distribution over the cross section. It is this
interaction of transverse diffusion with longitudinal flow which generates the
effect described in the preceding paragraph.

It is essential that the system be finite in extent in the orthogonal di-
rections. This is because the longitudinal dispersion only appears to be
pseudo-Fickian after the solute has had time to traverse the entire cross
section. In an infinite system, this never occurs. For times short compared
to the traversal time of the system, when the boundaries have not yet had
any appreciable effect on the transverse diffusion, there is anomalous dis-
persion in the flow direction. We shall not consider that case in this paper,
restricting our attention to the long time regime.

Taylor dispersion is interesting because it is a nontrivial example of how
a random process (the diffusion) interacts with a deterministic process (the
flow). It is also interesting because it is the basis for a good method for
measuring diffusion coefficients. Diffusion coefficients in liquids are small.
Therefore diffusion experiments of classical type take a long time, and it is
difficult to keep the system isothermal, vibration free, etc. for long periods.
When the solute particles are large, e.g. polymers, inelastic light scattering
provides a useful alternative method, but for low molecular weight solutes,
the optical contrast between solute and solvent is usually not sufficient for
an accurate measurement by this method. Taylor dispersion, relying on
the greatly enhanced value of the Taylor diffusion coefficient relative to the
molecular diffusion coefficient, has been used successfully in this latter case
[3].

It is therefore worthwhile to consider variations on Taylor’s original idea,
extending it to new and different situations. Indeed, there is a large engi-
neering literature on Taylor dispersion, and a growing literature on the phe-
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nomenon from a fundamental physicochemical point of view. In this paper
we treat the long time longitudinal dispersion of a solute where the trans-
verse dimensions are fractal. We shall see that, in the long time limit, the
dispersion in the longitudinal dimension becomes Fickian. However, the ef-
fective diffusion coefficient depends on the physical parameters of the system
in a different way than is the case when the ambient medium is Euclidean.

2. Diffusion on fractals and scaling considerations

We first review what is known about diffusion on fractals. What we are
after is the probability distribution for being at a certain position on the
fractal at a certain time. In fact, this is a multifractal, a fractal measure.
It has too much fine detail for our purposes; it is irregular on all scales. We
need a smoothed, averaged version of this distribution. Knowledge of this
averaged distribution is primarily based on numerical simulations of random
walks and on scaling arguments.

Actually, the probability distribution for the fractal without boundaries
is not of major interest in the present context, although it is the quantity on
which all previous authors have focused their attention. We need the equa-
tion of evolution satisfied by the distribution function. The infinite space
distribution function is of interest only insofar as it indicates whether or
not a proposed evolution equation has a possibility of being correct. We
shall adopt the evolution equation advocated by O’Shaughnessy and Pro-
caccia [4, 5]. It is

∂P

∂t
=

1

rd−1

∂

∂r

(

Krd−dw+1 ∂P

∂r

)

. (1)

Here, d is the fractal dimension of the fractal substrate, dw is the walk
dimension defined by

〈r2〉 ∼ t2/dw , (2)

and K is a constant. This equation has been controversial, and we must
justify our choice.

Everyone agrees that P (r, t) has the scaling form

P (r, t) = t−dw/2F (r/t1/dw) . (3)

This is indicated by two considerations. First, the probability of return
to the origin is given by P (0, t) ∼ t−dw/2. P (0, t) clearly determines the
prefactor of F , and is determined by its relation to the vibrational density
of states of the fractal (regarded as a vibrating body) [6]. Second, (2) gives
the second moment of P, so that dimensional considerations suggest that F
should have the indicated argument. The question is, what is the form of F?



1542 R.M. Mazo

Banavar and Willemsen [7] proposed, on the basis of dimensional
analysis and the Chapman–Kolmogorov equation, that F (ξ) ∼ exp(−cξ).
O’Shaughnessy and Procaccia obtained the same result on the basis of the
differential equation (1). Shortly thereafter, Guyer [8] proposed the form
F (ξ) ∼ exp(−c′ξα) with α = dw/dw − 1. His results were based on nu-
merical simulations in a range of values of ξ larger than those used by
O’Shaughnessy and Procaccia [4] in checking their conclusions; Guyer, in
fact, suggested that different results may be valid in different time regimes.
The exponent α has been further discussed by Aharony [9] and by Van den
Broeck [10]. The situation as of 1987 has been reviewed by Havlin and
Ben-Avraham [11].

