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The slow character of internal dynamics of native proteins, recently
becoming more and more apparent, causes the hitherto used theories of
chemical reactions to be inadequate for description of most biochemical
reactions. The consequence is a challenge to physicists theoreticians to
construct a contemporary, truly advanced statistical theory of biochemical
processes based on simple but realistic models of microscopic dynamics of
biomolecules involved. A few points which seem to be important in that
future theory are presented in this paper. Perhaps the most important one
is the possibility of predominance of the short initial-condition dependent
stage of protein involved reactions over the main stage described by the
standard kinetics. This initial stage, and not that described by the standard
kinetics, is expected as responsible for the coupling of component reactions
in the complete catalytic cycles and more complex processes of biological
free energy transduction.

PACS numbers: 87.15. He, 87.15. Rn, 05.40. +j

1. Introduction

The great complexity of biological matter can account for the fact that
for a long time construction of any reasonable statistical theory of biolog-
ical processes was considered a hopeless task. Biochemical reactions were
interpreted in terms of a simple transition state theory [1] neglecting any
intramolecular dynamics of enzymatic proteins involved. However, the situ-
ation has rapidly changed. Essential progress in studies of protein dynamics
accomplished in the 1980-th and the 1990-th [2–7] has made it possible to
approach a truly advanced statistical theory of biochemical processes based
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on simple but realistic models of phenomena underlying microscopic dynam-
ics of biomolecules. The slow character of intramolecular dynamics implies
the need for radical changes in the hitherto assumed description of most bio-
chemical processes involving proteins [7, 8]. In this short lecture we present
a few points which seem to be important in the construction of a future
statistical theory of these processes.

2. Stochastic intramolecular dynamics

of native proteins

The universal, statistically independent units of biochemical processes
are supramolecular multienzyme protein complexes [9] of the size of an order
of 25 nm (Fig. 1).1 From the dynamical point of view it is essential to dis-
tinguish within their body between solid-like fragments of protein secondary
structures (α-helices or β-pleated sheets) and liquid-like surrounding regions,
either nonpolar (domain interiors, lipid membrane environment), or polar
ones (‘channels’ between domains, water environment). Many experiments
performed with the help of various techniques [2–7] indicate the existence
of a reach, purely stochastic dynamics of conformational transitions taking
place in these liquid-like regions of the complexes. The conformational tran-
sition dynamics is much slower than the usual vibrations of periods varying
from 10−14s (localized N-H or C-H stretching vibrational modes) to 10−11s
(collective vibrational modes involving the whole domains). The spectrum
of relaxation times characterizing conformational transitions spreads over
many orders of magnitude from 10−11s (local side chain rotations or hy-
drogen bond rearrangements on the protein surface) to hours or even years
(the mean waiting-time for protein spontaneous unfolding in physiological
conditions).

At least in the range from 10−11 to 10−7s the relaxation time spectrum of
conformational transition dynamics looks practically like a quasi-continuous
one [7]. There are two classes of models provided hitherto by literature,
which display this property [7, 10]. In the first, ‘protein machine’ class of
models [7, 11], the dynamics of conformational transitions is represented by
a quasi-continuous diffusion in a certain effective potential along a few ‘me-
chanical’ coordinates, e.g. angles or distances describing mutual orientation
of approximately rigid fragments of secondary structure or larger structural
elements. The spectrum of reciprocal relaxation times for dynamics of such
a type is more or less homogeneous. Otherwise, in the second class of models
the dynamics is assumed to look alike in every time scale, i.e., the spectrum

1 An important exception, out of scope of the present discussion, are protein microfila-
ments or microtubules forming highly organized systems which take part in large-scale
movements of the biological cell.



Theory of Biochemical Processes 1707

Fig. 1. Schematic cross-section of the universal statistically independent unit of

biochemical processes, a supramolecular multienzyme protein complex. Heavily

shaded are solid-like fragments of protein secondary structures, medium shaded

are nonpolar liquid-like regions, and weakly shaded are polar liquid-like regions.

Black are individual catalytic centers usually localized at two neighbouring solid-

like elements.

of reciprocal relaxation times has approximately a self-similarity symmetry.
The latter is considered to be a generic property of glassy materials, thus
we refer to this second, more extensive class of models as ‘protein glass’.

