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A recent result, relating the (irreversible) work performed on a system
during a non-quasistatic process, to the Helmholtz free energy difference
between two equilibrium states of the system, is discussed. A proof of this
result is given for the special case when the evolution of the system in
question is modelled by a Langevin equation in configuration space.
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My purpose in this article is to present and discuss a result which relates
the free energy difference between two equilibrium states of a system —
defined with respect to two values of an external parameter — to the work
performed on the system by changing that parameter at a finite rate from
one value to the other.

Let me begin with a fundamental statement from classical thermody-
namics [1]: the total work performed on a system during an isothermal,
quasistatic process is equal to the free energy difference between the initial
and final equilibrium states of the system.1 This statement may be under-
stood as follows. Imagine a finite system which depends on some external
parameter, λ. Macroscopically, an equilibrium state is the unique state at-
tained by the system by allowing it to come to equilibrium with an infinite
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1 Throughout this talk, the term “free energy” will refer specifically to the Helmoltz

free energy.
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heat reservoir at temperature T , holding λ fixed. Such a state may be rep-
resented by a single point in the (λ, T )-plane, as shown in Fig. 1. With each
equilibrium state we may associate a free energy F :

F (λ, T ) = E − ST, (1)

where E and S denote, respectively, the internal energy and the entropy
of the system, both functions of the state. If we now prepare the system
in a state (λA, T ), and then infinitely slowly change the value of λ from
λA to λB , always keeping the system thermostatted (i.e. in contact with
the heat reservoir) at temperature T , then the system will evolve through a
continuous sequence of equilibrium states — represented by the dotted line
in Fig. 1 — and the net external work which we perform during this process
will equal the free energy difference between the initial and final states:

W∞ = ∆F ≡ F (λB , T ) − F (λA, T ) . (2)

The subscript on W reminds us that this process is carried out quasistati-
cally.

At the microscopic level, we must treat the system statistically, replacing
the unique macroscopic state by a probability distribution (or ensemble) of
micro-states of the system. An equilibrium state of the sort discussed in the
previous paragraph is represented by a canonical ensemble in the microscopic
phase space, and the free energy is given by

F (λ, T ) = −kBT ln Z(λ, T ), (3)

where Z denotes the partition function. During a process in which the
system remains thermostatted while λ is varied quasistatically from λA to
λB , the statistical state of the system evolves through a continuous sequence
of canonical ensembles, and again the work performed is equal to the free
energy difference between initial and final equilibrium states: W∞ = ∆F .

Eq. (2) is thus a basic statement from both macroscopic thermodynamics
and microscopic statistical mechanics. The central point which I wish to
make is that there exists a comparably simple result, which relates ∆F
(defined as the free energy difference between two equilibrium states A and
B) to the work performed during a process in which λ is changed from λA

to λB at a finite rate; hence, a nonequilibrium, irreversible process.
Consider, therefore, the following sequence of steps.

(1) With λ fixed at an initial value (λA), we let the system equilibrate
with a reservoir at temperature T .

(2) We then externally “switch” λ from the initial value (λA) to a final

one (λB) over a finite time τ . (For specificity, assume λ̇ ≡ dλ/dt to
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Fig. 1. The unique macroscopic equilibrium state corresponding to a temperature

T , and a value of the external parameter λ, may be represented by a point in

the (λ, T )-plane. By keeping the system thermostatted at a constant temperature,

and changing the external parameter quasistatically, we can reversibly switch the

system from one equilibrium state, A, to another, B.

be constant.) The system remains in contact with the reservoir as we
switch λ.

(3) Once λ reaches its destination (λB), we note down the external work
W which we performed on the system during this process.

(4) Go back to step 1 and repeat ad infinitum.

