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present work is concerned with the dynamics of their growth in a system
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the master equation, in which Fick’s law was assumed for the diffusive flow,
and molecular dynamics simulations performed for a model system of “re-
acting” hard spheres was found in our previous work. Molecular dynamics
indicates front-like expansion of correlations towards their stationary form,
whereas the theory supports more uniform growth at all distances. In this
paper, we introduce the relaxation of the diffusive flow towards Fick’s law
based on the Langevin approach in order to explain the front-like expansion
of the spatial correlations.
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1. Introduction

It is known that the nonequilibrium spatial correlations between fluc-
tuations in concentrations of reactants may appear in systems for which
the detailed balance condition is not satisfied [1]. Most of the publications
on this subject were concerned with the stationary correlations [2–5]. Re-
cently Gorecki and Kitahara studied the dynamics describing the growth of
nonequilibrium correlations using both the theory based on the master equa-
tion and molecular dynamics simulations [6]. They considered a stationary
state of a system for which the detailed balance condition is not satisfied.
Initially the average concentrations of reactants corresponded to their sta-
tionary values, but the reagents were randomly distributed in the system. In
such a case the concentrations of reactants remain unchanged in time (they
may fluctuate only), but the nonequilibrium correlations between reagents
develop in space as reactions progress. Molecular dynamics simulations in-
dicated front-like expansion of the spatial correlations, whereas the theory
supported more uniform growth at all distances. This discrepancy seems re-
markable in the case of faster reaction. Gorecki and Kitahara suggested that
it comes mainly from the fact that the diffusive term in the master equation
is evaluated according to Fick’s law. When the time scale of the chemical
reaction is sufficiently short, we have to take into account the time scale of
relaxation of the diffusive flow towards the state which satisfies Fick’s law.

This paper is concerned with a simple generalization of the conventional
treatment for the case of fast reactions by considering the diffusive flow
relaxation. We adopt the description based on the Langevin equations for
the fluctuation of the concentration of reactants and the diffusive flow. These
Langevin equations can be obtained by physically reasonable modification
of the stochastic equations which are equivalent to the description adopted
in [6].

The paper is organized as follows: in two following sections, we present
the system and briefly discuss the description based on the master equation.
Next we introduce the Langevin equations which are equivalent to the master
equation in the Gaussian approximation and then modify them in order to
take into account the diffusive flow relaxation.

From these Langevin equations the time evolution of the correlation func-
tions of fluctuations in reagents’ concentrations are derived. This result are
compared with molecular dynamics simulations. We conclude the paper
with a few remarks on our treatment and suggestions for the future work.
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2. The model

The model which is considered below consists of the following reactions:

X + X
k1

⇋

k−1

X + Y , X + Y
k2

⇋

k−2

Y + Y . (1)

It was used in our previous papers on the stationary form of the correlations
of fluctuations in reagents’ concentrations [5] and the dynamics of their
growth [6]. We shall assume that the reactions proceed in a closed system
so the sum of the concentrations of X and Y (denoted x and Y respectively)
is constant. The kinetic equations for system (1) read:

dx

dt
= −k1x

2 + k−1xy − k2xy + k−2y
2 = f(x, y) ,

dy

dt
= k1x

2 − k−1xy + k2xy − k−2y
2 = −f(x, y) . (2)

It is clear that x + y = c(=const.) is a constraint of these kinetic equations.
In the following we restrict our attention to a homogeneous, stationary state
of the system (1). It is easy to prove that equations (2) admit a single such
state xs, ys; 0 ≤ xs, ys ≤ c, which is always stable.

3. Previous results

At the beginning let us briefly illustrate the conventional mesoscopic
description of spatial correlations between fluctuations in concentrations of
reactants which is based on the master equation for a spatially distributed
system. We consider a system composed of cells characterized by equal
volume Ω and let Xi, Yi denote the number of molecules of X and Y in
the i-th cell. Information on time evolution of the system can be extracted
from the probability distribution P (. . . ,Xi, Yi, . . . , t) which describes the
probability of finding Xi molecules of X and Yi molecules of Y in the i-th
cell at the time t. The master equation for the system can be derived by the
standard method.

d

dt
P =

(

d

dt

)

chem

P +

(

d

dt

)

diff

P . (3)

The full representation of the transition probability for the chemical reaction
and the diffusion is presented in [6]. It is important that the transition
probability for the diffusion comes from the simple jump process between
two cells, which gives Fick’s law in the continuum limit.

