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A simple discrete model for the evolution of the interface (or front) in
a 2d (square) lattice, based on a complete as well as natural set of a few
stochastic rules, has been examined. The interface is initially assumed to
be a vertical straight-line which is made of elementary unit pieces called
further particles. Once one of the particles is chosen at random it is pushed
either left or right, drawing two new horizontal units (particles). Then the
process continues to proceed into both main directions, following the rules
(reversible and irreversible) that generally rely on creating and annihilating
at random the vertical as well as horizontal particles. The scaling properties
of the system have been analyzed, recognizing the front as a subdiffusive
(anomalous) macromolecular chain or “lattice animal”, with a few residual
parts, on the one hand, and as a rough surface with overhangs in a 1 + 1-
space, on the other. In the former, it turns out that the current length of the
front scales more or less like a polymeric chain under an attractive (quali-
tatively: “supressing”) potential field, while in the latter it seems at a first
glance that the problem may fall into an universality class characteristic
of the nonlinear nonconservative dynamics with possibly nonconservative
noise, exemplified by some dynamics of rough surfaces or interfaces.
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1. Introduction

An expanding interest in kinetics as well as scaling properties of ran-
domly evolving interfaces (surfaces) or fronts, being practically known in
physics and chemistry as well as biology as boundaries, "lines of phase sepa-
ration", (bio)membranes, active zones, (slowly) percolating flows, etc., is of
major interest to material scientists, physicists, and chemists but recently
also attracts interest of technologists or chemical processing engineers [1].
The objects in question are mostly known as grain (or domain) bound-
aries [2], fluctuating interfaces [3], spreading or invading fronts and/or crys-
tal surfaces [4], etc. They may represent a behaviour of such nonequilibrium
phenomena like e.g., grain coalescence in alloys, fracture propagation in solid
materials, damage spreading in mechanical, electrical as well as biological
systems, wetting, roughening, evolution of the crystallization front, growth
and volume increase of bubbles or even invasion of bacterial colonies [4]. The
kinetic behaviour of many of them still attracts some effort of researchers in
many disciplines, and is a subject of careful considerations. In particular,
scaling properties which always assume some invariance of the system prop-
erties under a scaling rule (or, a set of scaling rules) are of interest, mostly
to physicists which, under the self-similarity assumption(s), try to conclude
on quite general static as well as dynamic properties of the system under
study [5].

There is neither commonly accepted nor general theory which is able to
deal successfully with all of the phenomena listed above. This is due to the
fact that each of the complex systems mentioned has its own characteristics
that may be quite different from the characteristics of another system “chosen
from the list”. In general, two main directions are observed when dealing
with them:

1. Extensive Monte Carlo (MC) simulations; cellular automata (CA) as
well as molecular dynamics (MD) are also used (it is more fashionable
to use CA in last years) [6].

2. Analytical studies on dynamics or kinetics of some evolving fronts
(e.g., Kardar–Parisi–Zhang (KPZ) equation; directed polymers; Burg-
ers equation; master equation for the diffusive and/or convective front
propagation; Langevin equation for the evolution of a fluctuating chem-
ical wave front [7], etc.; ratchet concept [8]; percolation systems; note
that the concept of fractality of any type is frequently used for descrip-
tion of the above mentioned phenomena; cf. [9] for a general overview;
also, a scaling concept borrowed from polymer physics is very much
pronounced here [5].
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In this study, we wish to explore a problem of the evolution of a random
front on a 2d lattice, based on some well-known physical tool, i.e., the scaling
approach, but invoking two kinetic-geometrical concepts which, at a first
look, seem differ apparently from one another (one will probably see that it
would be a certain novelty in studying such phenomena).

The first concept comes from polymer physics and is called: a random
chain concept. To be more concrete, we have in mind a macromolecule
which grows under a potential (typically, the Lennard–Jones-like potential)
field, where, however, its attractive (or: “supressing”; say also: “contracting”)
part dominates which results in a scaling law, like length ∝ time1/3, in a
long times (or large beads number) regime [10]. In our case the role of the
attractive part of the potential field is played by some well-defined set of
annihilation-creation rules, where the annihilation part takes undoubtedly
favour in the course of time; equivalently, one can state that the sub-set
of the creation rules applied in this study would mimic the repulsive (hard
core) part of the potential [11].

