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Large scale computer simulations of model chemical systems play the
role of idealized experiments in which theories may be tested. In this pa-
per we present two applications of microscopic simulations based on the
reactive hard sphere model. We investigate the influence of internal fluc-
tuations on an oscillating chemical system and observe how they modify
the phase portrait of it. Another application, we consider, is concerned
with the propagation of a chemical wave front associated with a thermally
activated reaction. It is shown that the nonequilibrium effects increase the
front velocity if compared with the velocity of the front generated by an
nonactivated process characterized by the same rate constant.

PACS numbers: 82.20. Mj, 82.20. Wt, 82.40. Bj

1. Introduction

Nonlinear phenomena observed in far-from-equilibrium chemical systems
have attracted a lot of scientific attention in the recent years [1–7]. The
theoretical description of these phenomena requires the methods, which go
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beyond the classical chemical kinetics based on the mass action law. In the
case of very fast chemical reactions, for which the relaxation processes are
slow if compared with the reaction rates, one may expect that the distri-
bution of the energetic states of reagents is different from the equilibrium
one and thus the rate constants differ from their equilibrium values. On
the other hand, in nonlinear chemical systems fluctuations play an impor-
tant role because for example they may switch the system from one basin
of attraction to another. In order to take fluctuations into account one has
to use the probabilistic description instead of the classical phenomenology.
It is difficult to test new theoretical ideas by comparing their results with
experiments because not so many of them were performed for sufficiently
simple chemical system to be treated by a theory. In this respect large scale
microscopic simulations of model chemical systems play an important role
because they allow one to compare theory with idealized experiments for
which all the elementary processes are known.

Although the number of particles involved in simulations is very small if
compared with real systems, nerveless the simulations which involve millions
of particles are usually sufficient to give us information on nonequilibrium
behavior. The most popular simulation techniques used for large scale sim-
ulations of model chemical systems are the lattice gas automata [8] and
the direct simulations of Boltzmann equation [9]. These methods are very
efficient from numerical point of view and can be easily applied for simu-
lations involving millions of particles, but on the other hand they involve
serious simplifications. In the both cases the reactants are represented as
structureless particles and the parameter describing the chemical properties
of a particle does not have any influence on the interaction with the other
particles of the system. The high efficiency of computer algorithms based
on the lattice gas model is achieved by introducing significant restrictions
on system’s geometry. Both space and time are described by discrete vari-
ables. Particles may occupy the lattice nodes only and may jump to the
neighboring nodes within a single time step. Therefore the speed of the
particles remains the same and, for example, the simulations of thermally
activated processes are not possible. The Bird method (direct simulation of
Boltzmann equation) [9] is also frequently used for large scale simulations.
According to the method the system is divided into cells and the free flow of
particles between cells is allowed. However, in order to speed simulations up,
only the interactions between particles belonging to the same cell are taken
into account. Moreover the interacting (reacting) particles are randomly se-
lected without considering their positions in space. In the consequence the
short scale spatial correlations are completely neglected in this approach,
which makes it appropriate for low density systems only.
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In this paper we are concerned with simulations based on the molecular
dynamics (MD) for reactive hard spheres [10]. This method requires more in-
volved computations than the techniques mentioned above, but it also allows
one to study systems composed of many millions particles for times of the or-
der of 10−9s. It does not introduce restrictions on the energies of molecules,
thus it can be easily adopted for simulations of thermally activated process.
In the simplest version of the method all particles are described as hard
spheres and short scale correlations related to the excluded volume effect
appear in a natural way. Such molecular dynamics simulations for reactive
hard spheres may be easily performed for different systems’s densities, even
very high.

Here we present two applications of the MD method. First we inves-
tigate the influence of internal fluctuations on a chemical system, which
according to the phenomenological kinetic equations exhibit oscillations in
concentrations of reactants. The simulations indicate that the character
of evolution observed in MD simulations depends on how strong is the at-
traction towards a limit cycle. Another problem considered is related with
nonequilibrium effects in a system with a thermally activated, autocatalytic
reaction A + B → A + A and the influence of them on the wave front prop-
agation. We show that a simple phenomenology which takes into account
coupled kinetic equations for concentration and density of energy gives quite
accurate description of influence of the nonequilibrium effects on wave front
velocity.

2. The simulation technique

There is no doubt that molecular dynamics [11] is the most appropriate
technique for microscopic simulations. However this method is the most
demanding from computational point of view and in the case of large scale
systems supercomputing facilities are necessary. Here we present a simpli-
fied version of the technique, which allows one to perform large scale simu-
lations of the system with thermoneutral chemical processes. The method
is originates from the molecular dynamics for reacting hard spheres [10].
According to it the molecules are represented by structureless hard spheres
and the chemical identity parameter does not have any influence on the me-
chanical motion of a sphere. A chemical reaction may occur when spheres
representing their reactants collide. As the time of collision between hard
spheres is equal to zero there is a clear separation of time scales related to
the reaction and to the motion of particles.

In the case of thermoneutral reactions all the reactive collisions are elas-
tic from the mechanical point of view. The trajectory which describes the
motion of molecules is an equilibrium trajectory for a system of spheres.
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Therefore one can easily simulate systems with different thermoneutral pro-
cesses using a prerecorded trajectory as the database on the consecutive
collisions and just checking if they lead to reactions or not. A significant
increase in the scale of simulations can be achieved if the periodic expansion
of the system is used [12]. The periodic boundary conditions mean that the
simulated system is regarded as an elementary cell in an infinite system,
which is invariant with respect to the translations by the vectors of the side
length. Knowing the evolution within a single cell one has the information
about positions and velocities for corresponding (by symmetry) particles in
all its replicas. Therefore, using a prerecorded data with the sequence of
elastic collisions one can obtain the evolution of a system which is extended
by a number of cells in each direction. Of course, the periodic boundary
conditions remain satisfied for the extended system too.

