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Stochastic resonance (SR) is studied in chaotic systems exhibiting on-
off intermittency (OOI). They include a discrete-time system — the logistic
map with the control parameter varying randomly in time and a continuous-
time system — chaotic oscillators just below the synchroniation threshold.
As a weak additive or multiplicative periodic forcing is added to such sys-
tems, the signal-to-noise ratio (SNR) exhibits a maximum as a function
of the intermittency control parameter. In all cases SNR shows depen-
dence on the forcing frequency. In the case of additive periodic forcing in
continuous-time systems a distinct minimum of SNR is observed when the
periodic forcing frequency is close to the characteristic frequency of chaotic
oscillations of the system. In the case of multiplicative periodic forcing this
dependence retains even for very small frequencies; this is a result of a very
long characteristic time scale, typical of systems with OOI.

PACS numbers: 05.45. +b, 05.40 +j

1. Introduction

1.1. Stochastic resonance

The primary signature of SR is that addition of random (stochastic)
noise can improve SNR at the output of a periodically modulated nonlinear
system [1-3]. The power spectrum density (PSD) S (f) of the output signal
in systems with SR usually consists of peaks at the multiples of the periodic
forcing frequency fs superimposed on a broad noise background SN (f).
SNR (in dB) for the first peak is defined as SNR=10 log [SP (fs) /SN (fs)],
where SP (fs) = S (fs) − SN (fs) is the first peak height. SNR exhibits a
maximum as a function of the input noise power in systems with SR. So far,
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SR has been observed e.g. in bistable [4] and monostable [5] systems and in
both dynamical [6] and non-dynamical [7] threshold-crossing systems.

The occurence of SR in systems in which chaotic rather than stochastic
dynamics was used to improve SNR was also reported in [8-11]. Investigation
of SR in chaotic systems offers a possibility to observe noise-free SR in which
appropriate properties of internal dynamics of a system are used to amplify
SNR instead of an external noise. In this contribution some results are
presented, concerning the influence of additive or multiplicative periodic
forcing on systems with OOI [12-14] and attractor bubbling [15-17]. The
results were obtained by means of numerical simulations, but the possibilities
of their experimental verification are also discussed.

1.2. On-off intermittency and attractor bubbling

This kind of chaos-chaos intermittency is a phenomenon occuring in sys-
tems with a chaotic attractor contained inside an invariant subspace. For
certain control parameter values a sequence of laminar phases, during which
the system trajectory remains close to the invariant subspace, and bursts,
during which it departs far from this subspace is observed [12]. For example
two identical interacting chaotic systems, described by vector variables x, x′

may possess an invariant subspace x = x′; if this subspace is stable, the two
systems are synchronized [18, 19] and if not, OOI appears just below the
synchronization threshold in the time series of x − x′ [20]. A generic model
for OOI is the logistic map with the control parameter varying randomly in
time [13]

yn+1 = axnyn (1 − yn) + ξx′

n . (1)

Here, xn, x′

n are random uncorrelated variables with uniform distribution at
[0,1), a is the system control parameter and ξ is the thermal noise amplitude.
If ξ = 0 and a < ac = e = 2.71 . . . then yn always approaches the invariant
subspace yn = 0, independently of the choice of initial conditions. Inside
this surface there is a stable, noisy attractor 0 ≤ xn < 1. If a > ac but
still a ≈ ac the so-called blowout bifurcation [21] occurs and the system
exhibits OOI: during long laminar phases yn remains practically equal to
zero but occasionally increases rapidly and a chaotic burst appears. The
probability that the laminar phase has length τ obeys a power-law scaling
P (τ) ∝ τ−3/2 and the mean laminar phase length decreases according to

another power law 〈τ〉 ∝ (a − ac)
−1 [13]. Before the blowout bifurcation

occurs the subspace yn = 0 loses the asymptotic stability for a > ab = 1.
Then under the influence of any small perturbation destroying the invariant
subspace, e.g. thermal noise ξ > 0, the bursts characteristic of OOI appear
already for a > ab, below the OOI threshold [14]. This phenomenon is called
attractor bubbling [15-17].
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2. Models

In this contribution, SR was investigated in systems with OOI and with
both discrete and continuous time. The discrete-time model is the map
(1) with either additive (amplitude δ) or multiplicative (amplitude ε) small
periodic forcing

yn+1 = [axn + ε (1 + cos 2πfsn)] yn (1 − yn) + δ (1 + cos 2πfsn) . (2)

