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Deterministic chaos in a finite chain of coupled damped classical spins
in the presence of external oscillating magnetic field is numerically investi-
gated. The influence of a size of the chain is considered. Various routes to
chaos are found. In some ranges of the control parameters the coexisting
attractors are obtained.
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1. Introduction

Deterministic chaos in spatially extended nonlinear systems was usually
investigated by use of simple models such as coupled maps lattices [1]. Var-
ious kinds of behaviour were observed: periodic, quasiperiodic and chaotic
regimes, the intermittency, the coexistence of regular and chaotic regions,
domain-like structures etc. The maps chosen for such investigations were
usually of the mathematical character and they were not derived from the
equations of motion of real systems. Ordinary differential equations (ODEs)
seem to be more appropriate for the description of objects in real lattices.
Such an aproach has been applied to various systems of coupled physical
objects, e.g. Umberger et al. [2] considered the one-dimensional lattice of
dissipative forced Duffing oscillators, and Geist and Lauterborn [3] investi-
gated the dynamics of a periodically driven damped Toda chain.
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In our earlier paper [4] we investigated another nonlinear spatially ex-
tended system, namely, the one-dimensional system of N=100 classical
Heisenberg spins in uniaxial anisotropy field with the presence of damp-
ing and external oscillating magnetic field. We obtained a rich variety of
attractors as the control parameter (an external field amplitude) was varied.

Here we shall present some results on the influence of the size of the
chain on its dynamics [5].

2. Equations of motion and method of calculation

We consider a one-dimensional chain of N classical damped spins Si (i =
1, 2, . . . , N) of constant length S, with uniaxial anisotropy, in the presence
of external oscillating magnetic field B (t) = B0 cos (ω0t)ex. This system is
described by the Hamiltonian:

H = −J

N−1∑

i=1

SiSi+1 − κ

N∑

i=1

(Sz
i )2 − B

N−1∑

i=1

Sx
i , (1)

where J and κ are ferromagnetic exchange and anisotropy constants, respec-
tively. The time evolution of the system is described by the Landau–Lifshitz
equation of motion with the Landau damping term

δSi/δt = Si × Bi,ef − (λ/S) Si × (Si × Bi,ef ) , (2)

where Bi,ef = −δH/δSi is an effective magnetic field and λ — damping
coefficient. In the spherical coordinate system, with time t rescaled by
(t/KS) and new parameters defined as follows ε = J/K, hx = B0/KS,
we can transform the equation (2) to a system of N coupled pairs of ordi-
nary differential equations. These equations were solved numerically using
the predictor-corrector method. Damping coefficient λ = 0.1 was assumed.

We chose initial conditions natural from the physical point of view: it
was a state of the homogeneously magnetized chain with the spherical angles
θi = θ0 , φi = φ0 (i = 1, 2 . . . ,N) with a small random noise of an amplitude
equal to 0.05. Most of the calculations were concerned with two initial states:
magnetization along the easy axis z (θ0 = φ0 = 0) and magnetization along
the x-axis (θ0 = π/2, φ0 = 0). Other values of θ0, φ0 and also the noise
of much greater amplitudes did not yield any qualitatively different results.
Periodic boundary conditions are used.

We observe the system dynamics stroboscopically with time-step equal
to the period of the external field oscillation T = 2π/ω0.
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3. Results

It is reasonable to present very shortly the main results obtained for
the chain of 100 spins published in Ref. [4]. They are summarized by the
Fig. 1(a), where ranges of existence of various types of solutions are depicted.

Fig. 1. Types of attractors for a chain of (a) N = 100 spins and (b) N = 25

spins. Upper rows correspond to the initial condition with magnetization along

the x-axis and the lower — with magnetization along the z-axis. P1, P2 means

attractors periodic and double-periodic. QP2, QP3 — attractors quasi-periodic on

two- and three-dimensional tori. PHL — phase-locked, CH — Chaotic, HOM —

homogeneous, DOM — domain-like, MOD — modulated, SOL — with solitons.

The chain with N = 50 spins exhibits basically the same sequence of
attractors as that with N = 100 and only the interval of hx for chaotic
regime shrinks a little.
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On the other hand, it is reasonable also to present the dynamics of a
single spin under the same condition as for the rest of our calculations:
the spin evolves periodically for all values of the external field amplitude
except the interval 1.465 < hx < 1.775, where quasiperiodic motion on a
two-dimensional torus T 2 exists.

