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A new “experimental” way of showing self-similarity or scale invariance
of the solutions of one parameter, logistic map is presented. Depending
on the value of parameter (R) four different solutions were obtained and
analysed. Only for the chaotic region (R = 4) the obtained solutions were
truly scale invariant. Some of the analytical operations commonly used in
analysis of iterative maps were also discussed, and suitably alterated, were
necessary.

PACS numbers: 87.10.+e

1. Introduction

For the realistic modelling of hierarchical structures like fractals and
chaotic atractors, we need functional equations that generate so called self-
similar solutions, i.e. solutions which are scale invariant. This is a very
natural condition, especially for nonlinear phenomena of a fractal nature,
where the self-similarity is a generic property of [1]. Consider, for example,
a semilinear diffusion equation of a form [2]

∂U

∂t
−

∂2U

∂x2
− |U |p−1 · U = 0 , (1)

where U is real-valued function and p > 1. This equation has the scaling
property, that is, if U solves Eq. (1) near (x, t) = (0, 0), then so do the
rescaled functions

Uλ(x, t) = λ2βU(λx, λ2t) , β =
1

p − 1
,
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for each λ > 0. If a solution U is invariant under this scaling, i.e.,

U(x, t) = Uλ(x, t) for λ > 0 , (2)

U is called a self-similar solution. There are at least two types of self-
similar solutions. If U(x, t) solves Eq. (1) in R × (−∞, 0) and satisfies the
scaling invariancy (2) for all x ∈ Rn, t ∈ (−∞, 0), we say U is a backward
self-similar solution to Eq. (1). Similarly, if U(x, t) solves Eq. (1) in R ×
(0,+∞) and has the property (2), U(x, t) is called a forward self-similar
solution to Eq. (1).

Another, slightly different, aspect of self-similarity of 1-D solutions is
shown by a homogeneous function of order n

F (λx) = λnF (x) , (3)

which provides the power law scaling for

F (x) ≡ xn (4)

and, more complex scaling [3], when

F (x) ≡ xnf

(

log x

log λ

)

, (5)

where f(1 + x) = f(x), i.e. f is a periodic function of period 1.
In this paper we would like to show that the iterative logistic map of a

form
xt+1 = Rxt(1 − xt) , (6)

where xt ∈ (0, 1), R is a constant, and t ∈ N , produces self-similar solutions
as well. The way we are going to show it slightly differs from the one used
in differential equations. Namely, instead of proving it, we will demonstrate
it, in a way, experimentally, based on a suitably chosen definition of self-
similarity.

2. The definitions of self-similarity

Although we will restrict our attention only to the logistic map (6), the
whole analysis can be use for the general class of time series. To fulfil our
task we need, at the moment, the self-similarity to be defined in a more
descriptive way.

One of the most useful definitions says [4]: “Self-similar sets look the
same, no matter the scale or resolution”. Expressing this in a more rigorous
way, we can say that self-similar sets are scale invariant [5]. At least one point



On the “Experimental” Way of Showing Self-Similarity 1567

Fig. 1. Self-similarity of the logistic map in the pre-chaotic region. A1 — Pseudo–

phase portrait of Eq. (6) for R = 3.05. Two–point attractor of a time series

generated from map (6) for R = 3.05 and ONE, arbitrarily chosen initial condition

is marked as 1 and 2; it belongs to the parabola whose formula is given by the

right side of the map (6); A2 — The time series generated from the map (6) for

R = 3.05; B1 — Second iteration of the quadratic transformation (6) for R = 3.47

of 1000 equally spaced initial conditions. The content of squares marked as I, II

and III are similar to the parabola shown in Fig. 1 A1. Attractor of a time series

generated from map (6) for one arbitrarily chosen initial condition is a set of four

points marked as 1, 2, 3 and 4; B2 — The time series generated from the map (6)

for R = 3.47.

in the above description needs clarification, namely the basis for expressions
“the same” or “invariant”. There are a few measures to choose from in this
respect. First, by “eye” comparison: no matter what the scale, the same
impression is generated (c.f. Hokkusai “The wave”). Second, very close
values for constant R can be obtained for a rescaled time series as compared
to the original one. A supporting measure to R value could be the power
spectrum or Liapunov exponents [6]. It should be emphasised however, that
we cannot expect from any of the above measures to be exactly the same
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for none of pairs of original and rescaled sets, except for some trivial cases
(see the next Section).

The mathematical precision in showing self-similarity of one-dimensional
maps is restricted to the case of their period-doubling route to chaos. The
universal nature of period-doubling, or Feigenbaum sequence, can be under-
stood through the renormalization group on the space of functions with a
quadratic maximum [4]. To demonstrate one of these self-similarities, let us
compare the behaviour of solution to Eq. (6) for two values of parameter R,
namely R = 3.05 and R = 3.47 (see Fig. 1). After some renormalization
procedure, i.e. rescaling and inverting, we can conclude that the previous
(original) picture can be obtained from the next generation of the “growing
structure” produced by the logistic map (c.f. Fig. 2).