The second concept, in turn, comes originally from the materials or sur-
face sciences, rather, and relies on exploiting the dynamics of possibly rough
surfaces or nonsolid-solid interfaces, or even to some extent, interfaces be-
tween two phases of the same type, like liquid-liquid or solid-solid interfaces.
In such a situation, a particular attention has to be paid to how does the
surface width (designated by w) scale with time t, in a short times regime,
or, which is a scaling law width versus the system (lattice) size, say L, but
around the long times limit or above a saturation time? Choosing the line
x = 0 that means the left border of the square lattice as a referenced line, we
are able to calculate the height as well as the width of the surface which, in
our opinion, possesses quite realistic geometrical characteristics, with some
overhangs, islands, spikes (or cusps), “necks”, etc. (cf. Fig. 1).

By performing some extensive computer simulations (on a square lattice
of 256 × 256, with the number of time or evolution steps of 2.5 × 106; the
number of simulations was 82 though a certain number of some “small-scale”
trails has also been done) we have been able to pick up the scaling exponent
(denoted further by ν) assigned to the first concept to be quite close to 1/3
(although, it is also very close to 1/4, but the value has a less popular or
physically clear interpretation as the former one; for instance, in the anoma-
lous random walk (RW) concept it corresponds to a RW with the anomalous
RW exponent dw = 4; for the normal RW dw = 2, and this case is usually
related to the Gaussian chain or to a RW or Brownian motion in an isotropic
space, whereas the anomaly due to dw = 4 is very often assigned to the so-
called RW with obstacles or realized in an anisotropic space; this anisotropy
or some kind of “inhomogeneity” in the system, may arise from either geo-
metrical, e.g. steric, hindrances, or other factors, like macromolecule-solvent
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interactions; cf. [9, 11]). As for the scaling exponents characteristic of our
system as a rough surface, we have observed, by applying the essential sam-
pling method [12], some crude tendencies of the system to fall into the cat-
egory (universality class) of dynamical systems with both nonconservative
dynamics as well as noise, like the KPZ system characteristic of rough sur-
faces, directed polymers or complex (turbulent) hydrodynamical systems [1];
this, however, cannot be understood as a firm result, but as a preliminary
report on first observations and tendencies, rather. Because, there exists
a formal correspondence between the Langevin approach (at least, for the
Edwards–Wilkinson (EW) model for rough surfaces) to interface statistics
and the diffusion-limited reactions [13], our problem can also be seen in such
terms, like A+ A− > 0 or more generally A+ B− > 0 reactions (for species
of type A or B), which are probably the most primitive as well as nontrivial
reactions in our system [14].

2. Description of the problem

2.1. In terms of anomalous Random Walk (RW)

There is no doubts that from the beginning the front under study pro-
ceeds a random walk. It means that because the object is at t = 0 a vertical
straight line consisting of a number (256 in our computer experiment) of
particles (or, unit bars; see above), we simply choose at random one of the
particles and push it also at random either left or right. After this step two
horizontal particles are created (a creation act is being proceeded) so that,
in the next time step, there is also a possibility to choose (always, at ran-
dom) one of the two horizontal particles though the probability of choosing
one of them is obviously small at this stage (it is equal to 1/129, in our
case). Then, the RW relies on pushing either vertical or horizontal particles,
that means, on creating some new necessary particles ("bridges") after the
next evolution step. The creation step ensures to keep the front more or
less continuous or compact during all successive motion steps, though some
overhangs, neighboring islands, say, residual parts, can emerge even after
the several evolution steps. There are, however, some necessary (again!)
anninihilation steps associated with each creation act. They are thought
of to allow a physically realistic character of the front (e.g., to avoid to
create some artificial internal structure of the front, and towards having
a certain advancing possibly nonartificial as well as natural crystallization
front). During the successive simulation steps we are always looking for how
does the current overall front length l behave (no matter, whether there is
a single trajectory or a certain number of them i.e., when some residual
sub-trajectories appear; cf. Fig. 1 for details) in the course of time t. Since
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we observe a power-law dependence, like

l ∝ tν , (1)

(for t > 0, and typically t >> 1) where ν is a critical (scaling) exponent of
the RW, we are interested in measuring the value of ν.