Time scaling can originate either from a hierarchy of barrier heights in
the conformational potential energy landscape (the ‘fractal time’), or from
a hierarchy of bottlenecks (the entropy barrier heights) in the network join-
ing conformations between which direct transitions take place (the ‘fractal
space’) [13]. A hierarchy of energy barrier heights was proposed originally
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by Frauenfelder and coworkers in order to give a unitary interpretation of
results of the pioneer studies of small ligand rebinding to heme proteins
after a laser flash photolysis in various conditions [4–6] and a particular
mathematical realization of such a hierarchy, especially predisposed for the
application to proteins, seem to offer certain spin-glass models [14]. Most
experimental observations supporting the protein glass picture of dynamics
can be, however, equally well interpreted in terms of the hierary of both the
energy and the entropy barrier heights. Mathematical realization of hier-
archical networks are fractal lattices [7, 12, 15]. The process of diffusion on
a lattice can (but does not have to) be interpreted as directly representing
the motion of structural defects in the liquid-like regions between solid-like
fragments of secondary structure.

3. Two special features of protein involving reactions:

control and gating by intramolecular dynamics

It is the slow purely stochastic dynamics of conformational transitions
that can effect the essential majority of reactions involving proteins, thus
any adequate statistical theory of these reactions has to be a development
of the stochastic theory of reaction rates [7, 12].

When considering a unimolecular reaction

R →← P

one assumes that the set of internal states (in our case, conformational sub-
states) of the molecule involved is divided into two subsets corresponding
to chemical species R and P (Fig. 2(a)). In both subsets regions R‡ and P‡

are to be distinguished, referred to as the transition states of the reaction,
composed of those conformational substates between which direct transi-
tions take place. Any reversible reaction can be formally divided into two
irreversible reactions

R → P and R → P

after introducing the imagined conformational substate, referred to as the
limbo state, the transition probability from which to any other conforma-
tional substate vanishes (Fig. 2(b)).

Usually the reaction is assumed to be an activated process which means
that, as a result of a bottleneck in the transition states of either the energetic
or entropic origin, the events of the molecule leaving the state R or P are
very rare when compared to the time of interconformational equilibration
within R or P. In such cases, for an actual or formally imagined irreversible
reaction

R → P
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Fig. 2. Stochastic theory of single unimolecular reaction. (a) A schematic partition

of the set of molecule microstates (here, conformational substates) into two subsets

corresponding to different chemical species. In both subsets regions are to be

distinguished, referred to as the transition states, between which direct transitions

take place. A bottleneck in the transition states, of either the energetic or entropic

origin, causes reaction to be an activated process. (b) Any reversible reaction can

be formally divided into two irreversible reactions after introducing the imagined

limbo state ∗. (c) If the transition state R‡ is identical with the whole subset R,

one can describe the entire time course of reaction, including the initial-condition

dependent stage, in terms of a fluctuating rate parameter or a fluctuating barrier.

(d) If the transition state is reduced to a single conformational substate 0 (the

gate) one speaks about the gated reaction.

the mole fraction C(t) of molecules being at time t in the chemical state
R (equal to the sum of occupation probabilities at time t of all substates
composing R) obeys the usual kinetic equation

d

dt
C(t) = −κC(t) (1)

of the solution tending exponentially to zero with the relaxation time equal to
the reciprocal reaction rate constant κ−1. In general κ−1 is to be decomposed
into two time components:

κ−1 = κ−1

tst
+ κ−1

ctr
. (2)

The first component in Eq. (2) determines the time needed to cross the
boundary under the assumption (made in the transition state theory) that
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the transition state R‡ is in a local equilibrium with the rest of microstates
composing the chemical state R. As a result of transition this equilibrium is,
however, disturbed. It is the second component in Eq. (2) that determines
the time needed for restoring this equilibrium. If the second component
is much smaller than the first component the reaction is well described by
the transition state theory, possibly with a certain transmission coefficient
smaller than unity. If, on the contrary, the second term prevails, the reaction
is referred to as controlled by processes of intramolecular dynamics.
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Fig. 3. A draft of time dependence of the experimentally observed rebinding of CO

molecules after the photodissociation of CO-bound sperm wale myoglobin in 3:1 v/v

glycerol-water at CO pressure 1 bar and various temperatures. C(t) represents the

fraction (monitored with the help of the absorption IR spectra) of the myoglobin

molecules that have not rebound CO at time t after the laser flash. The log-log

plot. In low temperatures only the unimolecular reaction of CO rebinding from

the protein interior is observed. Its time course is evidently non-exponential. The

exponential stage observed at 240 K and in higher temperatures is attributed to the

bimolecular reaction of CO rebinding from the solution. The latter process masks

the exponential stage of the unimolecular CO rebinding reaction. After Refs. [16]

and [17]. Almost identical result has been reported more recently in Ref. [18] for the

horse mioglobin with the only difference that the exponential stage of unimolecular

CO rebinding is not completely masked.

