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In this lecture, we examine the dynamics of suspensions of mesoscopic
(Brownian) particles in a molecular fluid, starting from first principles. We
introduce the technique of multiple time-scales to derive the Fokker–Planck
equation for a single, or for a set of interacting Brownian particles, start-
ing from the Liouville equation for the full system (Brownian particles and
discrete bath). The limitations of the Fokker–Planck equation will then
be emphasized. In particular, we shall point out that under “standard”
experimental conditions, the Fokker–Planck description cannot be correct
and that non-Markovian effects are expected. A microscopic description in
the true experimental limit confirms this breakdown and leads to a "gen-
eralized" (non-Markovian and non-local in velocity space) Fokker–Planck
equation, which describes the thermalization of the Brownian particle.

PACS numbers: 05.40. +j, 05.20. Dd, 82.70. Dd

1. Stochastic description of Brownian motion

We consider systems involving a wide time-scale separation in their dy-
namical evolution. The canonical example for such situations is the Brow-
nian motion of a large and massive Brownian (B) particle suspended in a
bath of much smaller and lighter particles. Two time-scales separate out
in the system, one associated with the relaxation of the velocity of the B
particle and another linked to the collisions with the fluid particles. There-
fore, the force due to the fluid acting on the Brownian particle is assumed to
consist of two parts: a systematic friction force and a “random” force, which
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stems from individual collisions of fluid particles with B. This leads to the
well-known stochastic Langevin equation of motion:

M
dV

dt
= F(R(t)) − MζV (t) + F̃ (t) , (1.1)

where V (t) is the velocity of B (of mass M), ζ the friction coefficient and

F(R, t) an external force. The random force F̃ (t) obeys the fluctuation-
dissipation relation

〈F̃ (t′) · F̃ (t)〉 = 2 ζ
kBT

M
δ(t − t′) . (1.2)

An equivalent description can be given in terms of the distribution function
f(R,V ; t) of the position R and velocity V of particle B. Because the fluid
evolves on a much shorter time-scale than B, a Markov assumption for par-
ticle B variables is usually made. Moreover, because of the large mass ratio,
collisions with the fluid particles involve only small transfers of momentum
and the transition probability between two states of particle B is accord-
ingly sharply peaked around its mean value (i.e. only small jumps occurs).
Within these two assumptions, the time evolution of f(R,V ; t) reduces to
the Fokker–Planck (or Kramers) equation:
(

∂

∂t
+ V · ∂

∂R
+

F(R)

M

)

f(R,V ; t) = ζ
∂

∂V
·
(

V +
kBT

M

∂

∂V

)

f(R,V ; t) .

(1.3)
Note that in this equation, the fluid enters only through the friction coeffi-
cient ζ and the temperature T , i.e. the fluid variables have been eliminated.
This description was first given by Klein [1] and Kramers [2].

However, another level of description is commonly used. If only the spa-
tial evolution of the particle is considered, one may rather use the Smolu-
chowski equation, governing the time evolution of the probability density
ρ(R, t) in configuration space:

∂

∂t
ρ(R, t) =

1

Mζ

∂

∂R
·
{

kBT
∂

∂R
−F(R)

}

ρ(R, t) , (1.4)

where the Stokes-Einstein relation between the friction coefficient ζ and the
diffusion constant D of particle B, has been used:

D =
kBT

Mζ
. (1.5)

The description based on Eq. (1.4), first put forward by Smoluchowski [3],
predates that of Kramers and Klein. As was pointed out by Kramers [2], the
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Smoluchowski description should be obtained from the Kramers equation
in the limit where the friction coefficient ζ is large. This can indeed be
intuitively understood: if the friction is high, the velocity relaxes after a short
time, of order 1/ζ, and the evolution on larger time scales is only determined
by the spatial distribution. In this limit, the Smoluchowski equation can
therefore be derived from the Kramers equation via a perturbative expansion
in powers of 1/ζ [4]. However, because the small parameter 1/ζ multiplies
the time derivative, a naive application of the perturbation theory fails in
the long time limit and leads to secular divergences. The first rigorous link
between the two description was given by Wilemski only in 1976 [5] ! In
the next section, we present an alternative approach, based on the multiple
time scale analysis, which leads to a uniformly convergent expansion [6].
This derivation will serve us as a pedagogical presentation of this technique,
which we will use to adress the more fundamental problem of an “ab-initio”
description of Brownian motion presented in Section 4.