The situation has been considerably clarified by numerical work of
Klafter et al. [12]. These authors find that the O’Shaughnessy-Procaccia
form describes their numerical work well for ξ ≪ 1. For ξ ≫ 1, they
find that F (ξ) ∼ ξλ exp(−c′ξα) with α given by the Guyer form and λ =
(d− dw/2)/(dw − 1). As stated above, the detailed form of F does not con-
cern us here since it refers to an infinite system. The system we deal with
is bounded, and we are interested in long time results. Consequently, the
variable ξ = r/t1/dw is small. While we cannot just take over the small ξ
form of F because of the effects of the boundaries, it is reasonable to use the
evolution equation known to be valid for small ξ, Eq. (1), supplemented by
appropriate boundary conditions. The boundary conditions which we shall
adopt are that the flux of solute vanishes on the boundaries, or ∂P/∂r = 0
(assuming radial symmetry).

Of the authors whom we have quoted thus far, only Ref. [4] introduces
an evolution equation. We should however, mention an equation proposed
by Metzler et al. [13]. This is a differential equation which is of fractional
order with respect to the time; said another way, it is an integrodifferential
equation. Metzler et al. find an exact solution of their equation in terms
of special functions called H functions [14]. This solution has the Guyer
asymptotic form for r/t1/dw ≫ 1 but without the additional ξλ term ob-
served in the numerical work of Klafter et al. The solution does not have
the O’Shaughnessy-Procaccia form for r/t1/dw ≪ 1; Furthermore, it does
not appear to have the form of an equation of continuity for the probability
current. The authors did not derive this equation from physical arguments,
but proposed it as a mathematical construct which would yield the previ-
ously proposed asymptotic result. Consequently we have not adopted this
equation as the starting point for the work reported here.

So far, we have been discussing pure diffusion with no convection. In
Taylor dispersion we envisage unidirectional fluid flow with diffusion in di-
rections transverse to the flow. To visualize this, one might think of a Sier-
pinski gasket moved parallel to itself (a “Toblerone” tube with a Sierpinski
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gasket cross section). We shall take the evolution equation for this system
to be the convective diffusion equation

∂P

∂t
+ vx(r)

∂P

∂x
=

1

rd−1

∂

∂r

(

Krd+1−dw

∂P

∂r

)

. (4)

Here x is the coordinate in the direction of the flow and r the radial variable
in the transverse directions; we assume cylindrical symmetry. The goal of
this paper is to derive an evolution equation for the probability density
n(x, t), which is the density P (r, x, t) averaged over the cross section of the
flowing system.

Before attempting this derivation, we use scaling arguments to see what
results might be expected from a more detailed calculation. I am indebted
to my colleague John Toner for the following arguments.

Ben-Naim, Redner, and ben-Avraham [15] have shown that a particle
undergoing normal diffusion in a flow vx = u0êxyβsgn(y) undergoes anoma-
lous dispersion in the x direction varying as 〈δx2〉 ∼ u2

0D
βt2+β . This can

be shown exactly for β = 1 and by approximate arguments for β 6= 1. It
holds when the direction normal to the flow, the y direction is unbounded.
When boundaries are inserted in the y direction, one expects that propor-
tionality to t will be recovered. Let us assume this. Then, in the presence
of boundaries

〈δx2〉 = u2
0D

βt2+βf(Dt/l2) . (5)

Here f is a dimensionless function of the indicated argument. The argument
is the only dimensionless variable one can construct from the parameters of
the diffusion problem, and we have assumed that f can only depend on the
diffusional variable, not the flow variables.

In the long time limit, Dt ≫ l2, we are supposing that 〈δx2〉 ∼ t. For
this to be true, along with Eq. (5), it must be the case that f(z) ∼ zν for
large z with ν = −1 − β. Consequently

〈δx2〉 ∼ u2
0l

2(1+β)t/D . (6)

It is of interest to express this in terms of the maximum flow velocity, vx,m =
u0l

β,
〈δx2〉 ∼ v2

x,ml2t/D . (7)

Note that the dispersion is independent of β when expressed in terms of the
maximum velocity. The linear dependence on t in Eqs (6) and (7) has been
assumed here, not derived. What has been derived is the dependence of the
coefficient of t on the physical parameters of the system, the physical size,
l, the diffusion coefficient, D, and the velocity v.
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The preceding argument has assumed that the diffusion in the transverse
dimension is normal. We now carry through the analogous calculation for the
case when the transverse diffusion is anomalous, 〈δy2〉 = Btα. Arguments
like those of Ben-Naim et al. yield, for the case when the y direction is
unbounded

〈δx2〉 ∼ u2
0B

βt2+αβ . (8)

For the bounded case, we assume 〈δx2〉 ∼ u2
0B

βt2+αβφ(Btα/l2) and that
this must be proportional to t for large t. This can only happen if φ(z) ∼ zµ

for z ≫ 1. This implies that µ = −(β + 1/α). Consequently

〈δx2〉 ∼ u2
0l

2(β+1/α)t/B1/α = v2
x,ml2/αt/B1/α . (9)

So here, while the t dependence is normal (by hypothesis), the size depen-
dence is anomalous.