The equations which describe the growth of spatial correlations of fluc-
tuations in reactants’ concentrations can be derived in a direct way from
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the master equation by assuming a Gaussian multivariate probability for
intensive excess variables

δxi =
Xi

Ω
− xs, δyi =

Yi

Ω
− ys, (4)

following the method by van Kampen [7]. Here we assumed that the average
concentrations of reactants (xs, ys) correspond to the homogeneous steady
state.

Considering the continuum limit, according to the standard approach
[1,7], the stationary correlation functions have the following form:

〈

(n(r) − ns) (m(r′) − ms)
〉

= ns δnm δ(r − r
′)

−CNM

8πD

1

|r − r′| exp(−κ|r − r
′|) , (5)

where n and m denote the concentrations of the reagents N and M . The
constants CNM and κ are related to the chemical dynamics and diffusion.
For reaction (1) they read

CXX = CY Y = −CXY ≡ C = 2(k1x
2
s − k−1xsys) , (6)

κ =

√

a

D
, (7)

where

a =

(

∂f

∂y

)

xsys

−
(

∂f

∂x

)

xsys

> 0. (8)

It is obvious that if the detailed balance condition is satisfied then all
constants CNM are equal to zero. Thus the second term in Eq. (5) which
gives the spatial correlation with the correlation length 1/κ may appear in
a stationary state only if the detailed balance condition is not hold.

Then we show the equation which describes the dynamics of the corre-
lation functions. Let us introduce new time-dependent correlation functions
σnm defined as follows:

σnm(| r − r
′ |, t) =

〈

(n(r) − ns)(m(r′) − ms)
〉

t
− nsδnmδ(r − r

′) , (9)

assuming that the system is homogeneous. Its Fourier transform is denoted
as σnm(k, t). For reactants which are perfectly mixed the initial condition
reads:

σxx(k, t = 0) = σyy(k, t = 0) = σxy(k, t = 0) = 0 . (10)

This initial condition leads a condition for the solution

σxx(k, t) = σyy(k, t) = −σxy(k, t) . (11)
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Using this condition one finally obtains the equation for σxx

d

dt
σxx(k, t) = −2aσxx(k, t) − C − 2Dk

2σxx(k, t) . (12)

The analytical solution for σxx(| r − r
′ |, t) can be obtained from Eq. (12)

and it was presented in [6].

4. The Langevin equations for the diffusive flow relaxation

First of all we derive the Langevin equations which are equivalent to the
description based on the master equation in the Gaussian approximation
which was mentioned in the previous section. Let us denote δn(r) = n(r)−
ns as the local fluctuation of the concentrations of reactants N (N is X or
Y ), and Jn as local diffusive flow of reactants N . Then the dynamics of δn
and Jn is given as follows:

d

d t

(

δx(r, t)
δy(r, t)

)

=

(

fx,s fy,s

−fx,s −fy,s

) (

δx(r, t)
δy(r, t)

)

−∇·
(

Jx(r, t)
Jy(r, t)

)

+

(

ξx(r, t)
ξy(r, t)

)

,

(

Jx(r, t)
Jy(r, t)

)

= −D∇
(

δx(r, t)
δy(r, t)

)

+

(

Rx(r, t)
Ry(r, t)

)

, (13)

where we have used abbreviated notation

fn,s =

(

∂f

∂n

)

xsys

.

The variables ξn(r, t) and Rn(r, t) are Gaussian random forces characterized
by:

〈ξn(r, t)〉 = 0 , 〈Rn(r, t)〉 = 0 , (14)

and
〈

ξn(r, t)Rmα(r′, t′)
〉

= 0 ,

(

〈ξx(r, t)ξx(r′, t′)〉 〈ξx(r, t)ξy(r
′, t′)〉

〈ξy(r, t)ξx(r′, t′)〉 〈ξy(r, t)ξy(r
′, t′)〉

)

=

(

1 −1
−1 1

)

×
[

a
fx,sxs − fy,sys

fx,s − fy,s
− C

]

δ(r − r
′) δ(t − t′) ,

(

〈Rxα(r, t)Rxβ(r′, t′)〉 〈Rxα(r, t)Ryβ(r′, t′)〉
〈Ryα(r, t)Rxβ(r′, t′)〉 〈Ryα(r, t)Ryβ(r′, t′)〉

)

=

(

xs 0
0 ys

)

×2D δαβ δ(r − r
′) δ(t − t′) . (15)
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It is easy to check that these equations give the same time evolution of the
correlation function as Eq. (12).