2.2. In terms of rough interfaces

There is also possible to investigate some kinetic or dynamic properties
of the object in question in terms of rough surfaces because a quite realistic
surface or interface is created on the square lattice (Fig. 1). Now, one can
have a 1+1-dimensional problem because we see that in such a case dynamic
surface properties have to be investigated considering a straight line as a
reference line (a basal plane or so). Let us then choose the left border of the
square lattice as the basal plane, i.e. a plane of x = 0 in our simulations.
This having in mind, we wish to examine some scaling rules, like

w ∝ tβ (2)

(for t << ts; note that w corresponds to the surface width which will be spec-
ified below), where β is the growth exponent of the process and ts (usually,
much greater than zero) stands for a measure of the stationarity (saturation)
of the process studied that has to be chosen experimentally [1], or

ws ∝ Lα (3)

(for t >> ts; note that ws corresponds to the saturation surface width),
where α is the roughness exponent of the surface and L stands for the size
of the lattice (L = 256, in our case), or finally

ts ∝ Lγ , (4)

where γ represents the so-called dynamic exponent. Notice that the equality
γ = α/β should hold (see Ref. [1], again), in this case.

3. Specification of the front

3.1. Algorithm

The following algorithm is explored in our simulations:
0) initialize a configuration of Y -units by inserting a vertical straight-line
1) draw a X or Y -unit (particle) by a uniform random number
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2) choose the direction of shifting of X or Y
3) look for the place into which the particle has to be shifted
4) if it is an occupied place, follow the corresponding irreversible rule after
examining the vicinity, if not, choose one of the corresponding reversible
rules in this same way (after examining the vicinity, too)
5) re-calculate the length of the front and other quantities estimated and
determine the coordinates of the new units created, and delete the coordi-
nates of the units removed
6) actualize any possible counters
7) jump back to point 1) unless a stop command appears
8) finish the process by performing some calculations and/or drawing pic-
tures.

3.2. Rules of random motion

The front consists of elementary X- and Y -units or particles (initially
only Y -units constitute the front). By X-particle (Y -particle) we understand
a horizontal (a vertical) elementary piece of the front which is of length of
the lattice unit. Two basic properties of the particles are (obviously, inspite
constituting the whole front) that (a) they can be created and/or annihilated
during the front evolution (b) because the front evolves (i.e., changes its
position in space and time, but in this study we are exlusively interested in its
temporal behaviour), they are shifted at random under the only restriction
that for X-particles the either shifting possibility is in Y -direction (upwards
or downwards), and vice versa, Y -particles can exclusively be shifted in X-
direction (left or right); in other words, the principle of perpendicular shifts
is applied during the whole process (it is important to mention that the only
boundary conditions imposed are the periodic boundary conditions).

After the first move two X-units are created. Then the motion of the
front relies exclusively on creation and/or annihilation of small groups of
X- and Y -s step by step. We have roughly assumed 8 basic “moving rules”,
i.e. shifts of X or Y -units into their perpendicular directions. They may be
either onto another unit or into an empty spot on a square lattice, and they
may generally be listed as:

(i) X + Y ⇋ Y + X
(i’) Y + X ⇋ X + Y
(ii) X ⇋ 2Y + X
(ii’) 2Y + X ⇋ X
(iii) 2X ⇋ 2Y
(iv) 2X + Y ⇀ Y
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(iv’) Y + 2X ⇀ Y

(v) 2X + 2Y ⇀ 0.

We have 8 basic a priori rules, 4 onto an empty and 4 onto an occupied
(by another particle) spot on the lattice, respectively, but among them there
are most probably (see discussion below) 5 of reversible type (from (i) to
(iii), see above) and 3 of irreversible type (the remaining ones), and this
way it was plugged in our simulation process. We see, however, that the
8 rules implemented are not independent of each other, and there are only
5 distinctly different rules which are at most very weakly related with one
another. It is worth emphasizing here that the rules appear to be natural for
the square lattice because they rely on some “conceptual destruction” of a
square following the above written schemes, or, more generally, on taking off
the sides X and Y of an rectangle). Notice that basically the system includes
50 percent of the total number of rules that are of annihilative nature, 37.5
percent of rules which have no account for the annihilation-creation process
of the interface (they can be called neutral, like Y + X ⇋ X + Y ), and
only 12.5 percent of rules that represent a pure creation process (see above).
Because of the 4 elementary sub-directions in 2d lattice, however, we have
32 elementary shifts in the system. For explaining the rules in a more pre-
cise way, let us designate a particle to be shifted in X-(Y ) direction by Y ∗

(X∗). Now, one can draw the 5 most independent and unrepeatable rules
schematically or even in a picturesque way as follows:

(1) X∗ + Y ⇋ Y + X,

or in a diagram-like form: |
− ⇋ ¬

(comment on a strong or direct reversibility: one can take the same particle
and move it back; the rule corresponds to a neutral shift);

(2) X∗
⇋ 2Y + X,

or in a diagram-like form: — ⇋ ⊓

(comment on strong or direct reversibility: again, one can take the same
particle and move it back; the rule represents a creative shift);

(3) X∗ + X ⇋ 2Y ,

or in a diagram-like form: −
⇋ | |

(comment on a weak or rather indirect reversibility: it is for the first time
irreversible since one cannot take the same particle; nevertheless, there exists
the reverse reaction 2Y ⇀ 2X, and hence it is reverible; note that the rule
is neither annihilative nor creative);

(4) X∗ + X + Y ⇀ Y ,

or in a diagram-like form: ⊏ ⇀ |

(comment on an undoubtful (so to say!) irreversibility: it is not reversible
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but there is a reverse reaction, Y ∗ ⇀ X + Y + X , which has already its
counterpart as the rule 2, and therefore is really irreversible; the rule com-
mented is not balanced by a back reaction: in reality, it is a kind of surface
tension which means this physical quantity that plays always a profound
role, e.g. in the crystal growth [15] or formation of bubbles, foames or many
colloidal assemblies; the rule looks fairly annihilative);

(5) X∗ + X + 2Y ⇀ 0,

or in a diagram-like form: 2 ⇀ ◦
(comment on the irreversibility: the rule is irreversible as well as very anni-
hilative; note that the open dot or small circle from the right-hand side of
the rule means “nothing” or a state which is physically irrelevant).

It is probably sufficient to say that by the reversibility we have meant
here a physical state which is easy to restore from one of the preceding states
(possibly, from the preceding one). If it is not the case, we call the rule irre-
versible. One has to realize that above in the diagrams, for simplicity, shifts
upwards of the horizontal X-particle (signed with ∗) are presented, and
dashed sides of the elementary cell (or square) are the empty sides while the
sides drawn with both dashed and continuous lines are the occupied lattice
places or simply X- or Y -paricles. Note that, basically, the most elementary
“chemical reactions” which cause some changes in the front structure are the
following:

X + X ⇀ 0 ,
Y + Y ⇀ 0 ,
X + 0 ⇀ X ,
Y + 0 ⇀ Y ,

and in this sense the system can probably be treated using some superficial
findings of the diffusion-limited reaction approach [13, 14] (yet, we have ap-
plied the 8 first rules stated in this sub-chapter, exclusively!). It is worth
stating that the two first of them possess a nontrivial anomalous chemical
reaction kinetics, with the critical dimension dw = 2 [14], whereas the two
remaining are of standard (say, Debyean) kinetics, either. One should be
also aware that not too much is known a priori about the chemical reaction
rates of all the reactions mentioned in this sub-chapter, and at a first look
one can predict rather more qualitatively than quantitatively which direc-
tions for the reversible reactions are the most probable or whether a certain
direction of an irreversible reaction is privilleged or rather hard to realize.
The general informations about whether the reaction is of annihilative or of
creative, or even of neutral nature, can surely help in this case (see some
discussion above).
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3.3. The measured quantities

According to what has been written in Section 2, the measured quantities
are as follows:

l ≡ l(t) =

Nm
∑

i

(Xi + Yi), (5)

where Nm stands for a number of runs while Xi ≡ Xi(t) as well as Yi ≡
Yi(t) are the numbers of X- and Y -s got for i-th run, respectively; in fact,
we are interested in the l versus t behaviour averaged over 82 simulations
performed so that we have picked up an averaged scaling exponent ν. The
next quantity is

w ≡ w(L, t) =

√

√

√

√

1

L

L
∑

j

[h(j, t) − h(t)]
2
, (6)

where

h(t) =
1

L

L
∑

j

h(j, t), (7)

and where h(j, t) stands for the current height measured from the reference
level (since, cf. Fig. 1, we may have this definition ambiguous, because of
the fact that more than one particle can correspond to a single j so that we
have applied here the concept of “inertia” and we have weighted, for each
j, like for the traditionally measured radius of giration [5, 10], the values
of h(j, t), just to ensure our estimations unambiguous; see Ref. [1]). Last
but not least, let us state clearly that the saturation time ts was estimated
directly from the computer experiment(s) by observing at which time step
the first saturation takes place (from this time step, it was rigorously checked
whether the current front length l changes by 20 percent or less).