Fig. 2. The difference between rescaled curves in windows I, II and III in Fig. 1 B1

and parabola shown in Fig. 1 A1 — marked by bold line.

The differences between the first period doubling parabola and three
of rescaled ones of the next period doubling is quite small, confirming the
self-similarity of Eq. (6) in the pre-chaotic region (R = 3.05). Note that
the parabola consists of only few points if one initial condition is taken (for
details see Concluding Remarks). The rescaling factor for the transition from
period of length 2 to period of length 4 is equal to −(2+2/R1) = −(2+γ) =
−2.72, where γ is the golden mean [4] (the minus accounts for the upside-
down orientation). The more spectacular evidence of self-similarity in the
pre-chaotic region is obtained by drawing the bifurcation diagram of the
cascade of solutions to Eq. (6) (see Fig. 3). In the next section we would like
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Fig. 3. The bifurcation diagram of the logistic map (6). R = 3.05 and R = 3.47,

analysed in Fig. 1, lie after two bifurcation points.

to show the self-similarity in a more practical and direct way for the whole
range of R ∈ [0, 4] based on the measures mentioned above.

3. Results and discussion

As it was shown in the Introduction, self-similarity of a time series means
that some property L(t) measured at scale t is proportional to that property
measured at scale “λt”

L(λt) = kL(t) , (7)

where k = λdT −dF is a proportionality parameter [7]. For iterative maps the
relation (7) holds for t, λ ∈ N . Our further analysis will go on the basis
of Eq. (7) and the fact that the output generated by the map (6) can be
treated as an experimental data. Consequently, we will select every n-th
(odd or even) point of an original set, and draw it versus time as it were
“measured” with different resolution. We will do it for different values of R
along with the graphs of their measures (R, power spectrum, and k). When
we compare some average measures of the two time series of the same length,
like the area under the curve, power spectrum on logistic parameter R, we
can see less difference when k tends to 1. We will start with R ∈ (0, 1] for,
as it was mentioned in the previous chapter, the map (6) is also defined for
that region.

When R ∈ (0, 1] the logistic map (6) generates a time series which mono-
tonically reaches its stationary solution xs = 0. Figure 4A shows first 14
iterations of the map (6) together with the time series created by choosing
every second (frequency of probing d = 2), fifth (d = 5), and tenth (d = 10)
point of the original set. It can be seen that the general pattern is pre-
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served in all cases, showing slight differences in the speed of approaching
the stationary solution. The value of logistic parameter R has been chosen
as a first measure of self-similarity. The time series has been treated as ex-
perimental data which we want to fit with the map (6). We have used the
standard nonlinear regression (performed numerically), namely minimaliza-
tion of the sum of square differences between data and time series generated
from Eq. (6) [6]. For all series R appeared to be the same, and equal to 0.5.
Self-similarity has also been confirmed through the power spectrum and the
area under the curve (integral of a time series) (see Figs 4B and 4C).

The estimation of Liapunov exponent requires a wider comment. Accord-
ing to the definition given in [6], Liapunov exponent measures the average
increase of initial condition error ǫ in propagation of the time series. It is
equal to the average divergence of two trajectories starting at the points x0

and x0 + ǫ, which can be expressed as the sum of differences calculated at
every iteration step:

λ = lim
N→∞

1

N

N−1
∑

i=0

|x′

i − xi| , (8)

where x′

i and xi are the i-th iterations of logistic map of two trajectories

Fig. 4. Self-similarity of the logistic map (6) for R = 0.5. A — first iterations of

logistic map (6) for R = 0.5 and x0 = 0.01 together with time series formed by

choosing every second (d = 2), fifth (d = 5) and tenth point (d = 10) of the original

set. All series were fitted with the map (6) values of R found by nonlinear regression

are given on curves; B — power spectrum of time series presented fragmentarily

in Fig. 4A, hardly distinguishable from each other; C — area under the curves of

time series shown fragmentarily in Fig. 4A (for 4000 iterations). For d > 10 area

takes a constant value.
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Fig. 5. Self-similarity of the logistic map (6) for R = 1.5. A — first iterations of

logistic map (6) for R = 1.5 and x0 = 0.01 together with time series formed by

choosing every second (d = 2), fifth (d = 5) and tenth point (d = 10) of the original

set. All series were fitted with map (6) values of R found by nonlinear regression

have been given on curves; B — power spectrum of time series presented fragmen-

tarily in Fig. 5A, hardly distinguishable from each other; the highest amplitude

occurs in low frequency for d = 1; C – area under the curves for time series shown

fragmentarily in Fig. 5A (for 4000 iterations).

starting at x0 + ǫ and x0, respectively. Because we do not consider here
an exponential growth of error, which is usually present in the formula of
Liapunov exponent [6], we will henceforth call λ a divergence parameter.
For all series presented in Fig. 4A the value of λ has been found to be zero.
On the basis of the above analysis one can conclude that the time series
generated from the map (6) when 0 < R ≤ 1 is self-similar in a trivial way.
The time series reaches zero value very quickly and the problem is reduced
to similar behaviour of a constant, zero function on different time scales.