2. From Kramers to Smoluchowski: multiple time-scale analysis

Let us first show why a standard perturbative expansion of the Fokker–
Planck equation fails in the long-time limit. Such an expansion procedure
can be found in van Kampen’s reference book [4]. We restrict ourselves to
the one-dimensional case to simplify the analysis.

Introducing dimensionless variables

τ = t
vT

ℓ
; V =

v

vT
; X =

x

ℓ
; F = F ℓ

Mv2
T

; ζd = ζ
ℓ

vT
, (2.1)

where vT =
√

kBT/M is the thermal velocity and ℓ is a characteristic length
scale of the system (such as the Brownian particle diameter), the Fokker–
Planck equation can be cast in the form

∂

∂V

(

V +
∂

∂V

)

f(X,V ; τ) =
1

ζd

[

∂

∂τ
+V

∂

∂X
+F (X)

∂

∂V

]

f(X,V ; τ) . (2.2)

If we insert into (2.2) the “naive” expansion

f = f (0) + ζ−1
d f (1) + ζ−2

d f (2) + . . . (2.3)

and identify terms of the same order, we find the following equations

LFP f (0) = 0 ,

LFP f (1) =

[

∂

∂τ
+ V

∂

∂X
+ F (X)

∂

∂V

]

f (0) ,
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LFP f (2) =

[

∂

∂τ
+ V

∂

∂X
+ F (X)

∂

∂V

]

f (1) ,

. . . (2.4)

where we introduced a “Fokker–Planck” operator LFP defined as

LFP =
∂

∂V

(

V +
∂

∂V

)

(2.5)

The zeroth order equation imposes a maxwellian velocity distribution

f (0)(X,V ; τ) = Φ(X; τ)e−1/2V 2

(2.6)

and the function Φ has to be determined.
The first order equation then gives

LFP f (1) =
∂Φ

∂τ
e−1/2V 2

+ V

{

∂Φ

∂X
− F Φ

}

e−1/2V 2

. (2.7)

By integrating both sides over V , one obtains a “solubility condition”

∂Φ

∂τ
= 0 . (2.8)

The first order correction can now be obtained from (2.7)

f (1)(X,V ; τ) = −V

{

∂Φ

∂X
− F Φ

}

e−1/2V 2

+ Ψ(X; τ)e−1/2V 2

. (2.9)

The function Ψ can be determined by replacing the solution for f (1) in the
third equation of the hierarchy (2.4). Integrating both sides over V , this
yields again a solubility condition

∂Ψ

∂τ
− ∂

∂X

(

∂Φ

∂X
− F Φ

)

= 0 . (2.10)

Since the probability density ρ(X; τ) reads

ρ(X; τ) =
√

2π
[

Φ(X) + ζ−1
d Ψ(X; τ) + O(ζ−2

d )
]

,

Eq. (2.10) reduces to the (dimensionless) Smoluchowski equation

∂ρ(X, τ)

∂τ
=

1

ζd

∂

∂X

(

∂ρ(X, τ)

∂X
− F (X) ρ(X, τ)

)

. (2.11)
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However, this perturbative expansion cannot be valid in the long time limit,
i.e. ζ t ≫ 1. Indeed, a careful inspection of Eq. (2.10) shows that Ψ diverges
as time goes to infinity, since we showed in Eq. (2.8) that Φ is independent
of time. Thus the function Ψ is proportionnal to time τ

Ψ(X; τ) ∼ τ . (2.12)

The standard expansion (2.3) of the solution thus leads to secular divergences
and cannot be correct in the long time limit. In other words, the limit of
time going to infinity cannot be inverted with the limit of friction going to
infinity, so that taking small corrections in 1/ζd into account leads to an
upper bound for the time τ . In fact, this procedure implicitly expands time-
dependent terms like τ/ζd as ζ−1

d terms, and secular divergences appear in
the long-time limit.