It should be stressed that in general Eq. (1) is valid only after a short ini-
tial period dependent on the initial distribution of conformational substates.
During the initial period a more general equation

d

dt
C(t) = −f(t) (3)

is appropriate, with f(t) having a meaning of the first-passage time distri-
bution density [7, 12]. The initial-condition dependent stage of the reaction
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Fig. 4. A draft of time dependence of the closed time (a) and open time (b) distribu-

tion density f(t), cf. Eq. (3), observed with the help of the patch clamp technique

for the protein K+ channel of NG 108–15 cells. The log-log plot. Both curves show

a short-time non-exponential behaviour. In the case (a) the pre-exponential stage

includes the changes of f(t), i.e. C(t), by five orders of magnitude and fits very

well to the power law of the form t−α. After Ref. [20].

can, however, occur only for reactions controlled by internal dynamics of the
molecules involved. Two kinds of experiments show clearly the occurrence
of such a stage in the case of protein involving processes: studies of small
ligand rebinding to heme proteins in various conditions after a laser flash
photolysis [4–6,16–18] (Fig. 3) and direct observations, with the help of the
patch clamp technique, of fluctuations of the ionic current flowing through
single protein channels [19, 20] (Fig. 4). The important conclusion arising
from these experiments is that some (and preasumably almost all) biochem-
ical reactions are controlled by the intramolecular stochastic dynamics of
proteins involved.

The observability, in both kinds of experiments, of the initial-condition
dependent stage of reaction and its predominance over the main exponential
stage result from the confinement of the initial distribution of conformational
substates only to the transition state R‡ or P‡ [7,12]. Statistical theories of
reactions involving molecules in the initial state confined to the reaction’s
transition state develop towards two opposite limits. In the one extreme the
entire microscopic dynamics of the molecule is assumed to take place within
the transition state (R‡ = R, cf. Fig. 2(c)). This enables one to apply the
kinetic equation (1) in the whole time domain provided that the rate param-
eter κ a random function of time needed only to be appropriately averaged
(the picture of ‘fluctuating barriers’ [4–6] or ‘dynamical disorder’ [21]). The
opposite extreme is based on the assumption that the transition state R‡ is
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reduced to a single conformational substate 0 being a ‘gate’ for the reaction
which is thus referred to as the gated reaction [2, 7, 11, 12] (Fig. 2(d)). Nei-
ther of both approaches can be considered as corresponding to the actual
situation, but the assumption of gating seems to be better physically justi-
fied. The important indirect argument for this approximation is stationary
Michaelis–Menten kinetics observed for the majority of enzymatic reactions,
which could not be realized for the reactions being simultaneously controlled
and not gated by the intramolecular dynamics [11, 22].

4. Importance of the initial-condition

dependent stage of reactions

In Fig. 5 some results of computer simulations performed in our lab-
oratory are shown of the time course of reaction gated by intramolecular
dynamics modelled by random walk on the finite Sierpiński gasket [15]. The
initial microstate was assumed as strictly confined to the gate. The varying
parameter q represents the ratio of the probability of leaving the lattice to
the probability of transition between the neighbouring sites. In the lin-log
plots quoted in Fig. 5(a) the exactly exponential long-time decay is appar-
ent with the relaxation time of the value close to κ−1

tst
for q = 0.01 and to

κ−1

ctr
for q = 100 (cf. Eq. (2)). It is clearly seen that more strongly is the

reaction controlled by the intramolecular dynamics more dominant is the
initial, nonexponential stage of the reaction. The latter is better exposed in
the log-log plots quoted in Fig. 5(b).