The second case considers the range of R ∈ (1, 3]. Figure 5A shows
first iterations of map (6) for R = 1.5 together with time series generated
by picking every 2nd, 5th and 10th point of the original set. All series are
increasing, however, the difference in time of reaching the plateau value can
be observed. The three generated sets were subjected to a fitting procedure
by map (6). Logistic parameter R is equal to 1.5 for all series. Fourier
transform, the next measure of self-similarity, shows minute difference in
the amplitude only at low frequency (see Fig. 5B). Values of the area under
the curve change insignificantly with d (Fig. 5C). Divergence parameter,
defined by Eq. (8), is close to zero for all cases. The above analysis shows
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that similarly to the previous case, the time series produced by the logistic
map is trivially self-similar in the range of R ∈ (1, 3]. When R ∈ (3, 3.57),

Fig. 6. Self-similarity of the logistic map (6) in the pre-chaotic region, for R = 3.4.

A — first iteration of the map (6) for R = 3.4 and x0 = 0.01 together with time

series created by choosing every second (d = 2) and fifth (d = 5) point of original

set. Values of R given in figures were found by fitting presented series with the

map (6), by means of nonlinear regression; B1–B3 — power spectrum of time series

presented fragmentarily in Fig. 6A for d = 1 and d = 5, indistinguishable from each

other. Power spectrum for d = 2 is a zero function; C — area under curves (for

4000 iterations) shown fragmentarily in Fig. 6A.

time series generated from map (6) behaves periodically with period 2n; n
is a natural number increasing with R. At R = 3.57, n reaches infinite value
and that point is considered as the onset of chaos. Using the procedure of
picking every second and fifth point (as described previously) of the time
series generated from map (6) for R = 3.4, we have got series presented in
Fig. 6A. It can be seen that for even values of d a monotonically increasing
function is obtained, while for odd d we get the periodic behaviour similar
to that of original set. “Visual” difference has been confirmed by fitted
value of R, which is equal to 3.4 for d = 2n + 1, and 3.0 for d = 2n. In
Fourier transform spectrum the characteristic peak at the highest frequency
is observed only for odd frequency of probing. The area under the curves
fluctuates around the average value of 3000 (Fig. 6C).

When we identify the scaling factor λ in Eq. (7) as equal to d and L(t)
is an area under the curve, then for odd probing frequency the parameter
k = 1, while for even d, k equals approximately 1.3.

The fourth case considers the range R ∈ [3.57, 4]. We have examined two
values of R, namely R = 3.6, being at the beginning of the chaotic range, and
R = 4.0, where chaos is fully developed. Figure 7A1–A3 presents time series
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Fig. 7. Self-similarity of the logistic map (6) in the chaotic region, for R = 3.6. A1

— first iterations of the map (6) for R = 3.6, x0 = 0.01; A2–A3 — sets obtained

from the series shown partly in Fig.7 A1, by choosing every second (d = 2) and fifth

point (d = 5), respectively. Values of R were found by the standard fitting; A4 —

rescaled A2 series. B1–B3 — power spectrum of time series whose fragments are

presented in Figs. A1–A3, together with “blown-up” substructure; C1–C3 — area

under the curves (for 4000 iterations), presented fragmentarily in Figs. A1–A3;

D — Change of the divergence parameter (equal to the slope) of two trajectories

developed by the map (6) for x0 = 0.01 and x0 = 0.01 + 10−7.

generated from map (6) for R = 3.6 and sets formed by picking its every
second and fifth point. The striking “visual” difference in behaviour for odd
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Fig. 8. Self-similarity of the logistic map (6) in the chaotic region. A1 — Logistic

map (6) iterations for R = 4.0; A2, A3 — time series received from the set shown in

Fig. A1 by picking every second (d = 2) and fifth point (d = 5) of the original set.

Values on figures were found by fitting them with the map (6), using the criterion

of square error minimalization; B1–B3 — power spectrum of time series presented

fragmentarily in Figs A1–A3; C — area under the curves (for 4000 iterations) shown

fragmentarily in Figs A1–A3; D — Increase of the divergence of two trajectories

developed by the map (6) for x0 = 0.01 and x0 = 0.01+10−7. Divergence parameter

λ is equal to the slope of obtained straight line, estimated by linear regression.