Now let us propose a simple modification of these Langevin equations
which takes into account the diffusive flow relaxation to Fick’s law. We
slightly modify the Langevin equations as follows:

d

d t

(

δx(r, t)
δy(r, t)

)

=

(

fx,s fy,s

−fx,s −fy,s

) (

δx(r, t)
δy(r, t)

)

−∇·
(

Jx(r, t)
Jy(r, t)

)

+

(

ξx(r, t)
ξy(r, t)

)

,

d

d t

(

Jx(r, t)
Jy(r, t)

)

= −γ

{(

Jx(r, t)
Jy(r, t)

)

+ D∇
(

δx(r, t)
δy(r, t)

)}

+ γ

(

Rx(r, t)
Ry(r, t)

)

,

(16)
where R

′
n(r, t) = γRn(r, t) and

〈

R′
nα(r, t)R′

mβ(r′, t′)
〉

= 2γ2Dns δnm δαβ δ(r − r
′) δ(t − t′)

= 2γ
kBT

m
ns δnm δαβ δ(r − r

′) δ(t − t′) . (17)

In Eq. (17) we have assumed Einstein’s relation D = kBT/mγ where kB is
the Boltzmann constant and m is the mass of the reactants (where we have
assumed that reactants X and Y have the same mass.). The relation (17)
corresponds to the fluctuation-dissipation relation which can be obtained
from the consideration based on nonequilibrium thermodynamics of multi-
component systems [8]. In this treatment τf ≡ 1/γ determines the time
scale of diffusive flow relaxation to Fick’s law. In the limit τf → 0 (γ → ∞)
we recover the description by Eqs (13) and (15).

5. Results

The spatial correlations of fluctuations in reactants’ concentrations can
be calculated from Eqs (16) with initial conditions:

〈

δn(r, 0) δm(r′, 0)
〉

= ns δnm δ(r − r
′) ,

〈

Jnα(r, 0)Jmβ(r′, 0)
〉

=
kBT

m
ns δnm δαβ δ(r − r

′) ,
〈

δn(r, 0)Jmβ(r′, 0)
〉

= 0 , (18)

where the first condition corresponds to the initial perfectly mixed state and
the second condition comes from the equilibrium distribution at initial time.
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A tedious but straightforward calculation leads to the following result
〈

δn(r, t) δm(r′, t)
〉

= lim
t→∞

〈

δn(r, t) δm(r′, t)
〉

+ CNM

∫

d3
k

(2π)3
eik·(r−r′)

(a − γ)2 − 4γDk2

×
[

e−2λ+t (λ+ − γ)2

2λ+
+ e−2λ−t (λ− − γ)2

2λ−
− e−(a+γ)t 2γDk2

a + γ

]

, (19)

where
λ± =

1

2

[

(a + γ) ±
√

(a − γ)2 − 4γDk2
]

, (20)

and

lim
t→∞

〈

δn(r, t) δm(r′, t)
〉

=

[

ns δnm − CNM

2(a + γ)

]

δ(r − r
′)

− CNM

8πD

γ

a + γ

1

|r − r′| e−κ|r−r′| . (21)

This term survives in the limit t → ∞ and it corresponds to the stationary
spatial correlation function. We obtained some correction to the well-known
result (5) which are of the order of 1/γ. The second term contains three kinds
of modes which decay exponentially to zero with time scales Re(λ+), Re(λ−)
and (a + γ) respectively.