However this pitfall can be overcome using the multiple time-scale anal-
ysis [6]. Indeed, two widely different time-scales separate out in the sys-
tem: there is first a very short period (t ∼ ζ−1) during which the velocity
of the Brownian particle thermalizes; thereafter the dynamical evolution
is controlled by the time-dependence of the spatial distribution on longer
time-scales. The multiple time-scale analysis consequently replaces
the physical distribution function f(X,V ; τ) by an auxiliary function,
f(X,V ; τ0, τ1, τ2, . . .), depending on different time-scales. Accordingly, the
time derivative in the physical evolution equation (2.2) is replaced by the
sum of time derivatives on each time-scale,

∂

∂τ
→ ∂

∂τ0
+ ζ−1

d

∂

∂τ1
+ ζ−2

d

∂

∂τ2
+ . . . . (2.13)

The auxiliary distribution function f(X,V ; τ0, τ1, τ2, . . .) is then expanded in
powers of the small parameter ζ−1

d and inserted into the evolution equation,
where terms of the same order are identified. The physical solution of the
system is eventually obtained by restricting the different time variables to
the so-called “physical line”

τ0 = τ ; τ1 = ζ−1
d τ ; τ2 = ζ−2

d τ ; . . . , (2.14)

so that

f(X,V ; τ) = f (0)(X,V ; τ, ζ−1
d τ, ζ−2

d τ, . . .)

+ζ−1
d f (1)(X,V ; τ, ζ−1

d τ, ζ−2
d τ, . . .) + . . . (2.15)

will be the solution of the Fokker–Planck equation (2.2). Equation (2.14)
indicates that the dependence of the distribution function on τn character-
izes the evolution on the time-scale τ ∼ ζn

d (n = 0, 1, 2, . . .). The crucial
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difference with the standard perturbation method is that outside the physi-
cal line (2.14), the auxiliary distribution function has no physical meaning.
Therefore appropriate boundary conditions can be imposed to require the
expansion to be uniform in the small parameter ζ−1

d . This freedom will be
used to eliminate secular divergences.

The identification of different powers of ζ−1
d in the Kramers equation

gives the modified hierarchy of relations

LFP f (0) = 0 ,

LFP f (1) =

[

∂

∂τ0
+ V

∂

∂X
+ F (X)

∂

∂V

]

f (0) ,

LFP f (2) =

[

∂

∂τ0
+ V

∂

∂X
+ F (X)

∂

∂V

]

f (1) +
∂

∂τ1
f (0) ,

. . . . (2.16)

Now, proceeding along the same lines as previously, we obtain the same
solutions for f (0) and f (1), as given in Eqs (2.6) and (2.9), but the spatial
part of the distribution function, Φ and Ψ , now verify the modified solubility
conditions:

∂Φ

∂τ0
= 0 ,

∂Ψ

∂τ0
= −

(

∂Φ

∂τ1
− ∂

∂X

(

∂Φ

∂X
− F Φ

))

. (2.17)

Therefore, Ψ does not evolve on the shortest time-scale τ0. and the r.h.s. of
the second equation in (2.17) does not depend on τ0 either. One must then
impose the condition

∂Ψ

∂τ0
= 0 (2.18)

to eliminate the secular divergence as τ0 grows to infinity. This leads to a
closed equation for Φ

∂Φ

∂τ1
− ∂

∂X

(

∂Φ

∂X
− F Φ

)

= 0 . (2.19)

This result has to be compared with Eq. (2.10) of the standard Hilbert
procedure, where the time-dependence of the density was only contained in
the first order correction (through Ψ). A correct expansion thus modifies the
perturbative scheme and leads to different couplings between the successive
corrections to the probability distribution.
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The physically relevant equation for ρ is now obtained by restricting
the different variables τi to the physical line (2.14), ρ(X; τ) ≡ ρ(X; τ0 =
τ, τ1 = τ/ζd, . . .). Using (2.19), one recovers as expected the (dimensionless)
Smoluchowski equation (2.11).