Of course, scaling arguments of the sort used here will never yield the
numerical coefficient of the proportionality. One must go to a full solu-
tion of the problem for this, and incidentally also to justify the assumption
that the x dispersion in the bounded case, the Taylor dispersion, is indeed
proportional to t. This is the subject of the next section.

3. The convective diffusion equation

The basic model is that the fluid flows in the x direction with a velocity
vx(r) where r is the radial variable normal to x. We take as our basic
evolution equation the convective diffusion equation (4), and want to derive
from this an equation for p(x, t) alone. We regard this as a problem in the
elimination of fast variables. To identify r as the fast variable, we write
Eq. (4) in dimensionless form. Set ρ = r/l, ζ = x/L, τ = vx,mt/L, ε−1 =
Kl−dwL/vx,m, p(ρ, ζ, τ) = P (r, x, t), where l is the transverse dimension of
the system, L is a characteristic length in the longitudinal direction, which
is determined by the experimental conditions, and vx,m is the maximum
flow velocity. One could, of course, reduce z by the length l instead of L.
However, we feel it is more physical to scale a longitudinal variable by a
longitudinal characteristic length, even if this length is arbitrary. We are no
longer assuming that the flow velocity is a simple power law and consequently
write vx = vx,mg(r). Then the convective diffusion equation becomes

∂p

∂τ
+ g(ρ)

∂p

∂ζ
= ε−1 1

ρd−1

∂

∂ρ

(

ρd+1−dw

∂p

∂ρ

)

. (10)

We shall regard ε as a small parameter; that is, we are in the low velocity
limit. L is, of course, arbitrary; it should be of the order of the width of
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the solute distribution, perhaps a few centimeters. According to Taylor [16],
ε should be at most about 0.3 for the validity of his approximation. If we
regard Kl2−dw as the analog of the diffusion coefficient in the nonfractal
case, we can then treat ε as small (even though 0.3 is not so very small).
According to the general principles of multiple time scale analysis [17] radial
motion can be identified as the fast variable, and axial motion as the slow
variable. This idea is implicit in the original paper of Taylor [1].

The method for elimination of fast variables which we use is essentially
the Chapman–Enskog method. Its application to the problem of Taylor
dispersion has been discussed in two earlier publications [2, 18], so that we
can proceed directly to the case at hand. The density of solute, averaged
over a cross section of the system is

n(ζ, t) = V

1
∫

0

p(ρ, ζ, τ)ρd−1dρ , (11)

where V is the factor coming from the angular integration in d dimensions.
From (11) and (10), one finds

∂n

∂τ
= −V vx,m

∂

∂ζ

1
∫

0

g(ρ)pρd−1dρ . (12)

Now we make the crucial hypothesis that p depends on time only through
its functional dependence on n. This is supposed to hold after some induc-
tion period during which transients due to initial conditions die out. This
hypothesis is the same as the familiar hypothesis in the kinetic theory of
gases [19]. Application yields

∫

δp

δn(y)

∂n(y, τ)

∂τ
ddy = ε−1 1

ρd−1

∂

∂ρ
ρd+1−dw

∂p

∂ρ
− g(ρ)

∂p

∂ζ
, (13)

where δ denotes functional derivative. Now we assume that p can be ex-
panded in the form

p = p0 + εp1 + ε2p2 + · · · (14)

This is not necessarily a power series. The pi may depend on ε also, but not
in ways that affect their orders of magnitude; e.g. they may contain ε in
an exponent. Nevertheless, we equate terms in (13) with the same apparent
power of ε to zero. Furthermore, we require that

V

∫

p0ρd−1dρ = n ,

V

∫

pjρd−1dρ = 0; j > 0 . (15)
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To order ε−1

1

ρd−1

∂

∂ρ
ρd+1−dw

∂p0

∂ρ
= 0 , (16)

with solution
p0 = (aρdw−d + b)h(ζ, τ) , (17)

where a and b are constants, and h is an arbitrary function. dw is generally
greater than d, so that p0 is finite at the origin. However, there will be an
unphysical cusp at the origin unless a vanishes (recall that p is a smoothed
distribution). Application of (15) then determines h as

p0 =
d

V
n (ζ, τ) . (18)

Next we look at terms of order ε0. These are

∂p0

∂τ
+ g(ρ)

∂p0

∂ζ
=

1

ρd−1

∂

∂ρ

(

ρd+1−dw

∂p1

∂ρ

)

. (19)

Using (18) for p0 and (12) for ∂n/∂τ , one finds

∂

∂ρ

(

ρd+1−dw

∂p1

∂ρ

)

=
d

V

∂n

∂ζ
α(ρ) , (20)

where

α(ρ) = ρd−1



g(ρ) − d

1
∫

0

g(ρ)ρd−1dρ



 . (21)