In the special case a = γ, the inverse Fourier transform of Eq. (19) can
be done analytically leading to the expression

〈

δn(r, t) δm(r′, t)
〉

= nsδnmδ(r − r
′) − CNM

4a

(

1 − e−2at
)

δ(r − r
′)

−CNM e−2at

32πaD

1

|r − r′|

[

δ

(

t − |r − r
′|

2
√

aD

)

− δ

(

t +
|r − r

′|
2
√

aD

)]

−θ

(

t − |r − r
′|

2
√

aD

)

CNM

16πD

1

|r − r′|e
−κ|r−r′| , (22)

where θ(t) is the step function. The first term of Eq. (22) corresponds to
Poisson distribution and the second term gives the correction to Poisson
distribution. The fourth term has the stationary value inside the region
|r−r

′| < 2
√

aD t. Thus this term represents the wave front with the velocity
2
√

aD. The third term gives the delta function localized at the wave front.
This delta function should be smeared in some extent by appropriate cut off
for the wave number because our phenomenological treatment is not valid
in the microscopic length. Anyway this term gives the quite large peak at
the wave front which was not observed in the previous molecular dynamics
simulations [6].
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6. Molecular dynamics simulations of nonequilibrium

spatial correlations

Molecular dynamics simulations in the special case γ = a are performed
using the same technique which was applied in our previous paper [6]. The
technique is based on the concept of “reactive” hard spheres ( see for exam-
ple [9]). According to it all the reagents are represented by identical hard
spheres (masses and diameters are the same) and their motion is ruled by
a standard dynamics with all the collisions regarded as elastic. The addi-
tional parameter, which has no influence on the mechanical motion, labels
the chemical properties of spheres. We consider both reactive and nonreac-
tive collisions between spheres. A chemical reaction may occur if particles
representing appropriate reagents collide. In order to describe a stochastic
character of chemical processes a random number is called for each collision
which may lead to a reaction and its value is compared with the steric factor
for the appropriate process. If the value is not larger than the steric factor
the collision is regarded as a reactive one and the chemical identity parame-
ters of the spheres involved are modified. In simulations we assume that the
activation energies for all reactions (1) are equal to zero.

Simulations performed within the reactive hard spheres technique can
be very efficient if one uses a prerecorded trajectory which describes a sys-
tem characterized by the periodic boundary conditions. In such a case the
trajectory can be used as the data base on consecutive collisions and the
boundary conditions allow to extend the size of simulated system by treat-
ing the original box within the system is enclosed as the elementary cell in
a periodically expanded system. This technique was used in our previous
studies on nonequilibrium spatial correlations [5, 6].

In the following we discuss the results which have been obtained by
periodic extension of a system of N = 500 hard spheres placed in a cubic
box with the side length d = 14.7σ where σ is the diameter of a sphere.
The packing fraction is η = 0.0824. This system was expanded by 10 box
lengths in each direction so the total number of molecules is 500000. For
such system the average time between successive collisions of a particle is
equal to 1.29 ps. In the following we give all values of time in this unit unless
it is directly specified.

Both reactants X and Y are represented by spheres with the mass (m =
32 a.u.) and diameter (σ = 5 Å). The temperature equals 300 K and remains
constant during simulations.

The parameter γ is obtained from the diffusion constant using Einstein’s
relation. The diffusion constant D is calculated from simulation data by
measuring the average square of a particle’s displacement as a function of
time. The parameter a is calculated from Eq. (8) where the reaction rate
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constants ki’s are obtained from the observed collision rate multiplied by
corresponding steric factors si’s.

Two sets of steric factors for which the condition γ = a is satisfied are
selected.

s1 = 0.32, s−1 = 0.16, s2 = 0.08, s−2 = 0.32,
and

s′1 = 0.16, s′−1 = 0.08, s′2 = 0.36, s′−2 = 0.52.

For both sets of steric factors the concentrations of X at its stationary state
are the same and they are equal to: xs = ((

√
65 − 7)/2)c.

At the beginning of simulations the chemical identities of spheres are
assigned in a random way, such that the concentrations of X and Y corre-
spond to their stationary values xs, ys. Because of random distribution of
reactants we may expect that the no spatial correlations of concentrations
are present in initial state.

The spacial correlation σnm(| r − r′ |, t) is defined in such a way that
the hard sphere correlation is removed out. The details of calculations are
shown in [6].