3. Brownian motion from first principles

3.1. Multiple time scale derivation of the Fokker–Planck equation

The multiple time-scale analysis will now be used to adress the problem of
a “first principles” derivation of the Fokker–Planck equation. In other words,
we will show that it is possible to bypass the stochastic assumptions involved
in the phenomenological description of Brownian motion as described in
Section 1. Starting from the Liouville equation governing the evolution of
the phase space density for one heavy Brownian particle of mass M in a bath
of small particles of mass m, the fluid variables will be explicitly eliminated
via an expansion in powers of the square root of the mass ratio

√

m/M
to eventually obtain the Fokker–Planck equation for particle B only. The
following elegant derivation for continuous potentials is due to Cukier and
Deutch [7]. The corresponding derivation for the hard sphere potential can
be found in [8].

The system is characterized by its phase space distribution function

fN+1 ≡ fN+1(r1,p1, . . . , rN ,pN ,R,P ; t) ,

which evolves according to the Liouville equation

(

∂

∂t
+ L

)

fN+1 = 0 . (3.1)

The notation ri,pi stands as usual for position and momentum of particle i.
The Liouville operator L splits into two differential operators involving bath
and particle B variables respectively, L = Lb + LB, defined as:

Lb =
∑

i

(

pi

m
· ∂

∂ri
+ F i ·

∂

∂pi

)

,

LB =
P

M
· ∂

∂R
+ F · ∂

∂P
, (3.2)

where F i and F denotes the forces acting on particle i and on particle
B respectively. The natural “smallness” parameter in the problem is ε =
(m/M)1/2 and the Brownian limit is defined as ε → 0. Introducing a scaled
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momentum of particle B as p = εP , the kinetic energy of the latter becomes
P 2/M = p2/m and the B particle part of the Liouville operator scales as:

LB = ε

(

p

m
· ∂

∂R
+ F · ∂

∂p

)

≡ εL′
B . (3.3)

Our aim is to obtain a closed equation for the B particle distribution func-
tion, fB, which is obtained by integrating the phase-space density over all
bath variables:

fB(R,p;t) =

∫

drNdpN fN+1(r1,p1, . . . , rN ,pN ,R,p;t) . (3.4)

Integrating the Liouville equation (3.1) over bath variables, one arrives at
the evolution equation for fB:

∂

∂t
fB = −ε

p

m
· ∂

∂R
fB − ε

∫

drNdpN F · ∂

∂p
fN+1 . (3.5)

If we now apply the multiple time-scale analysis in the ε → 0 limit, the
distribution functions are replaced by auxiliary distributions depending on
several time variables t0, t1, t2, . . . and expanded in powers of ε. The Liouville
equation and the reduced equation (3.5) are thus replaced by

(

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . .

)

f ε
N+1 = −

(

Lb + ε L′
B

)

f ε
N+1 , (3.6)

(

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ . . .

)

f ε
B = −ε

p

m
· ∂

∂R
f ε

B−ε

∫

drNdpN F · ∂

∂p
f ε

N+1 .

(3.7)
To zeroth order, Eq. (3.7) yields

∂

∂t0
f

(0)
B = 0 , (3.8)

so that f
(0)
B is independent of t0. Now let f eq

N (1, . . . ,N |R) denote the equi-
librium distribution of the bath in the “external” field of particle B fixed at
R. The short hand notation i ≡ (ri,pi) has been used. By definition, this
function verifies Lb f eq

N = 0, so that a solution of Eq. (3.6) to zeroth order,

(

∂

∂t0
+ Lb

)

f
(0)
N+1 = 0 (3.9)

is simply

f
(0)
N+1(1, . . . , N, {R,p}; t1, t2) = f

(0)
B (R,p; t1, t2) · f eq

N (1, . . . ,N |R) . (3.10)
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Now we shall assume that the initial condition is entirely contained in the
zero order terms:

fB(R,p; t0 = 0, t1, t2) = f
(0)
B (R,p; t1, t2) ,

f
(k)
B (R,p; t0 = 0, t1, t2) = 0, k ≥ 1 . (3.11)