The pre-exponential stages of the simulated reactions are well described
by the analytical formula [15]

Cini(t) = exp(ηt)2α erfc(ηt)α , (4)

where the symbol erfc denotes the complementary error function, η−1 is a
certain unit of time and the value of the exponent α is determined by the
value of the spectral dimension d̃ of the lattice:

α = 1−
d̃

2
(5)

(= 0.317 for the Sierpiński gasket). In the limit of short times Eq. (4)
represents the stretched-exponential law and in the limit of long times, the
algebraic power law:

Cini(t) ≈
{

exp[−2(ηt)α/
√

π] for t≪ η−1

(ηt)−α/
√

π for t≫ η−1
. (6)
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Fig. 5. Time course of reaction gated by an intramolecular dynamics with the

initial microstate confined to the transition state. Results of computer simulations

for the model of conformational transition dynamics representing random walk on

the Sierpiński gasket. The lattice has been limited to (36−3)/2 sites (cluster of the

6-th order). Some 105 walkers started at the same site which simultaneously is the

only gate to exit the lattice. The ratio q of the probability of leaving the lattice to

the probability of transition between the neighbouring sites was assumed to vary

in the wide range of values between 0.01 and 100. Time is measured by the number

of steps in which transitions were randomly generated. Survival probabilities vs

time are plotted in the lin-log (a) and the log-log (b) scales. After Ref. [15].

The moment of crossing over to the exponential stage of the reaction
depends on the size of the lattice and the probability to leaving it rela-
tive to the probability of transition between the neighbouring sites. The
smaller the lattice and the lower the probability of leaving it (or, equiva-
lently, the higher the probability of jumping between the lattice sites), the
earlier the exponential stage of the reaction begins. The crossover from the
non-exponential decay, Eqs (4) and (6), to the exponential decay with the
‘chemical’ relaxation time κ−1 can be described with the help of a simple
formula

C(t) = [(1− a)Cini(t) + a]e−κt . (7)

with a denoting the level (concentration) from which the exponential decay
begins. The combined formulae (7) and (4) comprise three dimensionless
parameters α, a and the ratio b ≡ κ/η. Two of those parameters: a and
b depend on temperature in the Arrhenius manner so that it should be no
problem to describe in these terms, possibly with minor modifications, a
time course of any experimentally observed reactions including its variation
with temperature (cf. Figs 3 and 4).

The necessary condition for the presence of a certain initial-condition
dependent stage of protein involving reaction is not only the slow character
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the intramolecular conformational transition dynamics but also the special
preparation of the initial conformational substates of the protein to be con-
fined to the transition state of the reaction. The latter condition is realized,
however, only in the special experiments mentioned above. Usually, the ini-
tial distribution of conformational substates is not very different from the
local equilibrium. It is thus not a surprise that no initial-condition stages
are observed in standard biochemical kinetic experiments.
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Fig. 6. From single irreversible (a) and reversible (b) reaction through the complete

catalytic cycle (c) to the system of coupled reactions in which biological free energy

transduction is carried out (d).

Nevertheless, the initial-condition dependent stages of reactions appear
important also in standard conditions, provided that a steady-state is re-
alized. These stages and not the following ones described by the standard
kinetics, are expected to be responsible for the coupling of component re-
actions in the complete catalytic cycles shown in Fig. 6(c) (this was proven
specifically for the particular protein machine model of intramolecular dy-
namics [11]) and more complex processes of biological free energy transduc-
tion (Fig. 6(d)). Importance of the latter statement, if it is actually true,
can hardly be overestimated.

5. Summary

In the construction of the future, truly advanced statistical theory of
biochemical processes the following points have to be taken into account:

(a) The native proteins involved in these processes reveal a reach purely
stochastic intramolecular dynamics of conformational transitions, much
slower than the usual vibrational dynamics. At least in the range from
10−11 to 10−7s the relaxation time spectrum of conformational tran-
sition dynamics is practically quasi-continuous. Two classes of math-
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ematical models of these dynamics seem reasonable, we referred sym-
bolically to as protein-machine and protein-glass.

(b) The essential majority of reactions involving proteins are controlled
and, preasumably, also gated by this stochastic intramolecular dynam-
ics. This means that the rate of biochemical processes is determined
by the mean first-passage time through the gate composed of a small
number of conformational substates of the protein involved.

(c) Of special importance is the short initial-condition dependent stage
of biochemical reactions, neglected in the description of the reaction
in terms of the standard kinetics. This stage is directly observed in
experiments in which the especially prepared initial conformational
substates of the protein are confined to the transition state of the
reaction.

(d) The initial-condition dependent stage, and not that described by the
standard kinetics, is expected as responsible for the coupling of com-
ponent reactions in the complete catalytic cycles and more complex
processes of biological free energy transduction.

The study has been supported in part by the Polish State Committee for
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von Humboldt Foundation.
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