σnm(| r − r′ |, t) = nsmsg0(| r − r
′ |)

(

gNM (| r − r
′ |, t)

g0(| r − r′ |, t) − 1

)

=

[

ns

c

ms

c
g0(| r − r

′ |)
(

gNM (| r − r
′ |, t)

g0(| r − r′ |, t) − 1

)]

c2, (23)

where g0(r) is the radial distribution function for the system of spheres
at the given packing fraction. Let us mention that from the computational
point of view it is more convenient to calculate the partial radial distribution
functions scaled to g0(r) rather than gNM (r) itself because in the first case
the fluctuations in the sample of interatomic distances cancel out.

Unlike the theory, the simulations do not give us the values of correla-
tion functions for a specified distance at a given moment of time but the
average over an interval of distances and an interval of times. In our simu-
lations g0(r, t) and gNM (r, t) are averaged within the space interval [σ + i∆,
σ + (i + 1)∆] where ∆ = 0.05σ and the time interval [j∆t, (j + 1)∆t] where
∆t = 0.02 ps. In the figures we refer to such correlation functions as func-
tions depending on r and t which denote a point within the selected interval
of spaces and the average time t = (2j + 1)∆t/2. In order to make a con-
sistent comparison between theory and simulations we have averaged the
theoretical results over space and time as follows:

σnm(i, j) =
1

∆∆t

σ+(i+1)∆
∫

σ+i∆

dr

(j+1)∆t
∫

j∆t

dt σnm(r, t), (24)

and such results are shown in Figs 2 and 3.
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A time evolution of the functions σxy obtained from MD simulations for
the steric factors (si) and (s′i) is presented in figures 1(a) and 1(b). In the
previous and present simulations the relationship (11) is hold, thus, we show
the results for σxy only. This function is plotted using a dashed line for four
selected moments of time (the dash length is an increasing function of time)
and it is compared with the stationary correlation function σxy (solid line).
It can be noticed that short distance correlations grow first and the long
distance correlations appear later.
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Fig. 1. The time evolution of
σxy

c2 with rates si — (a) and s′
i

— (b) obtained in

molecular dynamics simulations. The correlations are shown for three moments of

time: 0.078 (the dotted line), 0.155 (the short dashed line), 0.372 (the long dashed

line). The solid line represents stationary correlation function.

In order to introduce more detailed description of correlation dynamics
let us introduce the scaled correlation function in the form:

ν(r, t) =
σnm(r, t)

σnm(r, t = ∞)
. (25)

As the time progresses ν(r, t) changes from 0 to 1 for every r.
The theoretical result for γ = a (Eq. (22)) gives the scaled correlation in

the form:

νγ=a(r, t) =
1

2a
δ

(

t − |r − r
′|

2
√

aD

)

+ θ

(

t − |r − r
′|

2
√

aD

)

. (26)

νγ=a(r, t) as a function of distance for two selected moments of time is pre-
sented in Fig. 2(a) (t = 0.155) and Fig. 2(b) (t = 0.372). In these figures,
the dashed line represents the result of simulations with the set (si) and the
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Fig. 2. The scaled correlation function ν(r, t); comparison of molecular dynamics

simulations with the theory for two selected moments of time t = 0.155 — (a) and

t = 0.372 — (b). The scaled correlation obtained from simulations with the set

(si) (the dashed line) and (s′
i
) (the dotted line) is presented. The dashed line with

points represents the previous theoretical result which is calculated from Eq. (12).

The solid line represents our present theory (Eq. (26)) without the delta function.

The following values were used to evaluate Eq. (12) and (26): D = 0.628σ2 ps−1

and a(= γ) = 0.496 ps−1.
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Fig. 3. The contribution of the delta function in the scaled correlation function

ν(r, t) (Eq. (26)) for two moments of time: 0.155 (the dashed line), 0.372 (the

solid line). The following values were used to evaluate Eq. (12) and (26): D =

0.628σ2 ps−1 and a(= γ) = 0.496 ps−1.
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dotted line corresponds to (s′i). Although the sets of steric factors are dif-
ferent the results agree very well what confirms that the scaled distribution
functions depend on D and a only. The dashed line with points represents
the previous theoretical result which is calculated from Eq. (12) using D
which is observed in simulations. It is clear that the theory based on master
equation underestimates correlation at short distances, but overestimates
them at large ones. The solid line represents the result of our present theory
(Eq. (26)) without the delta function. The contribution of the delta function
is quite large; we show the contribution of the delta function only in Fig. 3.
The delta functions and the step functions in Figs 2 and 3 are averaged
within space-time subintervals which is adopted in the simulation.