Steps (1)–(3) define what I will call a single realization of the switching
process; by virtue of step (4), we obtain a statistical ensemble of such re-
alizations. Note that although the system begins in equilibrium with the
reservoir, it does not generally remain so once we start changing λ at a fi-
nite rate. Typically, the system will be found in a nonequilibrium state, not
characterized by a single point (λ, T ) (though the value of λ is of course well
defined at every instant). Schematically, I have depicted this situation by
representing the evolution of the system as a shaded area, see Fig. 2, rather
than as a single line as in Fig. 1.

(At the end of the switching process, we can of course always opt to hold
the value of λ fixed, at λB , and allow the system to relax to equilibrium
with the reservoir, in this way finally attaining the equilibrium state B.
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Fig. 2. If we start with the system in equilibrium state A, but then switch the

external parameter from λA to λB at a finite rate, the system will progress through

a sequence of nonequilibrium states, indicated schematically by the shaded region.

This then gives us a prescription for going from one equilibrium state, A, to
another, B, via a nonequilibrium process. However, once we stop changing
the external parameter λ, we stop performing external work on the system.
Therefore the central result to be presented below, which makes a statement
about the work W performed externally, is independent of whether or not
we carry out the supplementary step of allowing the system to relax to state
B at the end of the switching process.)

Since the switching described in step (2) above is carried out at a finite
rate, we expect statistical fluctuations: the work W will differ from one
realization to the next. Thus, having obtained a statistical ensemble of real-
izations by repeating steps (1)–(3) ad nauseum, we will have a distribution
of values of work, ρ(W ), defined such that ρ(W )dW gives the proportion
of realizations for which the work fell within an infinitesimal window dW
around a particular value W .

The distribution ρ(W ) will depend on how slowly or quickly the switching
was performed, that is, on the switching time τ . (In carrying out steps (1)–
(4) above, it was assumed that τ remained the same from one realization to
the next.) For τ → ∞, we get ρ(W ) → δ(W −∆F ), by Eq. (2), whereas for
τ finite we expect the distribution ρ(W ) to have a finite width. Generically,
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the faster we switch λ, the larger the expected fluctuations in W , as depicted
in Fig. 3.

ρ(W)
infiniteτ

τ = 10

W∆ F

= 3τ

Fig. 3. The distribution of values of work, ρ(W ), performed during a statistical

ensemble of switching processes, depends on the switching time τ . For τ → ∞ this

distribution becomes a δ-function at W = ∆F . Generically, one expects a broader

distribution, the more rapidly the switching is performed.

One final point before I reach the punch line. While W = ∆F in the
quasistatic, reversible limit (τ → ∞), for finite switching times we expect
the work performed to exceed the free energy difference ∆F :

W ≥ ∆F, (4)

where the over bar denotes an average over our statistical ensemble of re-
alizations of the switching process, carried out at a fixed value of τ . (This
statement does not preclude an occasional measurement of W which falls
below ∆F , though for macroscopic systems such fluctuations will be exceed-
ingly rare.) The inequality given by Eq. (4) essentially follows from the
Second Law: the work performed during an irreversible process is expected
to exceed that performed during the corresponding reversible process.

Let me now make a claim which is the central focus of this talk. If
instead of taking the average of the work W , over a statistical ensemble
of switching realizations, we take the average of the quantity e−βW , where
β ≡ 1/kBT , then that average will be equal to e−β∆F , for any value of the
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switching time τ :

exp−βW ≡

∫

dW ρ(W, τ) exp−βW = exp−β∆F , for all τ . (5)

(The dependence of ρ(W ) on the switching time τ has been made explicit
here.) That is, the average of e−βW will be the same over, say, any of the
three distributions shown in Fig. 3, and will equal e−β∆F .