Let us stress that if a chemical identity of molecules is neglected than
such expansion does not bring us any new information , as the evolution in
all cells of the extended system is identical. Moreover, it may lead to wrong
conclusions as the correlations extending over a single cell are duplicated
by the artificially introduced periodicity. However, for a multicomponent
chemical system, in which the translational motion is not related to chemical
identity, the situation is different. First, different chemical compositions
may be initialized in various cells by marking the equivalent (by periodicity)
spheres in a different way. Next, a steric factor if it is not equal to unity,
differentiates the “chemical” evolution, because a collision between the same
objects may be reactive in one cell and nonreactive in another one. Thanks
to the periodic boundary conditions a free flow of molecules, between the
neighboring cells is ensured. Therefore, one can obtain the evolution of a
system which is much larger than the original one.

3. Studies on fluctuations around a limit cycle

The chemical model of a system exhibiting oscillation consists of the
following elementary (bimolecular) reactions [13]:

R + S
k1

⇋

k−1

V + S , (1)

V + E
k2

⇋

k−2

X + S , (2)

X + S →k3 E + U , (3)

X + V
k4

⇋

k−4

Y + S , (4)

V + S
k5

⇋

k−5

U + S . (5)
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This scheme is a modification of the model of an open chemical system with a
catalytic (enzymatic) reaction, inhibited by an excess of its reactant V . The
reactant V is transformed to the product U with E as the catalyst (steps (2)
and (3)). This part of the scheme is the well known Langmuir–Hinshelwood
mechanism of catalytic reactions (or the Michaelis–Menten kinetics for en-
zymatic reactions). Step (4) is the inhibition of the Langmuir–Hinshelwood
mechanism by an excess of the reactant V . Moreover, the reactant V is
transformed directly to the product U in the step (5). It is assumed, that
S is a solvent, whose concentration is maintained constant. The system is
open, due to step (1), in which the reactant V is produced from the reagent
R, whose concentration is also maintained constant.

Let us consider a homogeneous system in which reactions (1-5) proceed.
According to the mass action law, its evolution is described by five kinetic
equations for V , U , E, X and Y , but it is easy to notice that E(t) + X(t) +
Y (t) = E0 is constant and it is the first integral of the system. Therefore, the
phenomenological description is based on kinetic equations for four variables,
which have the form:

dV

dt
= k1RS − k−1V S − k2V E + k−2XS

−k4V X + k−4(E0 − E − X)S − k5V S + k−5US , (6)

dE

dt
= −k2V E + (k−2 + k3)XS , (7)

dX

dt
= k2V E − (k−2 + k3)XS − k4V X + k−4(E0 − E − X)S , (8)

dU

dt
= k3XS + k5V S − k−5US , (9)

where, for convenience, the symbols of the reagents are used to denote their
concentrations.

Usually the description of an catalytic system can be simplified provided
that the concentration of the catalyst is much smaller than the concentra-
tions of other reactants. However the MD simulations are the most efficient
if the concentrations of all reagents do not differ significantly and we have
to use the whole set of kinetic equations.

For an appropriate choice of the rate constants and the concentrations
of S, R and E0 the system of equations (6)–(9) exhibit the Hopf bifurcation
and can have a stable limit cycle as the asymptotic trajectory. It may be
checked that the shape and the stability of the limit cycle strongly depend
on the value of k2. Fixing the values of the other parameters as equal to:
S = 0.1, R = 0.5, E0 = 0.2 and k1 = 0.1, k−1 = 0.12, k−2 = 0.1,
k3 = 3.9, k4 = 1.0, k−4 = 4.0, k5 = 0.1, k−5 = 0.1 we find that the Hopf
bifurcation occurs at k2

∼= 5.914. In simulations we considered two values
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of k2: k2 = 6.0 and k2 = 8.0. At k2 = 6.0 the system is close to the bi-
furcation and should be much more sensitive to internal fluctuations than
for k2 = 8.0. For k2 = 8.0 we have a large, strongly attractive limit cycle
(drawn in Fig. 1(a) using a solid line). The cycle obtained k2 = 6.0 is much
smaller and less attractive (see Fig. 1(b)). Nevertheless, the periods of both
limit cycles are almost equal ( Tph = 640 for k2 = 6.0 and Tph = 653 for
k2 = 8.0 ).

Fig. 1. The comparison of the phenomenological limit cycle (the thin solid line)

with the results of MD simulations (points). The interval links CMD with a point

for which φ = 0. (a) — Ω = 10800, k2 = 8; (b) — Ω = 10800, k2 = 6.

A system with reactions (1)–(5) can be easily modelled using MD tech-
nique for reactive hard spheres because all processes are bimolecular. If we
assume that all reactions (1)–(5) are thermoneutral then periodically ex-
tended MD technique for reactive hard spheres [12] can be easily applied to
simulate the time evolution of the system. For simplicity all reactants (E,
R, S, U , V , X and Y ) are represented by hard spheres with the same mass
(m) and diameter (d). In order to control the rates of chemical processes
the steric factors are introduced (they are denoted as si, s−i, i = 1, 5). If a
collision between spheres representing reagents of one of the process (1)–(5)
occurs, then a random number generator is called by the program and if the
obtained random number is smaller that the corresponding steric factor then
the collision is regarded as a reactive one. After such collision the chemical
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identity parameters of the spheres involved are modified according to the
reaction scheme (1)–(5). Otherwise the collision is nonreactive one and the
spheres retain their chemical identities.

In order to keep the concentrations of the reactants R and S constant
we use the procedure described in Ref. [14]. Nonreactive particles which
play the role of reservoir of R and S molecules are present in the simu-
lated system. If a particle of S (R) vanishes in one of the reactions then
simultaneously a randomly selected particle of reservoir is transformed into
S (R), respectively. On the other hand if a particle of S (R) appears then a
randomly chosen particle of S (R) becomes a particle of reservoir. These pro-
cesses have no influence on the dynamics of the system because they do not
participate in (1)–(5). The random transformations between the reservoir
particles and reactants introduce a stirring in the simulated system which
helps to destroy the nonequilibrium spatial correlations between molecules
of reactants [15].

