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With computer simulations we investigate the basic thermodynamic
features in the cellular automata governed by the stochastic three-spin ma-
jority vote, i.e. the Toom rule. The Gibbsianness of stationary states is
tested by the relative entropy density. The critical exponents which char-
acterize the ferro–paramagnetic phase transition are given.
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1. Introduction

In general, there is rather a large discrepancy between physical systems
present in the nature and models which can be investigated rigorously via
statistical mechanics tools. Fortunately for the statistical mechanics model-
ing these both worlds seems to be very close to each other in the region of the
critical properties. At criticality, the large scale properties are insensitive
to the details of a lattice and microscale interactions. Therefore, equilib-
rium statistical mechanics has developed many powerful tools to study the
phase transition and critical phenomena. There is little done in the theory
of nonequilibrium systems. Hence, it is necessary and useful to study sim-
ple nonequilibrium systems. This paper concerns properties of stationary
states which arise from the probabilistic cellular automata (PCA) with the
evolution governed by the stochastic Toom rule [1]. The Toom PCA are the
well known model which concerns the interacting particle system evolving
stochastically in discrete time [2].
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With our investigations we want to join the discussion on how close the
stationary Toom system imitates an equilibrium system. Moreover, we want
to characterize properties of the system that arises from the Toom interac-
tions despite the fact whether the system possesses the Gibbsian property
or not. Computer experiments are the source of our knowledge about sta-
tionary states. Using standard Monte Carlo methods we are given samples
of configurations, which follow the distribution of the hidden Toom station-
ary measure. This procedure is well supported by the weak law of large
numbers [2] and widely used (see e.g. [3, 4]).

Equilibrium statistical mechanics deals with Gibbs measures. These
measures are known as the only measures which posses the “good” physi-
cal property, i.e., isolating a part of a system from the rest will generally do
not cause any drastic change in its behavior. The Gibbsian measures have
been put in equilibrium statistical mechanics by hand [2, 3, 5], namely by
assuming that the probability distribution for a finite lattice configuration
σ to occur is expressed by the following famous formula:

dµBG(σ) =
e−βH(σ)

Z
dµ0(σ) ,

for β = 1/kT the inverse of the temperature, µ0 some apriori measure, and
H is the energy carried by the configuration σ. In the case of infinite system
this probability density is conditioned by a boundary configuration. Since
one cannot expect all measures to be Gibbsian, the question arises if there are
“weaker” conditions that capture “good” physical properties [2]. For example
the stationary measure of the voter model (also called the Kawasaki model)
competing with the Glauber dynamics although this stationary measure is
non-Gibbsian, the Monte Carlo examinations provide for it the critical prop-
erties being the same as those for the universality class of Ising model [6,7].

The theoretical investigations of the Toom PCA system are particularly
difficult because there is not known the statistical description to the sta-
tionary measure at the area of the critical change [8]. In this area there is
observed a battle between domains composed largely of −1’s and domains
composed largely of 1’s in the stationary configurations. In the cellular
automata theory such a behavior indicates the so-called complexity [9].

The results of the real experiments state that for some macroscopic ob-
servable O near the critical point depends on distance to the critical value
along the power law, namely

O ∼ |T − Tcr|
µ .

According to the values of µ’s thermodynamic systems are divided into dif-
ferent universality classes. It is tempting to suppose that the critical behav-
ior of a system does not depend on whether the system is equilibrium or
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not [7, 10]. Therefore we also ask the question of what class of universality
Toom PCA belong to.

2. Toom PCA definition

The Toom PCA denote two-level spin systems Ω = {−1, 1} placed on
the square lattice L × L, and the evolution of any spin σx, x ∈ L × L is
conditioned by the states of its north and east nearest neighbors, and by the
spin itself. Thus the states of these three spins determine the probability
for the next time spin state at x, i.e. (σt

N(x), σ
t
E(x), σ

t
x) −→ σt+1

x according

to the following formula

p(σt+1
x |(σt

N(x), σ
t
E(x), σ

t
x)) = 1

2 [1 + (1 − 2ε)σt+1
x sign(σt

N(x) + σt
E(x) + σt

x)] .

(1)

The ε parameter imitates the temperature-like effects in the local interac-
tions.

For the Toom PCA there exists the rigorous proof [11, 12] that in the
space × time lattice the system is Gibbsian with the Hamiltonian given by
the formula:

H(σ(x, t)) = − log p(σt
x|σ

′) . (2)

However, there is little known about the projection of this Gibbs measure
to the space layers [13]. The fundamental example of the non-Gibbsian
measure arises as the projection to one-dimension of the very well known
Gibbs measure of the Ising model in two-dimensions [14].