To first order, Eqs (3.6), (3.7) reduce to

∂

∂t0
f

(1)
N+1 +

∂

∂t1
f

(0)
N+1 + Lbf

(1)
N+1 + L′

Bf
(0)
N+1 = 0 ,

∂

∂t0
f

(1)
B +

∂

∂t1
f

(0)
B = −

∫

drNdpN L′
Bf

(0)
N+1 . (3.12)

Now according to (3.8) and (3.10), f
(0)
B and f

(0)
N+1 are independent of t0.

Hence, in order to eliminate secular growth of f
(1)
B , one must impose

∂

∂t1
f

(0)
B +

∫

drNdpN L′
Bf

(0)
N+1 = 0 , (3.13)

which implies ∂
∂t0

f
(1)
B = 0. According to the initial condition (3.11), we

arrive at the conclusion that f
(1)
B identically vanishes, f

(1)
B ≡ 0. Moreover,

using Eq. (3.10), (3.13) yields
(

∂

∂t1
+

p

m
· ∂

∂R

)

f
(0)
B (R,p; t1, t2) = 0 , (3.14)

and particle B evolves according to free motion on the t1 time scale. Dis-
sipation is thus expected to occur on the next time scale, characterized by
the t2 variable.

On the other hand, the first order correction f
(1)
N+1 can be obtained from

Eq. (3.12), since
(

∂

∂t0
+ Lb

)

f
(1)
N+1 = −

(

∂

∂t1
+ L′

B

)

f
(0)
N+1

= −F ·
{

βp

m
+

∂

∂p

}

f
(0)
B f eq

N , (3.15)

where Eq. (3.14) has been used to obtain the second equality. This equation
can be formally solved to give

f
(1)
N+1(1, . . . , N, {R,p}; t0, t1, t2)

= −
t0
∫

0

ds exp{−sLb} F ·
{

βp

m
+

∂

∂p

}

f
(0)
B f eq

N . (3.16)
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To second order, Eq. (3.7) yields

∂

∂t0
f

(2)
B +

∂

∂t2
f

(0)
B = −

∫

drNdpN L′
Bf

(1)
N+1 . (3.17)

Again, secular growth is avoided provided ∂
∂t0

f
(2)
B = 0. Using the expression

of f
(1)
N+1 obtained in Eq. (3.16), we are left with a closed equation for f

(0)
B

∂

∂t2
f

(0)
B = lim

t0→∞
〈L′

B

t0
∫

0

ds e−sLbF 〉bath ·
{

βp

m
+

∂

∂p

}

f
(0)
B ,

=
1

3

∞
∫

0

ds 〈F · F (−s)〉bath
∂

∂p
·
{

βp

m
+

∂

∂p

}

f
(0)
B , (3.18)

where the angular brackets denote an average over the bath variables, in
equilibrium with particle B fixed at R. In going from the first to the second
line, the isotropy of the equilibrium state of the bath has been used.

We can now gather results of order 1 and 2, embodied in Eqs. (3.14) and
(3.18). Returning to the original variable P and using

∂

∂t
fB(R,P ; t) =

(

ε
∂

∂t1
+ ε2 ∂

∂t2

)

f
(0)
B (R,P ; t1, t2)|t1=εt;t2=ε2t + O(ε3)

(3.19)
one is left with the familiar Fokker–Planck equation for fB

(

∂

∂t
+

P

M
· ∂

∂R

)

fB(R,P ; t) = ζ
∂

∂P
·
(

P + MkBT
∂

∂P

)

fB(R,P ; t) ,

(3.20)
where the friction coefficient is explicitly given by the time integral of the
autocorrelation function of the force F exerted by the bath on the fixed B
particle:

ζ =
1

3MkBT

∞
∫

0

ds 〈F · F (−s)〉bath . (3.21)