The measured variable is yn. The continuous-time model consists of a set of
two Rössler oscillators with two-way coupling via the y variable (coupling
strength k) and with a small additive periodic term (amplitude δ) added to
the coupling term in one of the oscillators

ẋ = − (y + z) , ẏ = x + ay + k
(

y′ − y
)

,

ẋ′ = −
(

y′ + z′
)

, ẏ′ = x′ + ay′ + k
(

y − y′ + δ cos 2πfst
)

,

ż = b + z (x − c) ,

ż′ = b + z′
(

x′ − c
)

. (3)

The parameters are a = b = 0.2 and c = 10. For δ = 0 the two systems
synchronize if k > kc = 0.12 and if k < kc OOI appears. The measured
variable is ∆y (t) = y (t) − y′ (t) + δ cos 2πfst (to make connection with the
recently developed methods of secure commmunication [22]). A continuous-
time model with multiplicative periodic forcing is under investigation yet.

The sequence of laminar phases and bursts in the time series of yn in
(2) and ∆y (t) in (3) suggests that SR should appear in these systems in
a similar way as in dynamical threshold-crossing devices [6]. Thus, in the
case of system (2) instead of yn a two-state approximation Yn of the full
signal was analyzed: Yn = Θ (yn − ythr), where Θ (·) is the Heaviside unit
step function and ythr = 0.01 was an arbitrarily chosen threshold for a
burst. In the case of system (3) a three-state approximation was analyzed:
∆Y (t) = sign (∆y (t))Θ (|∆y (t)| − ∆ythr), where∆ythr = 0.1. However,
the similarity to threshold-crossing systems is not perfect. The time series
consist of a sequence of pulses of unit height and various lengths rather than
of short pulses with equal lengths as in typical threshold-crossing systems
exhibiting SR [6, 7]. This resembles the situation investigated previously
in a system with Pomeau–Maneville type-III intermittency [11], where the
phases of periodic and chaotic motion play a role of the two states in a
bistable (in general, asymmetric) system and under the influence of external
periodic forcing their sequence has a strong periodic component.
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3. Results

3.1. Additive periodic forcing. The discrete-time model

The results from the system (2) have been already discussed elsewhere
[23], thus only a summary is given here. If ε = 0 then setting 0 < δ ≪
ythr/2 is equivalent to switching on a periodic perturbation transverse to the
invariant subspace yn = 0 and for a > ab = 1 the noisy attractor contained
inside this surface bubbles. In Fig. 1(a) the SNR vs. a curves at the first

Fig. 1. SR in the map (2) with additive periodic forcing. (a) — SNR at the first

harmonic vs. a, δ = 4 · 10−4, fs = 1/8 Hz (2), 1/16 Hz(◦), 1/32 Hz(△), 1/128

Hz(×); (b) — Time series for yn at a = 2.5, δ = 4 · 10−4, fs = 1/8.

harmonic of fs are depicted for δ = 4 ·10−4 and various fs. The shape of the
SNR curve is characteristic of SR. The maximum of SNR is located above
a = ab but below a = ac for a wide range of frequencies fs, thus here SR
in attractor bubbling is obtained. It should be emphasized that yn during
the bursts can exceed ythr = 0.01 by more than one order of magnitude
(Fig. 1(b)), thus the dynamics of the system (2) plays an important role
in the occurence of SR in this case. The maximum value of SNR and its
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location strongly depend on the frequency of periodic forcing for high fs, an
effect rather characteristic of SR in bistable systems, but saturate for low
frequencies. For fs = 2−3 a small additional peak occurs at a ≈ 1.4 (hardly
visible) which disappears for decreasing fs, an effect also typical of bistable
systems [24].

3.2. Additive periodic forcing. The continuous-time model

Fig. 2. SR in the system (3). (a) — SNR at the first harmonicvs. k, δ = 4 · 10−2,

fs = 16 Hz (2), 1 Hz (◦), 1/16 Hz (△), 1/256 Hz (×) (the solid lines are guides to

the eyes); (b) — Maximum value of SNR as a function of fs.