Average λ for d = 1, d = 2 and d = 5 is equal to 〈λ〉 = 0.411± 0.005.

and even d is observed and revealed by all measures of self-similarity used.
The logistic parameter fitted by nonlinear regression equals to R = 3.45 for
d even, and 3.6 for odd ones. Time series also differ in the character of their
behaviour: it is more chaotic for odd probing frequency (Fig. 7D). If L in
Eq. (7) is an area under the curve, k = 1 for odd frequency of probing and
k is close to 1.3 for even d values. After linear scaling of series presented in
Fig. 7A2 a new set, similar to the original one (Fig. 7A1), has been obtained
(see Fig. 7A4). The same analysis has been performed for R = 4.0. All
series obtained by rescaling the set generated from map (6) is similar to the
original series, which has been confirmed by all self-similarity measures used
above (Figs 8A–D).
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We would like to emphasise that in the chaotic region we cannot expect
the self-similarity measures to be exactly the same for all series, i.e. the the
original and rescaled ones. The identical values of R, divergence parameter
and the same power spectrum patterns have been obtained only in the region
R ∈ (0, 3.0), where self-similarity takes, more or less, an exact, or better yet,
trivial form. Let us conclude the above results in a table form (Table I).

TABLE I

Self–similarity dependence on parameter R

Range of R 0–1 1–3 3–3.57 3.57–4

self–similarity exact in a exact in a dual i.e. present, and
sense of Eq. 3 sense of Eq. 2 present, and exact in a

exact in a sense of Eq. 2
sense of Eq. 2 for d-odd;
for d-odd; present,
absent for exact in a
d-even sense of Eq. 3

for d-even

4. Final remarks

To start with, let us notice that the iterative map is a very specific math-
ematical object very often confused with the finite difference representations
of differential equations [10]. A full discussion of the above, rather serious
problem is provided elsewhere [9].

We have not been able to show the self-similarity of logistic map solutions
in the similar way as was shown for solutions to Eq. (1), i.e. by substitution.
Instead, we have followed the classical, period-doubling, route to chaos [11],
and shown an “experimental” way to do it. Using the renormalization group
technique we have analysed the properties of the logistic, quadratic trans-
formation, and shown the self-similarity of its geometrical representation,
as it is presented in Fig. 1. The parabola shows the first iteration of a set
of initial conditions (abscissa) so we can treat it as a sort of transient be-
haviour of the system. One should be aware of the fact that the asymptotic
behaviour of time series for R = 3.05 and R = 3.47 is different — for a
single arbitrarily chosen initial condition it consists of two and four points,
respectively. Generally, for the regular and pre-chaotic region the attrac-
tor (shown in a pseudo-phase portrait) consists of finite number of points.
The more chaotic behaviour, the more points belong to the attractor, and
only for R = 4.0, when the chaos is fully developed, it forms a continuous
parabola (see Fig. 9). The fractal dimension dF of a pseudo-phase portraits
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starts, therefore, with the dF = 0 for one point (in a regular region), passes
through fractional values (the portrait consists of finite number of points)
and reaches 1 for R = 4 (continuous parabola). In the light of the above we
would like to rise a question about the possibility of performing the local
analysis of maps [4], which is based, from the very definition, upon the in-
finitesimal calculus. For the map we have fixed ∆t = 1 and one can hardly
see the existence of an infinitesimal distance between two subsequent states
of a system.

Fig. 9. Pseudo-phase portraits of a logistic map for x0 = 0.01 and R = 3.6 (A),

R = 3.8 (B) and R = 4.0 (C). Note their uncontinuous character for R < 4.0.

An “experimental” way of showing the self-similarity of solutions to the
logistic map is based upon looking at the time series with different resolution
and treating new obtained series as experimental data and fitted them with
the map (6). Time series were compared on the basis of R, power spectrum
and divergence parameter.

In the whole range of logistic parameter R solution to map (6) is self-
similar, however, for regular and periodic regions its self-similarity is trivial.

A fractal dimension of a time series generated from the logistic map,
and calculated on the basis of integral scaling in time, has been found to be
approximately equal to 1. It seems to be consistent with a generic property
of maps, which generate only next step from the previous one. The integral
of a map solution scales linearly in time for the whole range of R, however, for
more chaotic behaviour of a time series, a slower increase of area is observed.
If x is identified as ionic current flowing through a narrow channel [9], then a
smaller integral (charge) may indicate that ions meet more obstacles, which
hamper their movement down to the potential difference.

It is worth mentioning that the presented way of demonstrating self-
similarity may also be used in case of stochastic approach to the modelling
of ionic transport through biological cell membranes [11, 12].
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