Eq. (2) relates the free energy difference between two equilibrium states
of a system, to the work performed in reversibly taking the system from one
state to the other. Eq. (5) is the extension of this statement to irreversible

(nonequilibrium) processes. Note that, since ∆F depends only on the equi-
librium states A and B, Eq. (2) implies that the reversible work performed
in going from A to B is independent of the path taken from λA to λB in pa-
rameter space. (We have imagined only a single parameter λ, but of course
more generally parameter space can be multi-dimensional.) Eq. (5) makes a
comparable statement as regards the rate at which we switch λ: it says that
the ensemble average of e−βW is independent, not only of the path from λA

to λB, but also of how quickly or slowly we vary λ along that path.
Eq. (5) gives the relationship between a quantity defined with respect to

equilibrium states of a system (∆F ) to a quantity extracted from an ensemble
of nonequilibrium processes. Moreover, this relationship takes the form of an
equality, whereas most statements relating equilibrium and nonequilibrium
quantities are expressed as inequalities, for instance, Eq. (4). Indeed, as I
have pointed out elsewhere [2], the inequality W ≥ ∆F follows immediately
and rigorously from Eq. (5).

As a quick consistency check, we can verify the validity of Eq. (5) in
two limiting cases: infinitely slow (ts → ∞) and infinitely fast (ts → 0)
switching. In the former case, we get ρ → δ(W − ∆F ), and Eq. (5) is
satisfied. For ts → 0, as discussed elsewhere [2], Eq. (5) reduces to the
following well-known identity:

〈exp−β∆H〉A = exp−β∆F, (6)

where ∆H = HB −HA is the difference between the initial and final Hamil-
tonians, and 〈· · ·〉A defines a canonical average over the initial equilibrium
state.

A proof of Eq. (5), based on a treatment in which both the system of in-
terest and the heat reservoir are explicitly taken into consideration, was given
in Ref. [2]. Another proof, based on a master equation approach, was given
in Ref. [3], along with supporting numerical results. Yet a third proof, as-
suming Markovian evolution and microscopic reversibility (and which along
the way yields an interesting detailed balance relationship for multiple time-
step processes), has been found by Gavin Crooks [4].
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In the spirit of this Symposium, I will sketch a proof of Eq. (5) for the case
in which the evolution of the system of interest is modelled by a Langevin
equation in configuration space, thus a statistical ensemble of such systems
evolves under a Smoluchowski equation. (Physically, this corresponds to the
limit of overdamped evolution, in which the momentum of the system reaches
equilibrium with the heat reservoir on a time scale very short compared both
to that required for the configuration of the system to equilibrate, and to
the time τ over which we perform the switching.) Although this case is a
particular example of the situation considered in Ref. [3], the proof presented
here is different from those of Refs [2–4].

Let us assume that the Hamiltonian for our system has the form

Hλ(x, p) = p2/2m + Vλ(x) .

(Although we assume a one-dimensional configuration space, the generaliza-
tion to more degrees of freedom is straightforward.) The free energy differ-
ence may then be expressed in terms of a ratio of configurational partition
functions:

∆F = −β−1 ln
QB

QA
, (7)

Qλ =

∫

dx exp−βVλ(x) . (8)

(I will often use A and B in place of λA and λB , respectively.) Let us now
take the evolution of the configuration of the system to obey a Langevin
equation:

ẋ = vλ(x) + ũ(t) , (9)

where ũ(t) is a term representing white noise,

〈ũ(t)ũ(t + s)〉 = Dδ(s) , (10)

with 〈· · ·〉 denoting an average over realizations of the noise; and vλ(x) is
the terminal velocity attained by a particle subject to both a conservative
force −∂Vλ/∂x, and a frictional force −γẋ satisfying the Einstein relation,
γ−1 = βD/2:

vλ(x) = −
βD

2

∂Vλ

∂x
(x). (11)

In Eq. (9), the external parameter depends on time, according to

λ(t) = λA + (λB − λA)t/τ. (12)

A stochastic trajectory x(t), t ∈ [0, τ ], satisfying Eq. (9), represents the
evolution of our system during a single realization of the switching process.
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We will now make use of the fact that, for such evolution, one can write down
an explicit expression for the probability distribution of trajectories x(t).
Namely, given an initial condition x(0) = x0, the probability for obtaining
a particular trajectory x(t), as we switch λ from A to B, is given by: [5]

