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Using a Monte Carlo simulation to generate a reaction-diffusion wave
front, we find that its mean propagation speed and profile width are smaller
than their macroscopic predictions. These discrepancies are related to de-
partures from equilibrium particle velocity distribution for fast reactions.
To improve the prediction of macroscopic front properties, we deduce from
Boltzmann equation the corrections to the macroscopic equation governing
the evolution of chemical species concentrations.
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1. Introduction

A microscopic simulation of Monte Carlo type is used to generate a
chemical wave front propagating in a one-dimensional (1D) medium. This
paper intends to bring out the microscopic phenomena which control the
macroscopic dynamics and to present how the macroscopic description must
be supplemented to correctly predict the wave-front behavior. The chemical
model chosen, introduced by Fisher [1] and Kolmogorov et al. [2], involves
two species A and B which diffuse with an identical coefficient D and react
according to

A+B → 2A . (1)

If the total concentration of species A and B,

nC = nA(x, t) + nB(x, t) (2)

is initially homogeneous, nC remains constant whatever position x and time
t. The macroscopic deterministic evolution of the local fraction A(x, t) =
nA/nC of particles A obeys the following equation [1,2]

∂tA = kA(1 − A) + D∂2
xA , (3)

where k is a rate constant. Equation (3) admits a family of wave-front
solutions A(x, t) = a(ζ), where ζ = x − Ut, moving with a constant speed
U and replacing the unstable A ≡ 0 stationary state by the stable A ≡ 1
stationary state. The macroscopic dynamics (3) only imposes a lower bound

Umin = 2
√

kD (4)

on the continuous range of velocities U associated with linearly stable fronts.
According to the so-called marginal stability criterion [3], a large class of
sufficiently steep initial profiles evolves to the front associated with Umin. A
workable definition of the profile width Emin is provided by the inverse of
the steepness at the inflexion point and an expansion [4] of Eq. (3) in 1/U2

min

leads to the estimate value:

Emin ≃ 8
√

D/k . (5)

Our aim is to discuss the ability of the macroscopic theory to predict
the mean properties of a wave front generated within a microscopic mod-
elization of the system. Deviations from macroscopic predictions (4) and (5)
in molecular dynamics simulations of dense fluids have been observed and
interpreted [5] in terms of extended irreversible thermodynamics [6]. On the
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other hand, it is well-known [7] that a chemical reaction may induce pertur-
bations of the particle velocity distribution. At a macroscopic description
level, an important consequence of this deformation is the modification of
reaction rate constants and transport coefficients [8]. The Direct Simulation
Monte Carlo (DSMC) method introduced by Bird [9] will allow us to test
possible nonequilibrium effects on a macroscopic pattern like a wave front.

2. Microscopic simulation method

Following Bird [9], we consider a dilute gas of hard spheres. The medium
is divided into linearly arranged cells of length ∆l equal to a fraction of the
mean free path. During the simulation time step ∆t chosen as a fraction of
the mean free time, the free motion of particles and their mutual collisions
are supposed to be uncoupled. The particle motion is simulated in 1D. The
section of the cells is chosen so as to ensure dilute conditions. The collisions
are performed in 3D as follows. A collision between a pair (i, j) of particles,
randomly chosen in a same cell, is accepted if their relative speed obeys:

|vi − vj | > Rvr
max , (6)

where 0 ≤ R ≤ 1 is a random number and vr
max is a continuously updated

maximum relative speed. The postcollision velocities are deduced from the
energy and impulsion conservation laws for a random impact parameter. A
cell time variable is increased by an evaluation of the colliding pair approach
time and new collisions are performed untill the cell time reaches ∆t. Reac-
tion (1) is supposed to have a vanishing activation energy but only occurs
with a given probability sf which plays the role of a steric factor. More
precisely, an accepted collision between different species is reactive if

sf > R′ , (7)

where 0 ≤ R′ ≤ 1 is a random number.
This procedure is repeated in each cell at each time step. In appropriate
conditions discussed further (small sf ), we verify that the simulated values
of rate constant k and diffusion coefficient D coincide with their equilibrium
predictions according to Boltzmann formulation [9]

k = 4nCd2

√

πkBT

m
sf

D =
3

8

1.017

nCd2

√

kBT

πm
, (8)
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where d and m are respectively the diameter and mass of the hard spheres
considered, kB is the Boltzmann constant, and T denotes the temperature.

3. Simulation results

We choose specific boundary conditions in order to mimic the propaga-
tion of a front of particles A in an infinite medium. Initially, particles A
are located in the left cells, particles B in the right cells. When the total
number of particles A becomes greater than its initial value, the first left
cell becomes the last right one while its particles A are transformed into B’s
and the front position φ(t) is increased by ∆l. For the parameter values
chosen, this trick is actually performed only every 100 or 1000 time steps on
average. It amounts to switch into a frame moving with speed U(t), equal
to the time derivative of φ(t), hence appearing as the now fluctuating front
speed. Independently of the microscopic realization of the initial condition,
the time average 〈a(ζ)〉 of the local fraction of particles A in cell ζ of the
moving frame evolves to a stationary profile as depicted on Fig. 1. In the
following, 〈 〉 refers to a time average over the simulation time after the
stationary regime has been reached.