4. Numerical results

First, let us point out that for visual demonstration of the process ex-
amined, we offer three snapshots shown in Fig. 1. Here, Fig. 1a presents an
initial stage of the front after only 108 time steps while Figs. 1b-c display
some intermediate and late stages of the front evolution, i.e., after 2045 and
3994 time steps, respectively (for a proper visualization, we have simulated
the process on the lattice 20 × 20 up to 4000 time steps).
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Fig. 1. A snapshot of the interface on the 20×20 square lattice realized up to 4000

time steps: a — an initial stage for 108 time steps; b — an intermediate stage for

2045 time steps; c — a late stage for 3994 time steps; note that during later stages

of the simulation some residual subdiffusive trajectories emerge.
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Fig. 2. A log-log length l versus time t dependence with the linear regression fitting

for the slope of ca. 0.27 within a confidence level of about 98 percent for the

simulation performed on 256× 256 square lattice up to 2.500.000 time steps; here,

one of the bests fits is presented.

In Fig. 2, one has the log-log length l versus time t dependence, with
some best linear regression fitting within the confidence level of ca. 98
percent, and with the slope about 0.27. In Fig. 3, one observes the log-
log length l versus time t dependence, with some typical linear regression
fitting within the confidence level of ca. 96 percent, and with the slope
about 0.32. In Fig. 4, in turn, one sees the log-log length l versus time t
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Fig. 3. A log-log length l versus time t dependence with the linear regression fitting

for the slope of ca. 0.32 within a confidence level of about 96 percent for the

simulation performed on 256× 256 square lattice up to 2.500.000 time steps; here,

one of the typical or intermediate fits is presented.
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Fig. 4. A log-log length l versus time t dependence with the linear regression fitting

for the slope of ca. 0.19 within a confidence level of about 85.5 percent for the

simulation performed on 256× 256 square lattice up to 2.500.000 time steps; here,

one of the worst or “misleading” fits is presented (but, fortunately, they are in a

very distinct minority).
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Fig. 5. The rough surface characteristics of the system is presented as a typical

realization in which the heights as well as the widths of the surface, measured in

both main perpendicular directions x and y, are emphasized; note fairly irregular

character of the curves, and realize that a first stationary (or, saturation) time is

“suspected” to be here below 1000.000 time steps (all the values of the x-axis must

be multiplied by 1000, in reality); obviously, the saturation time ts (see chaps. 3-4)

that we have used must be a value somehow averaged over 82 computer simulations,

and we have picked up it to be about 928.000 elementary time steps.

dependence, with one of the worst linear regression fittings got, i.e., within
the confidence level of ca. 85.5 percent, and with the slope about 0.19. As
to the estimation of ν (see above) we have picked up that ν = 0.27 ± 0.037,
within the averaged (over 82 simulations) confidence level about 0.96±0.02,
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and the averaged intercept value [12] ca. 6.16 ± 0.2; the fluctuations of all
the averages estimated were found to be less than 0.0016. This is the main
numerical result of our work that shows up that we simply have to do with an
anomalous RW process, which means, that its purely Brownian character is
destroyed (or supressed) by the annihilation-creation rules applied. In Fig. 5,
we show the rough surface characteristics of the system, just by presenting
a typical realization in which the heights as well as the widths (see above)
of the surface, measured in both perpendicular main directions x and y, are
presented (see Fig. 1, to realize what is going on). The exponents named
in Section 3 have been measured for both the directions mentioned, but we
wish to present here exclusively the values got for x direction, that means,
a typical case (cf. [1]). A crude estimation of them, done by an essential
sampling method (i.e., by averaging over a sub-space of ca. 15 percent of
all available data chosen from the adequate time intervals; cf. Eqs. (2) and
(3)), gives α = 0.434±0.039, β = 0.311±0.02 and γ ∼= 1.232 at an averaged
saturation time ts about 928.000 of elementary evolution steps (note that
we have 2.500.000 steps, totally, where the bares denote, as previously, some
averaging over 82 simulation data). Notice, that because of a crudeness of
the measurements ᾱ/β̄ differs from γ by more than 11 percent. But, it is
worth stating here that our estimation could enable to take, as a serious
candidate for some future investigations, the description of rough surface
dynamics based on KPZ-equation, for which α = 0.5, β = 0.333 so that
γ = 1.5. In consequence, we may have here a process which is recognized
(see Ref. [1], again) as a nonlinear process with nonconservative dynamics
as well as noise, that means, extremally difficult to deal with.