When we compare our theoretical results with the results of molecular
dynamics simulations using a hard sphere model, we face a problem: on one
hand the correlation functions obtained from simulations have the physical
meaning for distances larger than the sphere diameter, on the other hand
the correlation functions in our theory are defined for any distance because
we consider the continuum limit of submacroscopic cells. In simulations we
observe that in a system which is initially well mixed the correlations start
to grow instantaneously after reactions start. Unlike it is for the standard
theory, in our new approach the correlations are localized in space and at the
distance equal to the sphere diameter they appear after tσ = σ

2
√

aD
. For the

values of parameters used in simulations tσ is much longer than the times
for which the correlations in Figs 2 are shown. In order to take the excluded
volume into account we rescaled time by transformation t → t + tσ and the
solid line in Figs 2 show the second term of solution (26) which corresponds
to the rescaled time. This approach is equivalent to considering an initial
condition for Eqs (16), which corresponds to its solution n(r, tσ),Jn(r, tσ)
of Eqs (16) with the initial condition (18). However such procedure may
be only applied for the special case γ = a and in the general case the
theory should be improved such that the excluded volume effect is included
in equations for the time evolution of concentrations and the corresponding
diffusive flows.

The part of νγ=a(r, t) which is represented by the step function reflects
the fact that correlations fully develop at short distance first and then it
spread out. If the rescaled time is used it gives much better approximation
of the simulation results than the standard theory (Figs 2). However there
is still a large difference between our present theory and simulations. First,
the sharp peak at wave front which comes out of the δ function contribution
in Eq. (26) has not been observed in simulations. Secondly, the second
term of the theoretical result overestimates correlation at short distances
and underestimates them at long distances.
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7. Conclusions

In this paper we have taken the diffusive flow relaxation into account in
order to describe a fast reaction. The Langevin equations for concentration
fluctuations and diffusive flows, which have been modified such that the
information on the time scale of the diffusive flow relaxation is included,
have been presented. Using these equations we have calculated the time
evolution of the spatial correlations between fluctuations in concentrations
of reactants. It has been found that the stationary correlations Eq. (21)
includes some corrections to the well-known result (Eq. (5)) which are of the
order of 1/γ.

In the special case γ = a, an analytical solution for the correlation func-
tions has been obtained. On its basis we calculated the scaled correlation
function (Eq. (26)). It comes out that νγ=a can be written as a sum of
step-like wave front propagating with the velocity 2

√
aD and the delta-

function peak localized at the edge of wave front. The contribution from
a propagating wave front reflects some features of correlations observed in
simulations: the correlation function approaches its stationary form at short
distances first and then spreads out. However, the step-function-like wave
front clearly overestimates correlations at short distances and underesti-
mates them at long distances. On the other hand no trace of the delta-
function-like peak localized at the wave front has been found in molecular
dynamics simulations. We think that the discrepancies show the limita-
tion of sub-macroscopic description of nonequilibrium spatial correlations in
molecular dynamics simulations. We have compared the theory with simu-
lations for distances being a fraction of the sphere diameter, which, for the
parameters used, is of the order of the mean free path. In this range of
distances there is no justification of sub-macroscopic description based on
the master equation and its Gaussian approximation for intensive valuables.

The generalization which we have presented here seems to be not suffi-
cient to describe the dynamics at so short time and space scales. We believe
that it can be done within the theory which takes the excluded volume
effect into account. On the other hand a good agreement between the the-
ory based on the master equation and the molecular dynamics simulations
for distances exceeding the sphere diameter observed in [5] suggests that
the theory presented in this paper may be better suited for explaining the
growth of correlations at large distances than the conventional mesoscopic
description.

In the following we are going to study solutions of Eq. (19) for an ar-
bitrary γ. The results will be compared with simulations of correlations
growth at long distances. The problem of the description of nonequilibrium
spatial correlations at short distances will be considered in future works.
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