For a vanishing activation energy and a steric factor sf = exp(−0.5),
the mean profile width 〈E〉 and the mean front propagation speed 〈U〉
are both about 15% smaller than their deterministic predictions given by
Eqs (4), (5). As shown on Fig. 2, these deviations from the deterministic
theory monotonically regress as sf varies from 1 to 0 but are still perceptible
for sf = exp(−7). Intuitively, the faster the reaction, the less efficient the
thermalization between two close reactive collisions.

In order to quantify the effect of the chemical reaction on the velocity
distribution of particles A without taking into account the inhomogeneities
in the front propagation direction x, we determine the second moment
〈vy

2 + vz
2〉 of the distribution restricted to coordinates y and z. As shown

in Fig. 1 for sf = exp(−0.5), the second moment 〈vy
2 + vz

2〉 of particle A
velocity distribution, considered as a function of space variable ζ in the mov-
ing frame, presents around the front position a clear increase with respect
to its equilibrium value 2kBT/m. Whatever the steric factor, the relative
deviation

∆〈vy
2 + vz

2〉
〈vy

2 + vz
2〉eq

=
〈vy

2 + vz
2〉 − 2kBT/m

2kBT/m

tends to a limit in the leading edge of the front. The perturbation suddenly
disappears on the right when the fraction 〈a(ζ)〉 of particles A vanishes. Note
that obtaining Fig. 1, i.e. one point on Fig. 2, requires weeks of computation
on an up-to-date workstation, and that CPU time increases with − ln(sf ). In
spite of the very large number of simulation time steps considered to compute
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Fig. 1. Simulation results: spatial variations in the moving frame of the isotropic

kurtosis κ (solid line) and the nonisotropic kurtosis κyz (long-dashed line) of the

A particle velocity distribution, of the relative deviation of its second moment

< vy
2 + vz

2 > to its equilibrium value 2kBT/m and comparison of time averaged

fraction < a(ζ) > of particles A (solid line) with the corresponding profile predicted

by the macroscopic deterministic theory (short-dashed line). The simulation pa-

rameters take the following values: steric factor sf = exp(−0.5), density nC = 0.1,

temperature kBT = 1, mass m = 1, diameter d = 1. The average is performed

over a time corresponding to more than 2 × 108 reactive collisions.

∆〈vy
2 + vz

2〉
〈vy

2 + vz
2〉eq

, oscillations around the limit in the leading edge are observed

because of the very small number of particles A in the most advanced part
of the front.

The effect of the chemical reaction (1) does not only consist of an in-
crease of the effective temperature associated with particles A (and jointly
of a cooling of B’s, since the total kinetic energy is constant) but also of a
deviation from the Gaussian character of the particle velocity distribution.
This departure from the Maxwellian statistics is quantified by non vanishing
values of the kurtosis restricted to coordinates y and z

κyz =

(

m

2kBT

)2
(

〈(vy
2 + vz

2)2〉 − 2〈vy
2 + vz

2〉2
)

(9)

around the front zone. Note that the spatial variations in the moving frame
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Fig. 2. Comparison between simulation results (solid symbols) and the analytical

approach based on the Boltzmann equation (open symbols): relative deviations

from their macroscopic prediction of the time averaged profile width (square) and

front propagation speed (triangle) as functions of − ln(sf ), where sf is the steric

factor. The solid line gives the values calculated from Eqs (19), (20).

of the isotropic kurtosis defined as

κ =

(

m

3kBT

)2 (

〈v4〉 − 5

3
〈v2〉2

)

(10)

nearly coincide with the variations of κyz as shown on Fig. 1. The non van-
ishing values of κ or κyz in the leading edge of the front proves that the
chemical system does not relax toward the equilibrium distribution between
two successive reactive collisions: the standard hypothesis of local equilib-
rium is not valid in a medium traveled by a chemical wave front even for
relatively slow reactions. Deviations are still observable for a steric factor
obeying − ln(sf ) = 7.

The relation between the change in mean wave-front properties and the
non Maxwellian character of the distribution is supported by the decay of
both effects as the steric factor decreases and the reaction becomes slower.
As early observed in homogeneous conditions [7] and confirmed for inhomo-
geneous systems [8], choosing a reactive criterion independent of the relative
energy of the colliding pair does not prevent from observing nonequilibrium
effects. For the chemical wave front studied here, reaction (1) may occur
only between particles A and B obeying collision criterion (6). To mimic
Boltzmann collision term, the selection of a pair of colliding particles de-
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pends on their relative speed. Therefore, the change of nature of a particle
B into a particle A does not affect equally the entire population of particles
B so that reaction (1) induces deviations from Maxwellian distribution for
each chemical species even in the case of the stochastic rule (7) adopted here
to accept a reactive collision.