PA→B[x(t)] = N exp−S+[x(t)] , (13)

S±[x(t)] =
1

2D

∫ τ

0
dt

(

ẋ ±
βD

2
∂xVλ

)2
, (14)

where λ = λ(t) in the integrand of Eq. (14). (I will make use of S− shortly.)
The normalization factor N is chosen so that the integral of PA→B over all
trajectories x(t), t ∈ [0, τ ], starting from x(0) = x0, is unity:

∫

D0[x(t)]PA→B [x(t)] = 1 . (15)

[The subscript on D indicates that we are integrating over paths x(t) with
a fixed initial point, x(0) = x0.]

To make sense of Eqs. (13) to (15), we must introduce a measure on path
space. We do this by dividing the interval [0, τ ] into sub-intervals of duration
δt = τ/N , then replacing the continuous trajectory x(t) by the discrete set
of configurations xn = x(tn) at times tn = nδt (n = 0, 1, · · · ,N), and at the
end taking the limit N → ∞. A convenient representation of the integral in
Eq. (14) is then:

S±[x(t)] →
1

2D

N
∑

n=1

δt
[xn − xn−1

δt
±

βD

2
∂xVλ(xν)

]2
, ν = n −

1

2
∓

1

2
.

(16)
In Eq. (15), the integral in path space, over all trajectories x(t) with a fixed
initial point x(0) = x0, is expressed as:

∫

D0[x(t)] · · · =

N
∏

n=1

∫

dxn · · · . (17)

It is straightforward to verify that the normalization constant in Eq. (13)
is given by N = (2πDδt)−N/2, in this scheme. For future use, let us also

define
∫

Dτ [x(t)] =
∏N−1

n=0

∫

dxn, representing an integral over trajectories
x(t) with a common final point xτ ≡ x(τ) = xN . Note that

∫

dx0

∫

D0[x(t)] · · · =

∫

dxτ

∫

Dτ [x(t)] · · · =
N
∏

n=0

∫

dxn · · · . (18)
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For a particular trajectory x(t), the external work performed on the
system is:

W [x(t)] =

τ
∫

0

dt λ̇ ∂λVλ

(

x(t)
)

. (19)

If we now launch an ensemble of such trajectories, from a canonical ensemble
of initial conditions (corresponding to λ = A) at t = 0, then an explicit
expression for the average of e−βW over this statistical ensemble is given by:

exp−βW =

∫

dx0
1

QA
exp−βVA(x0)

×

∫

D0[x(t)]N exp−S+[x(t)] exp−βW [x(t)] . (20)

The first integral defines the distribution of initial conditions x0, the inte-
gral

∫

D0 N e−S+ · · · is over all trajectories launched from a given point x0,

each weighted by its probability (Eq. (13)), and e−βW is the quantity being
averaged. Now, from the definitions of S± and W we have:

S+ − S− + βW = β

τ
∫

0

dt (ẋ∂xVλ + λ̇∂λVλ)

= β

τ
∫

0

dt
d

dt
Vλ

(

x(t)
)

= β∆V , (21)

where
∆V ≡ VB(xτ ) − VA(x0) . (22)

With Eq. (18), this allows us to rewrite Eq. (20) as

exp−βW =
1

QA

∫

dxτ exp−βVB(xτ )

∫

Dτ [x(t)]N exp−S−[x(t)]. (23)

The second integral on the right is unity:
∫

DτN e−S− = 1. (While this
may be verified explicitly, it also offers a nice interpretation: if we start in a
configuration xτ and switch λ from B to A, then N e−S− is the normalized
probability of observing the “reverse” of the trajectory x(t), i.e. a trajectory
which starts at xτ and “evolves backwards”, ending at x0.) Then, using
QB =

∫

dx e−βVB(x), we finally get

exp−βW =
QB

QA
= exp−β∆F. (24)
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Q.E.D.