3. Verifying Gibbsianness

The good, although rather rough, indicator of the character of the prob-
ability distribution is the cumulant U of the fourth order of magnetization.
If the cumulant U = 0 then the distribution is Gaussian. If U = 2

3 then we
deal with bimodal distribution what indicates that two phases are present in
the configuration state. In Fig. 1 we show values of the cumulant U obtained
for the Toom PCA with different lattice sizes. One can observe the ε -range
vs. lattice size L on which the bimodal distribution which characterizes
the system before the critical point transfers into the Gaussian distribution.
Therefore, one can expect non-Gibbsian properties on the stationary Toom
PCA evolving within this region. In the following we will consider the two
Toom systems: {L = 200, ε = 0.090} and {L = 60, ε = 0.092}.
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Fig. 1. The cumulant of the fourth order of the mean magnetization for different

lattice size : L = 20, 40, 60, 80, 100, 200 in the critical region of the Toom PCA.

It is known that, if µ, ν are stationary measures for the same interactions
and i(µ|ν) the relative entropy density of µ with respect to ν is different from
zero, i.e. i(µ|ν) 6= 0 then both measures are non-Gibbsian ones [2].

In order to find the density of the relative entropy it is particularly useful
to explore the so-called properties of large deviations. It appears that the
probability that a configuration σ — a sample, taken from the probability
distribution ν, looks in the volume Λ like a typical configuration of µ decays
exponentially in the volume of Λ with rate i(µ|ν), i.e. [2]:

Probν{σΛ is typical for µ} ∼ e−|Λ| i(µ|ν) . (3)

Hence

i(µ|ν) ∼ lim
Λ→∞

−
1

|Λ|
ln(Probν{σΛ is typical for µ}) . (4)



Toom Cellular Automata Stationary States via Simulations 1603

There are two basic measures in Toom PCA: the positively magnetized
phase µ+ and the negatively magnetized phase µ−. Both of these phases
have a large magnetization ±m, respectively. In our experiments we search
how rare is to see the l × l-size square block with negative magnetization if
the system is represented by µ+ phase, globally. Namely, we investigate the
decay of the following function

il(µ−|µ+) = −
1

l2
ln(Probµ+

{m(σl×l) < 0}) (5)

to estimate the infinite block size limit

il(µ−|µ+) −→l→∞ ? (6)

The data obtained for the large lattice (L = 200) and large blocks is
presented in Fig. 2(a). The different curves in this figure represent the
different conditions for the mean magnetization of a block. One can observe
that when this condition goes down to 0 the corresponding functions of il
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Fig. 2. The dependence of il(µ−
|µ+) on the block size l. There are provided values

for linear regression for tails (last ten points). (a) the case L = 200, (b) the case

L = 60.



1604 Danuta Makowiec

go down less rapidly. However, the linear regression for the decay of the
ten tail points shows although tiny (of the 10−5 order) but steady negative
value. This result suggests for the limit density i(µ−|µ+) → 0 (compare
[15]). The Fig. 2(b) is to present the same estimation for the smaller lattice
(L = 60). For this system the results are definitely undecidable, suggesting
that i(µ−|µ+) > 0.0005. Hence the stationary measure in not Gibbsian..

4. Critical properties

The basic static critical exponents of spin systems are [3]:

— α : for free energy density fL(T ) ∼ |Tcr(L) − T |2−αL

— β : for mean magnetization mL(T ) ∼ (Tcr(L)−T )βL for T < Tcr

— γ : for susceptibility χL(T ) ∼ (T − Tcr(L))−γL for T > Tcr

Transferring temperature T into the temperature-like parameter ε we obtain
the following results for Toom PCA:

L εcr(L) βL γL

20 0.0930 ± 0.005 0.97 0.23
40 0.0920 ± 0.005 0.82 0.31
60 0.0915 ± 0.005 0.67 0.56
80 0.0915 ± 0.005 0.65 0.65
100 0.0910 ± 0.005 0.59 0.72
200 0.0905 ± 0.005 0.52 0.80

(7)

In finite size systems, the critical singularities are moved from each other
depending on the lattice size. Here, εcr(L) are determined as the most rapid
change with respect to ε of the three following characteristics: the cumulant
of the magnetization U , and the two logarithm derivatives of 〈|m|〉 and
〈m2〉 [4].