5. Conclusions

For having our study more versatile or proceeded in various directions,
we have treated the process in question twofold. First, we have dealt with the
front evolution as an anomalous RW, and we have arrived at the conclusion
that it must be an subdiffusive process, where the pure Brownian motion
must be damped (or, maybe, interrupted) by the annihilation-creation acts,
where, however, the annihilation prevails, in the course of time.

Second, to benefit from the studies on rough surfaces [1], we have studied
our process in terms of the rough surfaces, and we have estimated, roughly,
the basic exponents usually got from the computer simulations or certain
simplest analytical cases [16]. We have obtained some numerical indication
that the processes could be understood in terms of KPZ-description for the
interface heigth h ≡ h(y, t), measured in each y point and obeing a partial
differential equation ht = Dhyy + δhy

2 + η (where: D and δ are positive
constants, and η stands for a nonconservative noise) [16], but we obviously
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need more careful analysis to state it for sure. The question may arise here:
why the process cannot be considered, for example, by using Das Sarma–
Tamborenea description due to a one-dimensional molecular beam epitaxy
phenomenon [17] or more widely, to kinetic growth with surface relaxation
[18] (at the beginning of our studies, we have tried to associate 5 most
essential annihilation-creation rules of our process with 5 terms contained
in Eq. (5) of [18], but our numerical findings indicate rather the KPZ-
system as a precursor of ours; cf. Section 3, Subsect. 3.2), which seems to
be more “flexible” for understanding a complexity of such phenomena, or,
by invoking a recent approach offered by Constanza [19] (in fact, our first
small-scale computer simulations indicated that it might be the case).

From the above mentioned, it appears to be worthy stating that two
exponent values measured, namely ν and β, i.e. the anomalous RW and the
growth exponents, respectively, are close to each other (is it got accidentaly
here? would it be an indirect proof that the two approaches utilized may
co-exist or can be effectively applied? note that they are mostly measured in
different time regimes). One further remark seems to be necessary. Due to
the irreversible reactions the process finally (at very long times) should break
down if we do not add proper boundary conditions. The question is whether
the initially two open ends at the boundary could collapse? For instance, if
one would allow that they can go around the whole lattice. Presuming that
the open ends are able to do this a set of connected interfaces (fronts) inside
the lattice may result. The interfaces are not necessarily further connected to
the border of the lattice. In that case, the dynamics would eventually break
down with probability one (it is ergodic and hence the state with X = 0
and Y = 0 must be reached). It means, that either one has to incorporate
boundary conditions, say, the open ends are fixed at x = 0 and x = L
(think again that L is the size of the lattice; it does not imply, however, that
there y-values are fixed) or we are looking only at an intermediate state. On
the contrary, that means, while acting against a break down of the front,
we have to preserve (cf. Subsection 3.2) a domination of the creative shifts
(rule (2)) which leads to keep the process extremally reversible (also, some
neutral shifts, like those given by rule (1) or in some sense by rule (3),
do not destroy this strategy). Let us also mention explicitly that there is
no direct comparison between the system studied in this work and some
precise numerical results obtained by Jiang and Ebner [6]. One can also
realize that some more careful consideration of our modelling in terms of a
competition between two physical mechanisms (annihilation and creation),
and a certain interpretations of the numerical results (exponents) obtained
from the computer simulations “in a spirit” of some competition exponents
[20, 16] would help in full understanding the process that we have studied.
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Finally, let us notice that for going a step further just to make our study
more realistic from the physical viewpoint, one is simply allowed to play on
rules (1)–(5); cf. Subsection 3.2. Such a play would, for instance, be directed
towards having them more repulsive or attractive (a charged interface can be
investigated when one will use rules (3)–(5) i.e., mostly those of irreversible
nature, with a probability greater than for the two remaining), or, favoring a
surface tension effect by applying rule (4) in a more pronounced way. Certain
useful ideas on how to get the behaviour of the front more interesting under
various physical (or technological) circumstances have also been gathered
in [1] (see, for example, the Wolf–Villain or Lai–Das Sarma models, pp.
154–162, with the surface relaxation effect and the activation energy concept
of Arrhenius-type, included). For comparative (future) studies, it can be
useful to look at an interface (Ising-type) model in which the overhangs are
disallowed (cf., [21], and Ref. [17] therein).
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