I have just sketched a proof of Eq. (5) for the special case in which the
evolution of the system of interest is modelled by a Langevin equation in
configuration space. In this proof, an expression for the work W performed
on the system, Eq. (19), was introduced without elaboration. More generally,
the work is given by

W =

τ
∫

0

dt λ̇ ∂λHλ, (25)

where Hλ is the parameter-dependent Hamiltonian for the system of interest,
and ∂λHλ in the integrand is evaluated along a trajectory z(t) describing the
evolution of the phase space coordinates of the system. For Hamiltonians of
the form Hλ = p2/2m + Vλ(x), Eq. (25) reduces to Eq. (19). Let me now
make a few comments regarding the origin of Eq. (25).

The external work performed on an isolated system is equal to the net
change in its energy. When that work is performed by the variation of an
external parameter, we get

W ≡ HB(zτ ) − HA(z0)

=

τ
∫

0

dt
d

dt
Hλ

(

z(t)
)

=

τ
∫

0

dt λ̇ ∂λHλ

(

z(t)
)

, (26)

assuming a phase space trajectory z(t) evolving under Hamilton’s equations,
so that dH/dt = ∂H/∂t [6]. Eq. (25) is therefore the correct expression for
work, provided the system is isolated during the switching process.

When the system of interest is coupled to a heat reservoir, then we may
treat the two together as a larger, isolated system governed by a Hamiltonian
of the form

Hλ(z,z′) = Hλ(z) + Hres(z
′) + hint(z,z′) . (27)

Here, z
′ represents a point in the phase space of the reservoir, Hres is a

Hamiltonian for the reservoir alone, and hint is a term which weakly couples
the system of interest to the reservoir. Since the system of interest and
reservoir together constitute a larger, isolated system, we may again use
Eq. (26) for the external work performed, but with Hλ replaced by Hλ.
However, ∂λHλ(z,z′) = ∂λHλ(z), so we again end up with Eq. (25). 2 Note

2 In writing Eq. (27), I was careful to make only the first term on the right depend
on λ. Otherwise, by externally changing λ, we would perform work directly on the
degrees of freedom of the reservoir, a situation different from that considered in this
talk.
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that the work W no longer represents the net change in the energy of the
system of interest itself, W 6= HB(zτ ) − HA(z0), but rather the net change
in the total energy of system and reservoir.

Finally, it is good to keep in mind that the concept of an external pa-
rameter is itself an idealization. In reality, such a “parameter” must actually
be a degree of freedom — subject to back reaction forces — and the work
performed by it, over some length of time, is simply the net loss in its en-
ergy. The idealization lies in assuming an infinite inertia for this degree of
freedom. To illustrate these points, consider a Hamiltonian

G(λ, Pλ,z,z′) =
P 2

λ

2M
+ Hλ(z,z′), (28)

where λ now represents the degree of freedom which was previously viewed
as an external parameter, and M and Pλ denote the associated inertia and
momentum, respectively. The first term on the right represents the energy of
the parametric degree of freedom; the second, as before, is the Hamiltonian
for the coupled system of interest and reservoir. Hamilton’s equations give

λ̇ =
∂G

∂Pλ
=

Pλ

M
, (29)

Ṗλ = −
∂G

∂λ
= −∂λHλ(z,z′) = −∂λHλ(z). (30)

From these we obtain the following expression for the rate of change of the
energy of the “parameter”:

d

dt

P 2
λ

2M
= −λ̇ ∂λHλ(z), (31)

from which, taking W to be minus the change in P 2
λ/2M , we once again get

W =

τ
∫

0

dt λ̇ ∂λHλ

(

z(t)
)

. (32)

Note that now the time-dependence of λ is not exactly that given by Eq. (12),
but rather is determined from Hamilton’s equations. If, however, we consider
the initial conditions λ(0) = λA and λ̇(0) = (λB − λA)/τ , and we take the
limit M → ∞, then over any finite time interval τ we will get (see Eqs (29)
and (30))