3.2. Interacting Brownian particles

This analysis can be generalized to any number n of suspended Brownian
particles [9, 10]. This leads to a generalized Fokker–Planck equation, in the
form

(

∂

∂t
+

n
∑

a=1

[

V a ·
∂

∂Ra
+

1

M

(

〈F (Ra; t)〉bath +

n
∑

b=1

F ab

)

· ∂

∂V a

])



From a Stochastic to a Macroscopic... 1561

×fn(R1,V 1, . . . ,Rn,V n; t)

=
n
∑

a=1

n
∑

b=1

¯̄ζ(a, b) :
∂

∂V a

(

∂

∂V b
+

kBT

M
V b

)

fn(R1,V 1, . . . ,Rn,V n; t) .

(3.22)

Compared to (1.3), this equation involves two new ingredients. First, the

friction is now characterized by a matrix of tensors ¯̄ζ(a, b), defined as

¯̄ζdyn(a, b) =
1

MkBT

∞
∫

0

ds 〈δF (Ra; 0) · δF (Rb;−s)〉bath , (3.23)

where δF (Ra; s) is the fluctuation of the force acting at time s on particle
a, all B particles being fixed at R1, . . . ,Rn. Secondly, apart from any di-
rect interaction force F ab, the Brownian particles interact through a fluid
induced depletion force, 〈F (Ra; t)〉bath, occuring because of the anisotropy
of the inhomogeous fluid density around the B particles. The multiple time-
scale analysis leads very naturally to these depletion effects [10], which are
traditionnally introduced on the basis of thermodynamic, entropic argu-
ments [11]. In this analysis, these effects are shown to be the driving force

of Brownian particles’ motion, on a specific time scale t ∼ Σ/
√

kBT/M
(corresponding to the t1 variable of the previous analysis). In the case of
hard spheres, an explicit expression for the depletion force can be found in
Ref. [10].

4. Is Brownian motion a markov process ?

This question may sound quite iconoclastic in view of one century of suc-
cess of the stochastic description. Moreover, we have shown in the previous
section that such a description can be derived from first principles in the
limit where the Brownian particle is much heavier than the fluid particles.
However, an interesting question is: is this the correct limit to describe the
motion of suspended particles as observed by Brown and Perrin ? In other
words, is the time-scale separation, which is crucial to validate the markov
property, correct for suspensions of Brownian particles ?

The answer is in fact negative for typical experimental systems, as al-
ready pointed out by many authors [12–15], but already by Lorentz in
1921 [16]. A straightforward calculation shows indeed that the criterium
of two widely separated time scales between the relaxation process of the
fluid variables and that of the B particle variables, is not met for systems of
suspended particles. Let us recall shortly the argument. As noticed above,
the velocity of particle B relaxes on a time-scale τV ∼ ζ−1. If Stokes’ law
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is assumed, this leads to τV ∼ M/ηΣ, where η is the viscosity of the fluid,
and Σ the B particle diameter. On the other hand, a typical hydrodynamic
time of the fluid is of order τf ∼ Σ2/(η/ρ), which is the time for a shear
perturbation to propagate over the distance Σ. These rough estimates give
τf/τV ∼ ρ/ρB , so that the assumption of a wide time-scale separation is
only justified if this ratio is small. This condition was indeed met in the
previous derivation of the Fokker–Planck equation of Section 3, since the
small mass ratio limit was taken while at the same time the diameters of

the particles σ and Σ were kept fixed (thus corresponding to the ρ/ρB ≪ 1
limit). However, this condition is unfortunately far from the experimental
situation, where the mass density ratio ρ/ρB is taken rather close to unity to
avoid sedimentation of particle B. In this case, the fluid dynamics contains
slowly decaying modes, which relax on the same time scale as the velocity
of the B particle. In other words, non-Markovian effects are expected and
the validity of the Fokker–Planck or Langevin equations becomes doubtful.
Note however that the Smoluchowski equation, describing the spatial evo-
lution of the B particle, is a priori not affected by these arguments, since
the position of the B particle relaxes on a time-scale much longer than the
velocity (or fluid) relaxation time [14].