The chain of N = 5 spins exhibits time behaviour similar to that of a
single spin. The following sequence of motions is observed:

— for hx < 1.385 — periodic in time with homogeneous spatial structure,
— for 1.385 < hx < 1.4 — periodic with modulated spatial structure,
— for 1.4 < hx < 1.78 — quasiperiodic on a two dimensional torus T 2

with modulated spatial structure,
— for 1.78 < hx < 1.802 — intermittency,
— for hx > 1.802 — periodic with homogeneous spatial structure.
Transition from quasiperiodic to periodic motion by intermittency is the

main difference if compared with the single spin. However, the chains of
N = 4 and N = 6 spins do not exhibit such an intermittent transition and
all the attractors are of homogeneous spatial structure. The main result
obtained for short chains is the appearance of only one kind attractor for
one set of parameters (instead of two different attractors observed for various
initial conditions (θ0 = 0 and θ0 = π/2) in the case of longer chains). The
domain structure cannot appear in such a short chain, therefore, the spatial
structure which we observe is homogeneous or modulated.

The most interesting dynamics of the chain with N = 25 has some
features of the long chains and some of the chain with N = 5 spins. Fig. 1(b)
depicts the types of attractors observed for the chain of N = 25 spins.

We shall first describe a more interesting case with the initial condition
θ0 = π/2, φ0 = 0, when the spins are “frustrated” at the first moment. For
weak driving amplitudes hx < 0.8 we get the time period-1 behaviour with
the spatial domain-like structure. For 0.8 < hx < 0.875 we still observe the
domain structure but the spins evolve quasiperiodically (Fig. 2(a)), which
corresponds to a trajectory that covers uniformly two-dimensional torus T 2.
The trajectories in subspaces corresponding to different spins are slightly
different in shape (e.g. Fig. 2(b)), however, the power spectra for all spins
are almost identical. Fig. 2(c) presents the power spectrum of the time
series of cos θi with 213 time steps (equal to T0/8). Two incommensurate
frequencies are visible: the first corresponds to the frequency of the external
field ω0 and the second ω1 the value of which depends on the value of hx (e.g.
for hx = 0.825: ω1 = 0.054ω0). Their linear combinations are also observed.
For 0.875 < hx < 0.901 the trajectories of spins bifurcate from the torus T 2

to the two-dimensional double torus 2T 2 (Fig. 3(a)) and subharmonics ω1/2
appear in the power spectrum (Fig. 3(b)). The domain-like spatial structure
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Fig. 2. Quasiperiodic motion at hx = 0.825. (a) Plot of cos θ and φ for 850 < n <

1450 (600 profiles superimposed); (b) Poincare sections for spin i = 5; (c) power

spectrum of cos θ.

Fig. 3. Quasiperiodic motion on doubled torus at hx = 0.9. (a) Poincare section;

(b) corresponding power spectrum of cos θ.
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Fig. 4. Periodic motion on a phase-locked torus at hx = 0.91: Poincare section of

the trajectory of one spin.

still exists. A little higher field amplitude causes the system to evolve on
the torus T 2 again. Further increase of hx (0.909 < hx < 0.95) leads to
the complex system with coexisting attractors. For the same values of hx

and only the noise in the initial conditions changed slightly, three types of
attractors can be found: quasiperiodic tori QP2 (the trajectory covers the
two-dimensional torus), phase-locked tori P21 and P15 (two fundamental
frequencies in the power spectrum are locked in the ratio ω1/ω0 = 21 and 15
(Fig. (4)), respectively, and chaotic. Starting from one initial condition with
fixed values of all the parameters and changing only the small noise one can
enter the basin of a qualitatively different attractor. We must emphasise
here that these small differences in initial conditions are finite (two orders
lower than the values of angles). The sensitivity to the initial conditions we
are talking about corresponds to crossing over the basins of attraction and
should not be mistaken with the sensitivity to the initial conditions that
characterizes chaotic motion. The situation becomes more clear when one
starts with one initial condition and increase gradually hx. One can observe
e.g. the transition to chaos from torus T 2 via phase-locked torus (see Ref. [6]).
Fig. 5 presents a destabilizaed torus T 2 obtained for hx = 0.92: its Poincare
section (Fig. 5(a)), power spectrum (Fig. 5(b)), and exponential divergence
of two initially close trajectories (Fig. 5(c)). The last figure enables us to
estimate the value of the maximal Lyapunov exponent to λ = 0.11. We
calculated also the correlation dimension [6] of obtained attractors. The
calculations performed in the subspace of the phase space corresponding to
10 spins give the increase from Dc = 2 for tori T 2 at hx < 0.905 to Dc = 2.7
for the strange attractor at hx = 0.92 and Dc = 6.7 at hx = 1.0. The
domain-like spatial structure is still observed but it evolves irregularly. As
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Fig. 5. Chaotic motion at hx = 0.9. (a) Poincare section for one spin; (b) corre-

sponding power spectrum of cos θ; (c) divergence of two initially close trajectories.