λ̈ =
d

dt

Pλ

M
→ 0 , (33)

thus recovering Eq. (12) for the evolution of λ.
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In the preceding discussion, I have argued that Eq. (25) (which in turn
implies Eq. (19) when Hλ = p2/2m + Vλ) is the correct expression for the
work performed on a system by the variation of an external parameter, both
when the system is isolated and when it is coupled to a heat reservoir, and
also when the external parameter is treated honestly as a degree of freedom
(but in the limit of infinite inertia). This discussion can be illustrated by
considering the example of a closed container filled with gas, where one
wall of the container is free to move in and out as a piston. Let λ denote
the position of the piston, and z = (x1,p1, · · · ,xN ,pN ) the positions and
momenta of the N individual gas molecules.

When we externally move the piston at some finite rate from a position
λ = A to another position λ = B, we perform a quantity of work each time
a gas molecule scatters off the moving wall; that work is just the change
in the kinetic energy of the molecule during the collision. If the container
is isolated, then this is the only mechanism by which the energy of the gas
can change, so at the end of the switching process the work performed is
equal to the change in the internal energy of the gas. It is a straightforward
exercise [7] to show explicitly (without invoking the Hamiltonian identity
dH/dt = ∂H/∂t) that the change in the energy of the gas, during a given
collision between a molecule and the moving wall, is equal to the time integral
of λ̇∂λHλ along the trajectory z(t) describing the phase space evolution of
the gas, from a time immediately before to a time immediately after the
collision. The total change in energy (and therefore the work performed)

over some finite period of time is then just the integral of λ̇∂λHλ along z(t),
over that span of time.

Now imagine that the wall of the container opposite to the piston is
externally maintained at some temperature T . Then there exist two mecha-
nisms by which the energy of the gas changes: by the scattering of a molecule
off the moving piston, as above, and by the scattering of a molecule off the
thermostatted wall. As before, the net contribution of the former is the
time integral of λ̇∂λHλ (even though the trajectory z(t) is no longer Hamil-
tonian). It is only this contribution which counts as work performed on the
gas: the sum of all the energy changes due to collisions with the thermostat-
ted wall is the heat absorbed or relinquished by the gas. Thus we again
obtain Eq. (25).

Finally, suppose the piston is itself a massive object, moving frictionlessly
from A to B, rather than an externally pushed device. As before, work is
performed by the piston every time a molecule scatters off it (and again the

total work is given by the integral of λ̇∂λHλ), but now the kinetic energy of
the piston changes at each such collision. If the piston begins with a speed
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λ̇0, and is then observed for a time τ , then the final speed will be

λ̇τ =

√

λ̇2
0 − 2W/M, (34)

M being the mass of the piston. For any set of initial conditions of the
gas, we get λ̇τ → λ̇0 in the limit M → ∞, so in that limit the speed of
the piston remains constant, just as if it were being driven externally. (In
other words, for an infinitely massive piston, the work performed by it on
the gas represents an infinitesimal proportional change in the piston’s kinetic
energy.)

Conclusions

The focus of this talk has been a result (Eq. (5)) which may be viewed
as an extension — to irreversible, nonequilibrium processes — of the well-
known relationship between reversible work and free energy (Eq. (2)). Just
as the reversible work performed in parametrically switching a system from
A to B is equal to ∆F regardless of the path taken in parameter space,
so the average exp−βW — defined with respect to a statistical ensemble
of irreversible processes — is equal to exp−β∆F regardless of both the
path taken, and the rate at which the switching is carried out. After pre-
senting this result, I have sketched a proof for the special case when the
system evolves under a Langevin equation in configuration space. I have
also discussed the general expression for the work performed on the system
(Eq. (25)), in terms of a phase space trajectory z(t) describing the evolution
of the micro-state of the system.
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Skłodowska-Curie Joint Fund II, under project PAA/NSF-96-253. The dis-
cussion of work in the final portion of this paper was stimulated by questions
raised during the presentation of these results at the Marian Smoluchowski
Symposium on Statistical Physics in Zakopane, Poland, September 1–10,
1997.
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