Notice that according to the relation between critical exponents α =
2− 2β − γ, which comes out from the investigations of equilibrium thermo-
dynamics, we are provided with the free energy density critical exponent:
αL = −0.17, 0.05, 0.10, 0.05, 0.10, 0.16 for lattice sizes L = 20, 40, 60, 80,
100, 200 respectively.

The finite-size scaling allows us to estimate the infinite lattice properties
[4] by the following relations

mL(ε) = L−β/ν m0(L
1/νt) , (8)

χL(ε) = L(γ/ν)−2 χ0(L
1/νt) (9)

with

t =

∣

∣

∣

∣

ε − εcr

εcr

∣

∣

∣

∣
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and m0, χ0 the scaling, generally unknown, functions. Moreover,

εcr(L) = εcr + λL−1/ν . (10)

Hence, to characterize the Toom PCA in the thermodynamic limit, we need
to know the critical exponent ν. It appears that some characteristics scales
as L1/ν . It is obeyed by the cumulant U as well as logarithms of 〈|m|〉, 〈m2〉,
〈m4〉. The maximum slope for U , ln(〈|m|〉) and ln(〈m2〉) serves us estimates
for ν, and then when applied to (10) also for εcr. Finally we get [15]:

ν = 0.92 ± 0.03 , εcr = 0.0902 ± 0.0005 . (11)

With the above listed values we can determine the other critical exponents
(see Fig. 3(a)(b)) as

β = 0.31 ± 0.05 , γ = 0.76 ± 0.15 . (12)

These values indicate α = 2 − 2β − γ = 0.62.
Thermodynamics considerations provide the other estimation for α also,

namely α = 2−d ν. According to this equality we obtain α = 0.16 (compare
to [8]). Notice that this value for α together with the value for β obtained
earlier leads to γ = 1.22.
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Fig. 3. The estimates for β (a) and γ (b) obtained from the finite size scaling (8)

and (9).

There are PCA systems (e.g. mentioned in the Introduction the dynam-
ics of competing Glauber and Kawasaki rules [6,7]) for which the stationary
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measures appear to have critical properties the same as those known for
the Ising model. On the other hand, there exist PCA (e.g. lattice diffusive
system [16] or directed percolation [17]) which exhibit critical features to be
a crossover between the rigorous Ising model and its mean-field approxima-
tion. Comparing our results to these two fundamental universality classes,
i.e., to the Ising model in 2-dim with exponents α = 0, β = 0.125, γ = 1.75,
ν = 1 and to the mean-field model where α = 0, β = 0.5, γ = 1.0, ν = 0.5,
we see that the Toom system also represents a crossover between the models.
Although, concentrating on the β value only, one can notice that the Toom
model is very close to other PCA systems like lattice gas (β = 0.22 [16])
or directed percolation (β = 0.276 [17]), however the values of remaining
critical exponents are rather different from those obtained in the systems
listed.

Closing our report on critical exponents estimations we must underline
the fact, that data from the experiments was very chaotic in the sense that
results obtained possess the high level of STD-errors. The phenomenologi-
cally based Harris criterion states that a system with α > 0 is dynamically
chaotic [18]. It means that any perturbation to the dynamics would effect in
the rapid change of macroscopic properties. We can suspect that the signif-
icant difference in critical exponent values observed when the lattice size is
changed, is caused by the similar effect. Therefore we had to reject data ob-
tained for small lattices, i.e. L = 20 and L = 40 as not reliable for studying
Toom interactions in the thermodynamic limit. On the other hand, in the
Toom model there must be the noticeable effect caused by the sensitivity to
the initial configuration [19]. Observed by us STD errors should be related
to this notion of chaos.

5. Conclusions

Toom PCA are perfectly suited for investigating links between systems
solved rigorously and real systems.

The deterministic Toom cellular automata (i.e. ε = 0) are the example
of the so-called complex automata [9], for which there is not known the
natural measure. However, by violating the rigidity in the execution of the
deterministic rule by introducing the random error, we could hope to move
the system into the object for which the natural measure can be provided.
It occurs true for Toom PCA away from the critical region. Being in the
critical regime the Toom PCA is extremely sensitive to all details of the
individual system. Therefore, having in mind that critical properties are
the motivation to our investigations, the conclusion on the Toom model
usefulness in statistical physics is not obvious. Our observations support
the opinion that there are nonequilibrium systems which might be applied
to equilibrium statistical physics only under much care.
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