The discrete-time model enables us to observe SR only for fs on the
order of, or smaller than, the characteristic frequency of chaotic oscillations
of a system with OOI. The effect of fast periodic forcing may be investigated
using the system (3). The SNR vs. k curves at the first harmonic of fs for
δ = 0.04 and a wide range of fs are depicted in Fig. 2(a). The behaviour of
these curves for small fs resembles this in Fig. 1(a). For high fs, however,
SNR increases and thus the maximum value of SNR vs. k curves, measured
as a function of frequency fs, has a distinct minimum (Fig. 1(b)). This is
the opposite of what can be inferred from the word “resonance" and what is
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really observed in some systems with SR [25], namely the maximization of
the response of the system to periodic forcing with certain frequency. This
effect may be easily understood. First, chaotic time series are smooth in
a short time scale. Second, if a weak periodic signal δ cos 2πfst is masked
by the addition of any chaotic time series y (t), it may be effectively (i.e.
without distortion) retrieved by subtracting another time series y′ (t), where
y and y′ are synchronized: this is the idea of secure communication [22].
In the case considered here the amplitude of periodic signal is smaller than
the threshold ∆ythr and thus the signal retrieved in such a way cannot be
observed. However, if y and y′ are just below the synchronization threshold,
attractor bubbling appears and ∆y may from time to time exceed ∆ythr.
The periodic signal varies much faster than the intermittent bursts (smooth
in a short time scale) and simply superimposes on them (almost without
distortion), what leads to high values of SNR.

3.3. Multiplicative periodic forcing. The discrete-time model

The SNR vs. a curves obtained from (2) for δ = 0 and ε = 0.05 are shown
in Fig. 3(a) for decreasing frequencies fs. If fs = 0.125 only monotonic
increase of SNR with a is observed within the borders allowed for a: 0 <
a < 4 − 2ε. The maxima in SNR vs. a curves can be seen only for low
frequencies of the periodic forcing. Their values increase and their location
shifts towards smaller values of a as fs decreases. SNR does not saturate
even for very small frequencies of the multiplicative periodic forcing.

As the overall scaling law 〈τ〉 ∝ (a − ac)
−1 for the mean laminar phase

length in a system with OOI is known one can suppose that a theory based
on the adiabatic approximation should predict correctly the values of SNR
as a function of a for small fs. The adiabatic approximation, valid for small
periodic forcing frequencies, is based on the assumption that the threshold
crossing rate, i.e. the reverse of the mean laminar phase length, depends pe-
riodically on time [4,6] as under the influence of the periodic multiplicative
forcing also the OOI threshold ac becomes periodically time dependent [23]
(cf. [13]). However, there are several difficulties in constructing such a the-
ory in the present case. First, the intermittent bursts are not single spikes,
as in the case of typical threshold-crossing systems, but have rather a certain
distribution of durations. The analytic formula for this distribution, and for
their mean length is not known, though it was shown numerically that bursts
obey the same scaling laws as laminar phases, only with different propor-
tionality constants [26]. Thus, as already mentioned, the system should be
considered as a bistable rather than threshold-crossing one. But, second, to
my knowledge there is no a general adiabatic theory of SR in asymmetric
bistable systems. Thus in Ref. [23] the adiabatic theory based on the re-
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Fig. 3. SR in the map (2) with multiplicative periodic forcing. (a) SNR at the first

harmonic vs. a, ε = 0.05, fs = 1/8 Hz (2), 1/128 Hz (◦), 1/512 Hz (△), 1/2048

Hz (×), solid line — result of the simplified adiabatic approximation [23]; (b)

Dependence of the OOI threshold ãc on the frequency fs of multiplicative periodic

forcing with ε = 0.05 (results of (4)).

sults for threshold-crossing systems [6] was constructed which is valid only if
the bursts occur seldom and have small lengths in comparison with laminar
phases (i.e. just above the onset of OOI). The results are shown in Fig. 3(a)
with a solid line. The numerical values of SNR are by some dB smaller than
the ones evaluated on the basis of the above approximation, and, what is
more important, SNR approaches zero for a considerably greater than it may
be expected from the simple theory. It turns out that e.g. for fs = 1/8 yn

falls to zero if a < 2.47 and no bursts appear for such a, so in the two-state
approximation SNR = 0.