The results presented below have been obtained by a periodic expan-
sion of the system of N = 400 hard spheres placed in a cubic box with
the side length l = 12.5 ∗ d (and thus the packing fraction is η ≈ 0.11).
The prerecorded trajectory contained information on 20, 160, 000 collisions
(over 50, 000 collision per one sphere). It is assumed that the density
of the system is 8 [mol/l], which corresponds to the volume of the orig-
inal box equal to 83.(3) ∗ 10−21cm3. If the volume is rescaled to units
103cm3/N = 1.6(6)∗10−21cm3 (N is the Avogadro number) then the volume
of the original box is equal to 50 in these units. In the new units the num-
ber concentrations of reagents are numerically equal to the concentrations in
[mol/l] in the phenomenological equations. The simulations were performed
for the system expanded by 6 box lengths in all directions, which gives the
volume Ω equal to 10800.

The initial concentrations of reagents represent a point on the phenome-
ological limit cycle. At the beginning the chemical identities are assigned to
spheres in a random way and all remaining spheres are marked as the reser-
voir particles. The values of steric factors for MD simulations were obtained
by scaling the phenomenological rate constants by 0.06(6), which leads
to: s1 = 0.006(6), s−1 = 0.008, s−2 = 0.006(6), s3 = 0.26, s4 = 0.066(6),
s−4 = 0.266(6), s5 = 0.006(6), s−5 = 0.006(6) for reactions (1)–(5) respec-
tively. For k2 = 8 we have s2 = 0.533(3), whereas for k2 = 6 the steric
factor s2 = 0.4. In order to adjust the frequencies of reactive collisions to
the rate constants ki appearing in the kinetic equations the real time of the
MD simulations tMD is rescaled to the phenomenological time t according
to:

t =
1

8
d2g

√

πkBT

m

s1

k1
tMD , (10)

where g = 1.35 is the value of the radial distribution function at the sphere
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diameter d for the system of spheres characterized by the assumed den-
sity, kB is the Boltzmann constant and T is the temperature of our system
(T = 300). The results shown in Figures 2 and 4 are presented in phe-
nomenological time scale. The prerecorded trajectory allowed us to study
processes, which in phenomenological time scale last over te ∼= 840 which
means that they are only slightly longer than one period. In order to study
the long time behavior of the system we started new simulation program
from concentrations obtained at the end of the previous one. This proce-
dure corresponds to the instant homogenization of the system after each
te interval and it destroys possible spatial correlations, which may appear
between particles representing different reactants.

The time evolution of concentrations of U obtained in MD simulations
for k2 = 8 and k2 = 6 are shown in Figures 2(a), 2(b), respectively. Stars
mark the intervals te which correspond to individual simulation programs.
Both concentrations exhibit quite regular oscillations and fluctuations can
be seen mainly around the extrema. Despite of fluctuations the periods of
MD oscillations (the average time between consecutive maxima of U) are in
a good agreement with phenomenology and equal to tMD = 657 for k2 = 8
and tMD = 667 for k2 = 6. As expected in the case of k2 = 6 the limit cycle
is much less attractive as compared with k2 = 8 and the fluctuations of the
amplitude of oscillations are much more pronounced than in the previous
case.

Fig. 2. The concentration of U as a function of time. Stars mark the ends of

intervals te which correspond to the length of individual simulation programs. (a)—

Ω = 10800, k2 = 8; (b)—Ω = 10800, k2 = 6.
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Qualitative differences in evolutions of systems with k2 = 6 and k2 = 8
can be clearly observed on the projection of trajectories from 4-dimensional
phase space onto the V × U plane. The phenomenological limit cycle (the
solid line) is compared with the results of simulations (points). For k2 = 8
(Fig. 1(a)) points form a cycle and their distribution becomes narrower when
the size of the system increases. The right part of the cycle obtained in
MD simulations is shifted towards smaller values of U as compared with
phenomenology which we believe is related to influence of the nonequilibrium
effects on spatial correlations between concentrations of reactants [15]. For
k2 = 6 the behavior is shown in Fig. 1(b). The MD trajectory is widely
scattered in the neighborhood of the phenomenological limit cycle but the
volcano crater like structure is still clearly visible. Here the influence of
nonequilibrium effects is hidden by very large fluctuations.

In order to give quantitative description of the differences between sim-
ulations and phenomenology let us consider the projection of the limit cycle
on V × U plane. Let us define the center of the limit cycle C = (Vc, Uc) as
the point on V × U plane the coordinates of which are the values of con-
centrations averaged over the cycle. The phenomenology gives the following
coordinates of C: for k2 = 6 we have Vc = 0.416565 and Uc = 3.96475
whereas for k2 = 8: Vc = 0.416609 and Uc = 4.08982. By averaging MD
results we have obtained CMD which coordinates are: Vc = 0.414, Uc = 3.933
for k2 = 6 and Vc = 0.413, Uc = 4.048 for k2 = 8. It is noteworthy that the
MD results are in a good agreement with the phenomenological position of
the center and that the difference in coordinates of C for k2 = 6 and k2 = 8
predicted by phenomenology is confirmed by the MD simulations.

Knowing the center one can introduce parameterization of the projected
limit cycle using radius and phase. The radius is defined as the length of
vector from the center towards a given point on the cycle. To define the
phase φ one needs to specify the direction which corresponds to φ = 0.
In our analysis it is the direction from the center C towards the point P
representing the initial values of V and U . The projection of the vector
~CP onto V × U is marked in Fig. 1. The phase corresponding to any other

point Q on the phenomenological limit cycle can be calculated as the angle
between vectors ~CP and ~CQ. In this way we define the phenomenological
radius as a function of the phase φ.