Several attempts have been made to overcome these difficulties and de-
termine the dynamical evolution in the general case, that is for any (finite)
ρ/ρB [12,13,17]. The main idea underlying all these works is that the slowly
decaying fluid modes result from the momentum conservation law for the
fluid particles. A correct description should therefore treat both fluid and B
particle variables on the same level. This can be done for example by using
fluctuating hydrodynamics for the fluid motion, with appropriate boundary
conditions on the surface of the suspended B particle [12]. These approaches
lead to a non-Markovian Langevin equation, involving the time-dependent
friction coefficient ζ(t):

M
dV

dt
= −M

t
∫

0

dτ ζ(t − τ) V (τ) + F̃ (t) . (4.1)

Instead, our approach has been done at a fully microscopic description,
treating both the B particle and the fluid at the same level. This approach
allows to clarify and provide the fundamental basis for the phenomenological
descriptions. Starting from a microscopic description of the system in the
small mass ratio limit, m

M ≪ 1, supplemented by the condition of equivalent

mass densities, ρ ∼ ρB, we have shown that the thermalization of the Brow-
nian particle is indeed not a Markov process and thus not governed by a
Fokker–Planck equation.
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The results are the following. Two important time-scales emerge from
the dynamics:

(1) on the first time scale, t ∼ 1/ζ, the Brownian particle “does not
move”, whereas its velocity distribution relaxes in a thermalization process.
A closed equation (i.e. free of any fluid variable) controlling the relaxation
of the B particle distribution function is found, which does not take the
Fokker–Planck form. In contradistinction to the latter, the reduced equation
controlling thermalization is found to be non-local both in time and velocity
space, owing to correlated recollision events between the fluid and particle B.
The latter reads:

∂

∂t
fB(B; t) =

t
∫

0

ds ζ(t − s)
∂

∂V

× exp







−
t
∫

s

ds′ LB(s′)







(

V +
kBT

M

∂

∂V

)

fB(B; s) (4.2)

with LB = ∂
∂V

· F(B; t), F(B; t) being the dynamical friction force due to

the fluid, acting on the B particle during its relaxation (see Eqs. (65)–(66) of
Ref. [18] for a complete definition). In Eq. (4.2), ζ(t) is the time-dependent
friction coefficient, defined as:

ζ(t) =
1

3MkBT
〈F · F (−t)〉bath . (4.3)

An important point is that, in spite of this complex dynamical behaviour,
the diffusion constant of B is still given by the Stokes-Einstein relation (1.5).

The presence of memory terms in (4.2) result from the building up of
the friction force by the reaction of the suspending gas to the motion of
B. Indeed, the reaction of the fluid to the motion of the Brownian particle
takes a finite time to occur (compared to the relaxation time of the velocity
of particle B), and the friction force due to the fluid is accordingly displaced
in time and velocity space. Moreover, on can show that this non-markovian
effect leads to a “slow” thermalization, algebraic in time, in contradistinction
to the exponentially decay predicted by the Langevin equation. This non
exponential behaviour is in complete agreement with the predictions of the
fluctuating hydrodynamics approaches [12, 17]. Numerical simulations of
colloidal suspensions, based on fluctuating Lattice Bolztmann techniques
[19], do confirm the presence of the so-called “long-time tails” in the velocity
autocorrelation function of the Brownian particles. Moreover these algebraic
decays has been observed experimentally in the “short-time” dynamics (i.e.
on the scale of the relaxation of the velocity of the Brownian particles)
of colloidal suspensions, the most recent experiments using Diffusing Wave
Spectroscopy (DWS) techniques [20].
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(2) on the second time scale, t ∼ Σ2/D, spatial diffusion takes place
and is still described by the Smoluchowski equation, i.e. no memory effect
appears and the corresponding process is markovian.

In other words, the spatial relaxation of the Brownian particle is a
Markov process, while the thermalization of the velocity of the Brownian
particle, which occurs on a shorter time scale, is not. We refer to Ref. [18]
for further details and comments.
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