This equation can easily be solved for p1(ρ)− p1(0). p1(0) is determined by
(15) with the final result

p1 =
d

V

∂n

∂ζ





ρ
∫

0

xdw−1−ddx

x
∫

0

α(y)dy

−d

1
∫

0

ρd−1dρ

ρ
∫

0

xdw−1−ddx

x
∫

0

α(y)dy



 . (22)

Finally, this expression must be substituted in (12).
If we now return to ordinary, instead of dimensionless, coordinates, our

final result to order ε is

∂n

∂t
+ v̄

∂n

∂x
= Deff

∂2n

∂x2
, (23)
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where v̄ is the cross sectional averaged flow velocity, and

Deff =
v2
x,mldw

K
Z , (24)

Z = d

1
∫

0

ρd−1g(ρ)



d

1
∫

0

ρd−1dρ

ρ
∫

0

xdw−1−ddx

x
∫

0

α(y)dy

−

ρ
∫

0

xdw−1−ddx

x
∫

0

α(y)dy



 dρ . (25)

This is consistent with the scaling arguments of the previous section, except
that here we have explicitly shown the proportionality to t, and we have a
definite expression for the proportionality coefficient, Z.

4. Discussion

Equations (24) and (25) are the main formal results of this paper. To
evaluate Z and hence Deff in any given case is now merely a question of
quadratures. As examples, we have taken the case of a cylindrical container.
For a parabolic velocity profile, g(r) = 1 − (r/l)2, and for d = dw = 2, we
are back to Taylor’s original problem, and obtain the original answer Deff =
v2
x,ml2/192Dmolecular if we equate Dmolecular with Kl2−dw . The numerical

coefficient is precisely that of Taylor [1]. For the same model of a cylindrical
tube with parabolic velocity profile, carrying out the quadrature (25) is
elementary, and yields

Z =
d

d + 2

[

d

d + 2

(

1

dw (d + dw)
−

1

(dw + 2) (d + dw + 2)

)

−
1

dw (d + dw + 2)
+

1

(dw + 2) (d + dw + 4)

]

. (26)

Although this formula is not very enlightening, the point to be made is
that it can easily be computed. The interesting aspect of the result is the
dependence on physical parameters, as shown in (24).

A parabolic velocity profile, used in the example above, is appropriate
for Poiseuille flow in a tube of ordinary liquid. When the tube cross sec-
tion is fractal, the velocity distribution will be different, and will probably
depend on the pressure distribution at the inlet end of the tube. Neverthe-
less, once the velocity distribution is known, Z can be computed by simple
quadratures. The parabolic profile was chosen only for the sake of example.
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Regarding the choice of the evolution equation in the (r, x) space with
which we started, we have discussed our reasons for this choice in Sec-
tion 2. If, however, these reasons should be found not compelling, it is
my belief that any evolution equation equivalent to an equation of continu-
ity (∂P/∂t = −divergence(probability current)) will give rise to an effective
diffusion equation in the x space when the fast, r, variable is eliminated.
This will, I conjecture, be the case when the current does not depend on the
history of the system, i.e. when the description is markovian.

In the situation considered here, classical diffusion on a fractal substrate,
the dispersion (in the absence of convection) is subdiffusional, i.e. dw > 2.
We conjecture that similar behavior will occur when the dispersion in the
absence of convection is superdiffusional, dw < 2. This would be the case,
for example, if the diffusion were based on a Levy walk instead of a Pearson
walk. To verify whether this conjecture is correct, one would have to know
the diffusion equation for Levy walks.

An interesting topic for future research is, what happens if the velocity
distribution is a random variable? Matheron and Marsily [20] have studied
this question in the case of normal diffusion with superposed convection for
infinite systems; they were interested in applications where the time was
short relative to the time necessary for the boundaries to be important.
These authors found an anomalous longitudinal dispersion, as did Mazo and
Van den Broeck [21] for a finite system with periodic boundary conditions.
We conjecture that the longitudinal dispersion for a finite system with ran-
dom velocities will again be linear in t, but a very interesting part of the
problem will be to redo the Matheron–Marsily calculation for the case of
anomalous diffusion in the transverse direction.

In this entire area of study, it is noteworthy how the presence of bound-
aries completely changes the character of the longitudinal dispersion. The
reason is physically clear. Without boundaries, the transverse dispersion
grows without bound. This indefinite growth, when fed back into the longi-
tudinal motion by the convection gives rise the an anomalous dispersion. On
the other hand, when the system is transversely bounded there is an upper
bound on the transverse dispersion, the transverse dimension of the system.
So the amount of spread fed back into the longitudinal motion is limited.
This is the fundamental mechanism behind Taylor dispersion, regardless of
the mechanism and time dependence of the transverse motion.

I should like to thank John Toner for helpful discussions. In particular,
the scaling argument in Section 2 is his. I should also like to thank Itamar
Procaccia for useful correspondence.
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