Similar procedure may be applied for the analysis of results obtained
in MD simulations, but in this case CMD is used instead if C. The radius
and the phase characterizing a point O representing a state of simulated
system are defined as the length of ~CMDO and the angle between ~CMDP
and ~CMDO respectively. The phase is positive for the clockwise direction
because in this direction the system rotates. The comparison of φ(t) (in
2π units) coming from both phenomenology and MD is presented in Fig. 3
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(a) (b)

Fig. 3. The phase φ as a function of time. The solid line shows the solution of

phenomenological kinetic equations, the dashed line is obtained in MD simulations.

(a)—Ω = 10800, k2 = 8; (b)—Ω = 10800, k2 = 6.

where the solid line shows the phenomenological results and the dashed
line comes from the simulations. The considered range of times was se-
lected in order to see what is the influence of pronounced fluctuations in
U(t) (cf. Fig. 2(b)) on the phase. It is seen that within a single period the
phase as a function of time has two regions of slow increase which corre-
spond to the extrema of U(t) and two regions of rapid increase related to
the intervals in which the changes in U(t) are large. For k2 = 8 we get
good agreement between the phenomenology and simulations. Small shifts
in MD phase with respect to the phenomenological one are visible in regions
the phase changes slowly. In the case of k2 = 6 the regions in which the
system’s evolutions looks stochastic give plateau’s in which MD phase is
nearly constant. The influence of fluctuations can be seen more clearly if we
consider the angular velocity. In MD simulations we record approximately
7000 points of trajectory (v(t), u(t)) per a single period. They are grouped

into sets consisting 100 points. The angular velocity (ω = dφ
dt ) and its dis-

persion are separately calculated for each group. The angular velocity as
the function of phase ω(φ) is shown in Fig. 4. The function has two max-
ima per period and the values of ω change by an order of magnitude. For
k2 = 8 we have a good agreement between the phenomenological ω(φ) and
the results of simulations. In the case of k2 = 6 the differences are much
larger and the areas in which dispersion of ω is large correspond to regions
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(a) (b)

Fig. 4. The angular velocity as a function of phase. Notation as in Fig. 3.

(a)—Ω = 10800, k2 = 8; (b)—Ω = 10800, k2 = 6.

Fig. 5. The dispersion of angular velocity obtained in MD simulations as a function

of phase. The solid line — Ω = 10800, k2 = 8; the dashed line — Ω = 10800,

k2 = 6.
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of increasing angular velocity. The dispersion of ω as a function of phase
obtained in MD simulations is shown in Fig. 5 and, like ω(φ), it has two
maxima per a single period. Therefore, by introducing the phase and the
angular velocity, we are able to point the part of the limit cycle for which
the influence of internal fluctuations is the most important.

The influence of internal fluctuations on an oscillating system can be also
measured if one considers the radius corresponding to MD results scaled
by the phenomenological radius for the same phase. For k2 = 8, due to
nonequilibrium effects, the average scaled MD radius as a function of phase
is nearly constant and equals to 0.88. For k2 = 6 the dispersion of MD
radii, which correspond to the same phase is so large that the average value
does not give any important information. The distribution functions of the
scaled radii of all states obtained in MD simulations are shown in Fig. 6.
The distribution obtained for k2 = 8 (the solid line) is compared with the
one corresponding to k2 = 6 (the dashed line). In the second case the
distribution of radii is very wide. The MD results indicate that two types of
fluctuations appear in our system: the short time scale fluctuations related
to system’s size and the fluctuations associated with the random motion of
trajectory in the phase space, which are more pronounced if the limit cycle
is less attractive. The fluctuations of the second kind need more time to
develop. In order to see more clearly the difference between these types of
fluctuations we compared the average dispersion of radius for time intervals

Fig. 6. The comparison of distribution functions of radius obtained in MD simula-

tions for Ω = 10800 and two values of k2: k2 = 8 (the solid line) and k2 = 6 (the

dashed line).



On Microscopic Simulations of Systems with Model Chemical Reactions 1675

which are te long with the dispersion for the whole simulation. For k2 = 8
the average dispersion is about 57% of the total dispersion. For k2 = 6 the
average dispersion of radii measured within single interval te is only 44%
of the total one. It indicates that in the oscillating system with strongly
attracting limit cycle (k2 = 8) fluctuations are fully developed at much
shorter times (as compared with the period of oscillations) than in the case
the limit cycle is weakly attracting (k2 = 6).

4. Propagation of a chemical front in A + B → A + A system

A propagating chemical wave front, which consumes reactants ahead and
leaves products behind, is one of the simplest manifestations of an organized
spatio-temporal structure in a nonhomogeneous chemical system. One of the
most widely studied example of a chemical wave front is related to quadratic
autocatalysis [16,17,18]:

A + B
k→A + A . (11)

For this reaction both states: composed of pure A molecules and composed
of pure B molecules are stationary; the first one is stable and the other
is unstable. Therefore, in an inhomogeneous system, one part of which
contains pure A and the other pure B reagent, the interface between A and B
propagates into the region composed of pure B. It follows from the reaction
scheme (11) that the total number of molecules of A and B remains constant.
Let us denote by A and B the concentrations of corresponding species and let
N0 is the total concentration of them (A+B = N0). Having in mind that at
each point of space x and at every moment of time t A(x, t)+B(x, t) = N0,
the state of the system is defined by a single concentration only, for example
A(x, t). The time evolution of an inhomogeneous system with reaction (11)
is described by reaction-diffusion equation:

∂A

∂t
= kAB + D∇2A = kA(N0 − A) + D∇2A , (12)

where k and D denote the rate constant and the diffusion constant, re-
spectively. Introducing the scaled variables: concentration α = A/N0, rate

constant κ = N0k, time τ = κt and the space variable ζ =
√

κ/Dr one can
transform Eq. (12) to the form:

∂α

∂τ
= α(1 − α) + ∇2α . (13)

For the moment let us focus our attention on one dimensional systems
only. Let us assume that a stationary wave front propagates along the
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x-axis with a constant velocity ν. Its profile may be described in the refer-
ence frame moving together with it:

α(ζ, τ) = α(ζx, τ) = α(ζ) , (14)

where ζ = ζx − ντ . The stationary front profile α as a function of ζ variable
satisfies equation:

ν
∂α

∂ζ
+

∂2α

∂ζ2
+ α(1 − α) = 0 . (15)

It is known [18] that Eq. (15) admits solutions which are greater or equal
than the critical one νmin = 2. In non-scaled variables transforms to:

vmin = 2
√

κD . (16)

The particular solution of Eq. (15) which corresponds to vmin is very im-
portant because it was shown by Mc Kean [19] that a step-function initial
distribution of A evolves into a wave front propagating with this minimal
velocity. This result was later generalized by Bramson [20] and by Merkin
and Needham [21], who proved that velocity of any front originating from an
initial condition, such that the concentration of A vanishes for all ζ greater
than some ζ0, converges to the front with minimal stable velocity. Unfor-
tunately the analytical solution for the profile corresponding to νmin is not
known [22]. In general it can be shown [23] that if the propagation of front
is described by the reaction-diffusion in the form:

∂α

∂t
= χε,sF

(α)α(1 − α) + D∇2α , (17)

where χε,sF
(α) is a positive function of α, then the minimum stable velocity

for it is given by:

v = 2
√

Dn0 lim
α→0

χε,sF
(α) . (18)

In the following we are concerned with fronts generated by thermally
activated reaction (11). It is known that any thermally activated chemical
process creates nonequilibrium energy distributions for molecules of both
reactant and product [24,25]. The reaction cross section for a thermally ac-
tivated reaction depends on the energy of reactants and acts like a Maxwell
demon, which allows for reactions between the most energetic molecules. In
particular, if such reaction proceeds in an adiabatic system and the average
temperature of the system as a whole remains constant, than the rate con-
stant becomes different from the value which characterizes the mixture of
A and B molecules in which the energy distributions of both reagents are
the equilibrium ones [26]. Therefore (cf. Eq. (16)) the front velocity may
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be different than the one calculated using the equilibrium rate constant. In
this chapter we consider reactions characterized by different activation en-
ergies and steric factors which are selected such that the equilibrium rate
constants are the same. If the nonequilibrium effects are negligible than
the velocities of fronts associated with such reactions should be equal. We
show that if the nonequilibrium effects are taken into account both velocity
and width of a front depend on the activation energy. It is worthwhile to
add that propagating fronts created by exothermic, thermally activated re-
actions have been extensively studied as means to produce new materials in
so called “High Temperature Synthesis” [27].

First let us consider the influence of nonequilibrium effects on the rate
constant of a thermoneutral (the reaction heat is equal to zero), thermally
activated reaction A+B → 2A which proceeds in a homogeneous system. In
simulations performed using molecular dynamics for reactive hard spheres
a thermally activated process can be described by the line-of-center model
[28] according to which a collision between spheres representing A and B
may be reactive if the energy of the relative motion of spheres along the line
of their centers, calculated in the center of mass reference frame, exceeds
the assumed activation energy EA. It can be shown that the reaction cross
section which corresponds to the line-of-center model is defined as:

σ∗

A,B =

{

1
4sF d2

(

1 − EA

EC

)

for EC ≥ EA

0 for EC < EA

, (19)

where sF is the steric factor, d and m denote the diameter and mass of a
sphere and

EC =
1

4
(~vA − ~vB)2m ,

where ~vA and ~vB are velocities of colliding spheres. If the velocity distribu-
tions of A and B are represented by Maxwellians at temperature T0 than
the rate constant k(T0) reads:

k(T0) = 4d2sF gAB

(

πkBT0

m

)
1

2

exp

(

− EA

kBT0

)

, (20)

where gAB is the value of the radial distribution function for the distance d.
The theoretical description of nonequilibrium effects in an adiabatic sys-

tem with a thermally activated reaction can be significantly simplified if
one assumes that the energy distribution for molecules representing reac-
tant B can be approximated by a Maxwellian (fM,TB(t)), which corresponds
to a time dependent temperature TB(t) [25,29]. The considered system is
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composed of A and B molecules only so we have the following relationship
between energy distributions of molecules of reactant and product:

N0fM,T0
(v) = AfA(v) + BfM,TB

(v) . (21)

Now the kinetic equation for A reads:

dA

dt
= k(A(t))AB = AB

∫

σ∗fA(v1)fM,TB(t)(v2)dv1dv2dΩ

= B

∫

σ∗(N0fM,T0(t)(v1) − BfM,T0(t)(v1))fM,TB(t)(v2)dv1dv2dΩ

= N0BsF4d2g

(

πkB(T0 + TB(t))

2m

)1/2

exp

(

− 2EA

kB(T0 + TB(t))

)

−B2sF 4d2g

(

πkBTB(t)

m

)1/2

exp

(

− 2EA

kBTB(t)

)

. (22)

This equation has to be completed by the equation describing the dynamics
of TB . Such equation comes from the balance for the energy density of B
in which the energy losses in reactive collisions (a reacting molecule of B
is transformed into product A) and the energy exchange between A and
B molecules in nonreactive collisions are considered. The corresponding
formulae are derived in [29]. In the scaled variables defined as:

ε =
EA

kBT0
, β =

B

N0
= 1 − α, ξ =

TB

T0
and τ = 4d2gAB

(

πkBT0

m

)
1

2

N0t

one obtains the following set of kinetic equations:

d

dτ
β = −βsF

(

1

2
(1 + ξ)

)
1

2

exp

(

− 2ε

1 + ξ

)

+ β2sF ξ
1

2 exp

(

−ε

ξ

)

, (23)

d

dτ
ξ =

2

3

{

−sF

(

1 + ξ

2

)
1

2

exp

(

−ε
2

1 + ξ

)

ξ

(

ξ

2(1 + ξ)
+ ε

2ξ

(1 + ξ)2

)

+sF βξ
1

2 exp

(

−ε

ξ

)

ξ

(

1

4
+

ε

2ξ

)

+

(

1 + ξ

2

)
1

2

(1 − ξ)