4. Analytical approach

In order to interpret the numerical results in the framework of kinetic
theory, we consider the Boltzmann equations for the distribution functions
fA(x,v, t) and fB(x,v, t) of species A and B, respectively. The isothermal
reaction (1) which only changes the chemical identity of molecules does not
affect the velocity distribution of the mixture as a whole. Consequently, the
initial equilibrium of the whole system is maintained all the time. It means
that

fA + fB = nC exp

(

− mv2

2kBT

)

, (11)

where the uniform total concentration nC is defined in Eq. (2). The Boltz-
mann equation for A can be written as

∂tfA + vx∂xfA =

∫

(f ′

Af ′

A1 − fAfA1)|v − v1|dσAAdv1 (12)

+

∫

(f ′

Af ′

B − fAfB)|v − vB |dσABdvB

+

∫

f ′

Af ′

B|v − vB |dσ∗

ABdvB ,

where σAA and σAB are the cross sections for elastic collisions of hard spheres
A–A and A–B, respectively, and σ∗

AB is the cross section for reaction (1). The
reaction rate constant and the diffusion coefficient can be calculated from
the Boltzmann equation by means of the Chapman-Enskog method [10].
This perturbative approach was applied to homogeneous reactive systems
previously [7]. We use here an extension of this method assuming that
the chemical process as well as the transport process can be treated as
a perturbation. Equation (11) is used to eliminate fB in the Boltzmann
equation (12) for the distribution function of A. Moreover, Eq. (11) implies
the following relation between the temperatures TA(x, t) and TB(x, t) specific
to each species A and B:

nA(x, t)TA(x, t) + nB(x, t)TB(x, t) = nCT . (13)
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The deformation of the velocity distribution induced by the chemical reac-
tion leads in the third order approximation to modified expressions k′ and
D′ for the rate coefficients depending now on the local fraction A(x, t) as:

k′ = k (α0 + α1A(x, t)) , (14)

D′ = D (β0 + β1A(x, t)) , (15)

with

α0 = 1 +
43

640
sf , α1 = −2(α0 − 1), (16)

β0 = 1 − 7583

20532
sf , β1 = −2(β0 − 1). (17)

The above equations state that the correction to the diffusion coefficient is
larger than that to the rate constant.

Moreover the solution of Eq. (12) yields at this level of approximation a
quadratic term proportional to (∂xA)2, so that the macroscopic equation is
now given by:

∂tA = k′A(1 − A) + D′∂2
xA + q(∂xA)2 , (18)

with q = (D/24) sf . The above equation does not have the form of the
simple reaction-diffusion equation (3) and the formulas (4,5) for speed and
width of the front cannot be applied directly. We first numerically integrate
Eq. (18) with the same steep initial condition as in the simulation. Whatever
the steric factor, we obtain a stationary front profile in a frame moving at a
constant speed. The variations with the steric factor of the profile width E′

and propagation speed U ′ deduced from the numerical integration of Eq. (18)
are represented in Fig. 2. Secondly, we perform a linear stability analysis
of Eq. (18) in the leading edge of the front where A(x, t) vanishes. The
minimum speed predicted in the frame of the marginal stability criterion [3]
obeys:

U ′

min = Umin

√

α0β0 . (19)

Expanding Eq. (18) in power of 1/(U ′

min)2 leads [4] to an approximate value
of the width E′

min of the front propagating at U ′

min:

E′

min = Emin

√

α0β0

(

1 +
sf

384α0β0

)

−1

. (20)

The relative corrections of speed and width to their macroscopic predictions
Umin and Emin practically coincide.
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5. Conclusion

The results of the different approaches may be compared in Fig. 2. The
analytical approach based on the Boltzmann equation and the simulation
results predict both a slowing down of the front and an enhancement of its
steepness with respect to the macroscopic description. These observable de-
viations from the macroscopic predictions are related to departures from the
equilibrium particle velocity distribution. It is worth to note that the nega-
tive correction to the diffusion coefficient is essential to explain the decrease
of the speed. The prediction of speed by the marginal stability analysis
agrees very well with the result deduced from the numerical integration of
Eq. (18). For the width, a small difference between these results can be
noticed. The quantitative agreement between simulation and theory is not
entirely satisfactory. For large steric factors close to 1, the differences ob-
served can be attributed to the limitations of the Chapman-Enskog method
which is not valid for very fast reactions. Moreover, the standard diffusion
equation does not describe completely correctly transport processes in which
large inhomogeneities are involved [6], like in a very steep front. However,
these effects should be less important for steric factors smaller than exp(−3)
where some differences are still detected.

This work was possible thanks to the support POL/1639 from CNRS
(France) and Polish Academy of Sciences.
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