one goes further from the transition point, irregularity becomes stronger.
Although the chaotic behaviour is observed for 0.91 < hx < 1.795, the
periodic and quasiperiodic windows can be found. For 1.04 < hx < 1.39
there is the period-1 in time and homogeneous in space window and for
1.48 < hx < 1.55 there is quasiperiodic window with a domain spatial
structure.

Now, let us describe the route from a chaotic to periodic regime for higher
values of the external field amplitude. Figures 6 and 7 present Poincare
sections (Figs. 6(a) and 7(a)), power spectra (Figs. 6(b) and 7(b)), and
divergence of initially close trajectories (Figs. 6(c) and 7(c)) for the chaotic
regime (at hx = 1.77) and quasiperiodic one (at hx = 1.8 — just above the
transition point), respectively. The value of the maximal Lyapunov exponent
at hx = 1.77 can be estimated from Fig. 6(c) as equal to λ = 0.23 and the
correlation dimension of the attractor considered is Dc = 6.9. The results
indicate that the motion at hx = 1.77 corresponds to the chaotic attractor.
On the other hand, at hx = 1.8 one finds slower than exponential (linear or,
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Fig. 6. Chaotic motion at hx = 1.77. (a)–(c) — the same as for Fig. 5

most probably, power) divergence of initially close trajectories (Fig. 7(c))
which corresponds to the maximal Lyapunov exponent λ = 0.0. In the
power spectrum in Fig. 7(a) one can find three incommensurate frequencies:
ω0, ω1 = 0.008ω0 and ω2 = 0.042ω0. The calculated correlation dimension
equals to Dc = 3.0. These facts let us classify the attractor appearing at
hx = 1.8 as a three-dimensional torus T 3. Fig. 7(d) presents the snapshot of
the spatial structure of the quasiperiodic attractor — it is a wave propagating
along the chain.

For 1.93 < hx < 1.963 system evolves quasiperiodically on a two-dimen-
sional torus T 2 with the spatially modulated structure.

For 1.963 < hx < 1.975 the period-2 evolution with spatially modulated
structure is observed, and for hx > 1.975 one enters the period-1, homoge-
neous in space regime. Stable, moving solitons observed for N = 100 in this
case [4] are very rare.

What seems to be especially interesting in the dynamics of a chain of
N = 25 spins is that similarly as for N = 100 the transition from the regular
behaviour to chaos takes place in a different way than the transition from
chaos to the regular behaviour for higher values of hx.
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Fig. 7. Quasiperiodic motion on three-dimensional torus at hx = 1.8. (a)–(c) —

the same as in Fig.5; (d) snapshot of the attractor, indicated direction of motion

of a structure.

Situation for the initial condition θ0 = φ0 = 0 differs from that described
above mainly for smaller values of hx. For hx < 1.395 the period-1, spa-
tially homogeneous attractor appears, for hx = 1.395 the transition to the
quasiperiodic QP2 regime with spatially modulated structure takes place,
and then destabilization of two-dimensional torus T 2 leads directly to the
chaotic regime. Inside the chaotic region one quasiperiodic QP2 window
exists. Scenario of the transition from chaos to the regular behaviour for
higher field amplitudes is the same as for the case considered previously.
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4. Conclusions

Our results show that the size of the system of spins has an important
influence on the dynamics of this system. Due to the periodic boundary
conditions, very short chains exhibits basically the quasiperiodic route to
chaos, although intermittency also appears, but only in a very narrow range
of control parameters. The domain structure cannot appear in such a short
chains, therefore, the spatial structures are usually homogeneous or slightly
modulated.

On the other hand, the longer chains exhibit behaviour similar to that
found in Ref. [6] for the chain of 100 spins. The most interesting case of
the chain of 25 spins shows some features of very short chains and some of
the long chains. In some ranges of the control parameters the very complex
behaviour is obtained with coexisting attractors. Starting from one set of
system parameters and changing only the small noise in initial conditions
one enters the basin of a qualitatively different attractor. The interesting
property in dynamics of the system is that the transition from the regular
behaviour to chaos for smaller values of the external field amplitude appears
in a different way than the transition from chaos to the regular behaviour
for high values of this amplitude.
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