−sF

(

1 + ξ

2

)
1

2

(1 − ξ)

(

1 + ε
2

1 + ξ

)

exp

(

−ε
2

1 + ξ

)

}

. (24)

It can be easily solved numerically for any values of ε and sF . Having β(τ)
and ξ(τ) one can calculate the energy of A molecules

eA(τ) =
1 − β(τ)ξ(τ)

1 − β(τ)
(25)
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and the scaled nonequilibrium rate constant:

χ =
k

k(T0)
=

exp(ε)

1 − β(τ)

[

(

1

2
(1 + ξ(τ))

)
1

2

× exp

(

− 2ε

1 + ξ(τ)

)

− β(τ)

(

ξ(τ)

)
1

2

exp

(

− ε

ξ(τ)

)

]

. (26)

The functions eA(α), ξ(α) and χ(α) are shown by the dashed line in Fig. 7.
In order to check how accurate is this simple phenomenology we performed
molecular dynamics simulations creating many individual reaction paths.
On the basis of these results we obtained the average concentrations of A
and B as functions of time (〈A〉(t), 〈B〉(t)) and the average kinetic energies
per a molecule of reagent (〈eA(t)〉, 〈eB(t)〉). The numerical technique is the
same as applied in [30] to study the nonequilibrium effects associated with
reaction A + A → products. If the average concentrations are known it
is easy to calculate the nonequilibrium rate constant as a function of time
(or as a function of concentration of A, which increases monotonically with
time):

k(〈A〉(t)) =
1

〈A〉(t)〈B〉(t)
d〈A〉
dt

. (27)

Fig. 7. The average energy of A particles, scaled by 3

2
kBT0, for a homogeneous

system with reaction (11) characterized by ε = 1 and sF = 1 shown as a function

of α. Initially α(τ = 0) = 0.1 and ξ(τ = 0) = 1. The solid line — molecular

dynamics simulations, the dashed line — solution of phenomenological equations

(Eqs. (23),(24)).
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The simulations has been performed for a system of N0 = 1000 hard spheres
with the diameter 5 and mass 32 a.u. placed in a cube with the side length
17.5∗d what corresponds to the packing fraction η = 0.098. At the beginning
of each reaction path 900 spheres represented B and the remaining 100 — A.

Fig. 8. The temperature of B particles scaled by T0 for a homogeneous system with

reaction (11) characterized by ε = 1 and sF = 1 shown as a function of α. Initially

α(τ = 0) = 0.1 and ξ(τ = 0) = 1. Notation as in Fig. 7.

The rate constant calculated on the basis of Eq. (27) and scaled to the
equilibrium value (20) is shown in Fig. 9 (here EA = 2kBT0). Contrary
to the reaction A + A → products for which the nonequilibrium effects
always decrease the rate constant [24,26], for reaction (11) we observe that
the rate constant as a function of concentration of A rapidly increases from
its equilibrium value at the initial stage of reaction. It has a maximum
and than its decay is linear. Close to the point in which concentrations
of A and B are the same the rate constant is equal to its equilibrium value
again and as reaction progress the nonequilibrium contribution to it becomes
negative. The effect can be explained as follows: the rate constant depends
on the velocity distributions for both A and B. If the concentration of A
is small than the increase in 〈eA〉 plays more important role than a small
decrease in 〈eB〉 (compare Figs. 7 and 8) and the rate constant is larger
than the equilibrium one. On the other hand if concentration of A is large
than 〈eA〉 is close to the equilibrium value, but the energy of B molecules
is significantly decreased (Fig. 8). As the result the rate constant is smaller
than the equilibrium one.
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Fig. 9. The rate constant scaled by its equilibrium value for a homogeneous system

with reaction (11) characterized by ε = 2 and sF = 1 shown as a function of α.

Initially α(τ = 0) = 0.1 and ξ(τ = 0) = 1. Notation as in Fig. 7.

We have found that the agreement between results of simulation and
the theory based on the existence of the nonequilibrium temperature of B
is very good. Therefore, in the following we shall use Eqs. (23),(24) to
study the influence of nonequilibrium effects on the rate constant. Fig. 10
shows the scaled rate constant χ (cf. Eq. (26)) as a function of concen-
tration of A for a system characterized by EA = 2kBT . Three different
initial conditions has been considered α(τ = 0) = 0.02, α(τ = 0) = 0.1 and
α(τ = 0) = 0.2. It can be noticed that, irrespectively of the initial condi-
tions, the scaled rate constant χ as a function of concentration of A converges
to the universal curve χsF ,ε(α) after a short initial period. If a numerical
solution of Eqs. (23),(24) is known than χsF ,ε may be approximated by a
polynomial fit and a particular form of it is given in Table I for the system
studied.

Reaction (11) is thermoneutral so all collisions (including reactive ones)
are elastic and therefore the periodic expansion can be used to enlarge the
size of simulated system. The results presented below were obtained by
a periodic expansion of the same trajectory, which was used to simulate
the nonequilibrium effects in a homogeneous system. Simulations were per-
formed for a system expanded by 12 side lengths in x- and in y-directions
and by 100 side lengths in the z-direction. Therefore the total number
of spheres considered was 14, 400, 000. A few simulations were done for a
smaller system in order to check if the scale of expansion affects the re-
sults. A good agreement between different simulations has been obtained.
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TABLE I

The parameters describing nonequilibrium effects in a homogeneous system with

reaction A + B → 2A. The values of ε and sF are the same as used to study the

propagation of a chemical wave front (sF = 0.03 exp(ε)).