The latter discrepancy is rather not a result of the approximations ap-
plied but has its roots in the “averaging" properties of systems with OOI. The
time-independent threshold for OOI with multiplicaltive periodic forcing ãc
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may be evaluated as in the case ε = 0, by requiring that the time-averaged
Lyapunov exponent in the direction perpendicular to the invariant surface
yn = 0 was equal to 1 [13]. This yields the condition [23]

〈ln [ãcxn + ε (1 + cos 2πfsn)]〉 = T−1
s

Ts−1
∑

n=0

F (ãc, p (n)) = 0 , (4)

where〈.〉 denotes the average over one period Ts = 1/fs, p(n) =
ε(1 + cos 2πfsn) and

F (a, p) = a−1 [(p + a) ln (p + a) − a − p ln p] . (5)

The threshold ãc evaluated in such a way is shown in Fig. 3(b) vs. the
frequency fs. E.g. if fs = 1/8 this yields ac = 2.477, in agreement with
the numerical results. Therefore the system (2) with ε > 0 possesses a
well-defined, time-independent OOI threshold; moreover, this threshold is
frequency-dependent, a phenomenon not found in other chaotic systems ex-
hibiting SR. It seems that even for small fs this ’averaging’ tendency prevails
and only in the limit of extremely small fs the OOI threshold becomes time
dependent and closely follows the periodic forcing term; the characteristic
time scale of the system is simply very long. Thus the theoretical descrip-
tion of SR in this case must go beyond the adiabatic approximation even for
small fs and it is still an open problem.

4. Summary and conclusions

In the present contribution, the effect of additive or multiplicative peri-
odic forcing on the model chaotic threshold-crossing systems exhibiting OOI
and attractor bubbling was investigated. In both cases SR was obtained in
the two or three-state approximation.

In the case of additive forcing SNR depends on the forcing frequency,
but for small fs it is frequency independent. As it can be seen form the
continuous-time model (3) for very high fs, SNR increases and a minimum
of SNR as a function of fs is observed. The increase of SNR for high periodic
forcing frequencies is connected with the smoothness of chaotic time series in
a short time scale. Maybe, this is an important difference between stochastic
and chaotic systems exhibiting SR. As far as I know, there is no systematic
study of the influence of the correlation time of the noise on SNR in noise-
driven systems with SR, in particular when this time is long in comparison
with the forcing period. However, even a highly-coloured noise is not smooth
in a short time scale and thus SNR need not increase with decreasing fs as
quickly as in chaotic systems. In my opinion, this problem deserves further
investigation.
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It is a good place here to emphasize that both in the case of additive
and multiplicative periodic forcing SNR may be calculated also from the full
output signal instead of its two or three-state approximation. In the case of
additive forcing it was observed that SNR calculated from the full signal is
for the whole range of a or k greater than SNR calculated from the two-state
approximation and does not exhibit any maximum, but always decreases as
the bursting behaviour becomes stronger. Thus the source of SR here is the
addition of a threshold to the signal coming from attractor bubbling. In
particular, SR does not improve the results of retrieval of periodic signal in
secure communication using synchronized chaotic oscillators. In the case of
multiplicative periodic forcing in (2) SR is observed also in the SNR vs. a
curves obtained from the full signal yn.

In the case of multiplicative periodic forcing SNR continues increasing
even for very small fs and the adiabatic approximation fails. This was
shown to be connected with the properties of systems with OOI which tend
to average the influence of the multiplicative forcing over time.

The results presented in this contribution are closely related to the obser-
vation of SR in a system with Pomeau-Maneville type-III intermittency [11].
However, the systems (2,3) have more in common with utilizing dynamical
threshold-crossing devices in SR than the systems with “conventional" in-
termittency, in which a time sequence of chaotic and periodic phases with
approximately the same amplitudes of oscillations is observed. On the other
hand, e.g. in the case of additive periodic forcing, many properties of SR are
similar to the ones obtained when this effect is investigated in bistable sys-
tems (e.g. SNR is strongly frequency-dependent for high fs). This probably
may be explained by the fact that intermmittent bursts are not single spikes,
but their lengths have a certain distribution. Thus the two-state approxi-
mation produces a signal similar to what can be expected in asymmetric
bistable systems. A close connection between such systems and threshold-
crossing dynamics was pointed out also in the case of noise-driven systems
in [27]; moreover, a dynamical system, but without OOI — a noise-driven
semiconductor diode which produces time series consisting of short pulses of
light of various length was proposed to look for SR in [28].
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