ε limτ→∞ ξ χsF ,ε(α)(numerical fit)

0.0 0.9924 1.0018− 0.0036α− 0.0002α2

1.0 0.9771 1.0017− 0.0337α− 0.0006α2

2.0 0.9623 1.0495− 0.1020α + 0.0054α2

2.5 0.9553 1.0734− 0.1550α + 0.0154α2

3.0 0.9486 1.1032− 0.2250α + 0.0338α2

3.5 0.9423 1.1399− 0.3160α + 0.0640α2

For an expanded system the periodic boundary conditions were used in x-
and y-directions. Modified periodic boundary conditions were used in the
z-direction: the chemical identity parameter of a sphere crossing the bound-
ary of an expanded system was reversed. In order to observe front prop-
agation the initial concentration of reactants were nonhomogeneous in the
z-direction. Part of the simulations started form an initial concentrations
described by a step-function: all the spheres, for which z ≤ z0 were marked
as A, all the other as B. In other simulations there was a wide interval
of z within which the initial concentrations of both reactants were different
from zero. To analyze the results, the system was divided into 500 slices
perpendicular to the z- axis. The fraction of particles of each reactant is
averaged over each slice.

The same numerical technique was used in our previous papers to sim-
ulate propagation of a chemical wave front in a system with reaction (11)
[31,32]. In these papers we found that if the probability of reactive col-
lision is large than a chemical front propagates faster than it is predicted
by a parabolic reaction-diffusion equation Eq. (16). The effect seems to
be related with nonequilibrium character of diffusion process. Here we are
concerned with much slower reactions, for which we can expect that the
parabolic reaction-diffusion equation correctly describes system’s evolution.
In our simulations we considered the reactions for which sF = 0.03 exp(ε).

Fig. 11 shows a few snapshots of well developed front of concentration of
A obtained in simulations. The calculations were performed for ε = 0.0 and
sF = 0.03 (Fig. 11(a)) and for ε = 3.0 and sF = 0.03 exp(3) (Fig. 11(b)). It
can be seen that the activated front propagates faster than the nonactivated
one. In order to measure front’s velocity and width we use the following
method. The values of α and β can be precisely defined for each slice at any
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Fig. 10. The rate constant scaled by its equilibrium value for a homogeneous system

with reaction (11) characterized by ε = 3 and sF = 1 shown as a function of α. The

lines show the solution of Eqs. (23),(24) for ξ(τ = 0)=1 and the following values of

α(τ = 0): α(τ = 0) = 0.01 — the solid line, α(τ = 0) = 0.1 — the short dashed

line, α(τ = 0) = 0.2 — the long dashed line.

(a) (b)

Fig. 11. The propagation of a chemical wave front in a system characterized by

η = 0.098. The parameters of reaction are: ε = 0.0 and sF = 0.03 (Fig. 11(a))

and ε = 3.0 and sF = 0.03 exp(3) (Fig. 11(b)). The initial distribution of A and B

particles is the same in both cases. The curves from the left one to the right one

correspond to times: 1211 ps, 1419 ps, 1629 ps, 1837 ps, and 2046 ps, respectively.
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time t. We can define a new quantity γ(z) as:

γ(zi, t) =

{

α(i, t) if α(i, t) ≤ 0.5
β(i, t) if α(i, t) > 0.5

, (28)

where zi is the mean value of z corresponding to the i-th slice. γ(z, t) is a
localized function of z. We can define the front position 〈z〉(t) and width

〈(δz)2〉(t) as:

〈z〉(t) =

∑

i
ziγ(zi, t)

∑

i
γ(zi, t)

(29)

and

〈(δz)2〉(t) =

∑

i
z2
i γ(zi, t)

∑

i
γ(zi, t)

− 〈z〉2(t) (30)

The front’s position and width as functions of time are presented in Figs. 12
and 13, respectively. It can be noticed that front’s width rapidly increases
after initialization of the front and then decreases to a constant value what
indicates that the front has approached its stationary profile. In our simu-
lations the reaction parameters (ε, sF ) have been selected that

sF exp(−ε) = const. (31)

which means that if the nonequilibrium effects are neglected the minimum
stable velocity (Eq. (16)) for all fronts considered should be the same. Also
the front’s width commonly defined as:

δ ∼=
√

D

k
(32)

should be equal each other. The results presented in Figs. 12 and 13 clearly
indicate that for fronts generated by thermally activated reactions which
satisfy condition (31) both velocity and width are increasing functions of
activation energy. The data obtained in our simulations are given in Tables
II and III. One can see that front’s width changes with increasing activation
energy more rapidly than the rate constant.

In order to describe quantitatively the influence of nonequilibrium effects
on the propagation of a chemical wave front generated by a thermally ac-
tivated reaction one may assume that the nonequilibrium rate constant as
a function of α is the same as in a homogeneous system and it is given by
χsF ,ε(α). To test if this assumption is justified we measured the energy of
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Fig. 12. The position of the front as a function of time for the system of

N = 14, 400, 000 particles characterized by η = 0.098 and sF = 0.03 exp(ε); solid

line — ε = 0, the long dashed line — ε = 1, the short dashed line — ε = 2,

the dotted line — ε = 3.

Fig. 13. The dispersion of the front as a function of time for the system of

N = 14, 400, 000 particles characterized by η = 0.098 and sF = 0.03 exp(ε); solid

line — ε = 0, the long dashed line — ε = 1, the short dashed line — ε = 2,

the dotted line — ε = 3.
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A particles in every slice along the z-axis. The measurements were repeated
for 25 snapshots of the front. The average energy of A particles as a function
of α is marked by points in Fig. 14. We compare the results obtained for
ε = 0.0 (small symbols) with those for ε = 3.0 (large symbols). The lines
show eA(α) calculated on the basis of the “universal” function ξ(α) obtained
from Eqs. (23),(24) for a homogeneous system. As expected, the average
energy of A in the front is a decreasing function of α. The molecules of A
appear in a highly energetic reactive collisions with B particles and their
energy (in average) is higher than 3

2kBT0. As front moves and the reaction
develops more energy is transferred from A to B particles and eA approaches
the equilibrium value. The agreement between 〈eA〉 obtained for front pro-
file and the phenomenology is very good except for the point corresponding
to the lowest concentration (0.0 < α < 0.1). Moreover the dispersion of 〈eA〉
at this point is by an order of magnitude higher than for the others.

Fig. 14. The points mark the average energy of A particles in the chemical front,

scaled by 3

2
kBT0, as a function of α for the system of N = 14, 400, 000 particles

characterized by η = 0.098 and sF = 0.03 exp(ε); the small dots — ε = 0, the

big dots — ε = 2.5. The lines show eA(α) obtained from equation describing a

homogeneous system (Eqs. (23),(24)).

The numerical fit for χε,sF
(α) indicates that, due to the nonequilibrium

effects, for the set of reactions satisfying (31), the front’s velocity is an
increasing function of activation energy. The results are given in Table II.
First let us notice that, due to the fact that the considered reactions are still
fast if compared to diffusion, the velocities of fronts obtained for ε = 0.0 are
slightly larger than the minimal stable velocity calculated from Eq. (16). The
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dispersion of the front shown in Fig. 13 indicates that the simulated front
has reached its stationary form, so the difference in velocities does not come
from transient effect. In order to see the influence of nonequilibrium effects
on the velocity it is convenient to introduce the velocity scaled to its value
for ε = 0.0 separately for simulations and phenomenology. The numbers
shown in Table II say that the phenomenological description introduced by
us slightly underestimates front’s velocity, but nevertheless may be applied
as a first approximation of the nonequilibrium effects. It is estimated that
the error of scaled velocities obtained in simulations is around 0.02, thus the
agreement is rather good.

TABLE II

The velocity (measured in d
ps

of a front generated by a thermally activated reaction

A + B → A + A. Comparison between molecular dynamics simulation and theory

(sF = 0.03 exp(ε)).

ε vMD v(Eq. (18)) vMD

vMD,ε=0

v
vε=0

(Eq. (18))

0.0 0.280 0.247 1.00 1.000

2.0 0.284 0.235 1.01 1.024

2.5 0.293 0.255 1.05 1.035

3.0 0.307 0.263 1.10 1.067

TABLE III

The dispersion (measured in d) of a front generated by a thermally activated re-

action A + B → A + A. Comparison between molecular dynamics simulation and

theory (sF = 0.03 exp(ε)).

ε δMD δnum
δMD

δMD,ε=0

δnum

δnum,ε=0

0.0 16.6 ± 0.08 13.80 1.00 1.00

2.0 17.2 ± 0.12 14.30 1.04 1.04

3.0 19.7 ± 0.20 14.90 1.19 1.08

The dispersions of fronts obtained for different ε are shown in Table III.
The phenomenological values of it were calculated from the numerical solu-
tion of Eq. (18) with the appropriate χε,sF

from Table I. The dispersion is
also an increasing function of ε and the rate it increases is about twice as
large as for the velocity. This results can be easily understood. The front’s
velocity depends on the nonequilibrium effects by the limα→0 χε,sF (α) only,
whereas the values of rate constant for both α → 0 and α → 1 have influence
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on front’s width. Let us notice that combining Eq. (16) with Eq. (32) one
obtains that vmin ∗ δ does not depend on the rate constant. This conclusion
is clearly not hold for fronts generated by thermally activated reactions.

5. Conclusions

In this paper we have studied examples of chemical systems for which the
phenomenological description is not sufficient and microscopic simulations
give additional information on system’s evolution. In the first part we were
concerned with molecular dynamics simulations of a model of oscillatory
system. The MD simulation allowed us to study the influence of fluctua-
tions on simple periodic oscillations. Instead of a closed line corresponding
to the limit cycle, MD results are dispersed as a “ring”-like structure form-
ing the phase portrait of the system influenced by internal fluctuations. We
introduced an approximate quantitative description of fluctuations based
on phase dependent radius and phase. As expected we have found that the
strength of fluctuations decreases with the system’s size. By considering two
cases in which (according to the phenomenology) the limit cycle is weakly
and strongly attractive we have been able to distinguish two types of fluctu-
ations. One of them is related to the volume of the system whereas the other
characterizes the random motion of the MD trajectory in the phase space
and depends on phenomenological parameters (k2 in our case). These two
types of fluctuations differ by time scales. The size dependent fluctuations
appear on much shorter time scale than the other. We have introduced the
phase and studied the influence of fluctuations on the angular velocity. It
has been shown that the regions in which angular velocity increases are more
affected by the internal fluctuations than the other part of the cycle.

In the second part of this paper we have been concerned with the influ-
ence of nonequilibrium effects on the propagation of the wave front. We have
considered a set of thermoneutral thermally activated reactions for which the
activation energies are different but the equilibrium rate constants remain
the same. Therefore, if nonequilibrium effects are neglected, then the chem-
ical wave fronts generated by these reactions should propagate with equal
velocities. The results of molecular dynamics simulations indicate that both
front’s velocity as well as its width are increasing functions of the activation
energy. It is also observed that the influence of nonequilibrium effects on
front width is more important that on front’s velocity.

In order to understand these results we have performed simulations of the
influence of nonequilibrium effects on the rate constant of reaction A+B →
A + A proceeding in a homogeneous system. We have found that for low
concentration of product A the rate constant is larger than the equilibrium
value what can be explained by the presence of nonequilibrium effects, but if
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B < A these effects decrease it. As shown in [23], the front’s velocity depends
on the rate constant for small concentration of A, thus it should increase
due to the nonequilibrium effects. The front’s width is larger than for a
system in which the nonequilibrium effects are absent, because it takes longer
for reaction to terminate. These results are in qualitative agreement with
simulations, but it seems that phenomenology underestimates the observed
effects. We believe that an additional contribution to front’s velocity may
come from the nonequilibrium diffusion constant of reactant A. In this paper
we have assumed that this diffusion constant does not change along the front.
The present studies on nonequilibrium diffusion [33] indicate that, for equal
masses of reactants and activation energies in the range considered here the
influence of nonequilibrium effects on diffusion is less important than on the
rate constant. Underestimation of front’s velocity by phenomenology may
be also related to the randomness in energy of A particles for the initial part
of the front. The dispersion in eA is very high and it may give a positive
contribution to front’s velocity.
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