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Statistical properties of kinetic equations are studied for reactions in
which the (effective) rate decays to zero with time. For such systems the
final state depends on initial condition and on the parameters. Time evolu-
tion of the probability distribution associated with a concentration of one
of the reagents is studied, and analytical formulas are obtained for the case
when the parameters are drawn from a random sample, but remain con-
stant for a particular realization. Even if the underlying distribution of the
parameters is symmetrical, the resulting distribution of the concentration
is highly skewed. This results in a magnification of variability as small dif-
ferences in the parameters lead to high levels of variability in the outcome
of the reaction. The magnification of the variability is also quantified using
a concept analogous to the Lyapunov exponent in chaos theory.

PACS numbers: 02.30. q, 02.50. Ey, 02.50. Cw

1. Introduction

The theory of stochastic processes aims at a prediction of the behaviour
of dynamical systems, from initial conditions until the final state [1]. How-
ever, the resulting equations are usually too difficult to solve, and one is left
with the information about a final steady state. It is also commonly assumed
that the initial state of the system is not relevant for the long-term dynamics
as the system settles on its (widely understood) attractor determined by the
dynamics and stochastic perturbations. Yet, there are often situations when
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the transient behaviour is more interesting than the final state. This is espe-
cially true for applications of stochastic systems in biochemistry and biology.
For such systems, characteristic time scales for observation and/or changes
in parameters are comparable with relaxation times needed to equilibrate
the system. In another interesting class of systems, the final state depends
on the history of the dynamics and in particular on the initial state [2]. We
shall consider some examples of such systems below.

In the paper we study some simple chemical reactions for which the prob-
ability of one or more reactions is a decreasing function of time. The question
originally arose in the context of population dynamics [3–5] where the ability
of species to interact with each other declines in time due to e.g. environ-
mental forcing or an internal clock. However, many processes in biology
and medicine can be characterized by a similar ’race against time’. Other
examples include chemical reactions limited by an availability of catalytic
substances which become inactive or exhausted over time, crystallization
processes and crystal growth in the presence of evaporation.

In studying the evolution of chemical and biological systems, the tradi-
tional approach often concentrates on the fluctuations resulting from the fi-
nite size of the system and/or small numbers of reaction agents. This mainly
represents the within-sample variability, understood here in terms of factors
limiting our ability to predict the behaviour of the system at later times
based on our knowledge of the past for the same replicate. Fluctuations
in the dynamical behaviour of the system also affect the between-sample
variability, reducing a predictability of the behaviour of one replicated sys-
tem from the past records for another replicate. However, there is another
component of the between-sample variability, caused by variations in ini-
tial conditions, reaction rates and environmental factors. In this paper we
concentrate on the latter aspect, assuming that the within-sample part is
negligibly small so that once the parameters are drawn from a random sam-
ple, the dynamics is deterministic. Such assumptions are equivalent, e.g. to
the approximation of a large size of an individual replicate.

We start by presenting a suite of models of increasing complexity, char-
acterized by a decay in the effective rate of the reaction. We study the
evolution of a probability distribution associated with the concentration of
one of the reagents. We assume that the evolution is deterministic but the
parameters are drawn from a random sample, so that the model is described
in terms of probabilistic equations. Finally, we use a concept analogous to
the Lyapunov exponent to quantify the variability. Appendix A contains
some mathematical details related to the analytical solutions of one of the
examples, whereas Appendix B contains general results for the error propa-
gation.
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2. Models

The basic model describes the reaction of the type

A + B
k(t)−→ 2A , (1)

with k(t) → 0 when t → ∞. Note that a + b = n = const, where a and
b denote concentrations of A and B. Two cases can be distinguished here.
One (Example 1) has n ≫ a so that B is always in abundance throughout
the period when k(t) ≫ 0. In this case, the reaction is limited by the time
decay of the rate. In another case (Example 2), the abundance of b limits
the reaction in addition to the decay of k(t).

The decay in the rate can be caused by an external forcing or by a limited
supply of an additional catalytic reagent as in

A + B + X
k−→ 2A + X

X
g−→ 0 .

(2)

This leads to a special form of k(t) in (1), k(t) = k0 exp(−gt).
Another example of this type of reactions occurs for a simple catalytic

reaction, as in Example 3

B + Y
k(t)−→ A + Y , (3)

where k(t)→ 0 with t→∞. Alternatively,

B + Y
k−→ A + Y

B
g−→ 0 .

(4)

The order of the reaction (1) can be higher than 1, with individual reac-
tions summarizing more complicated processes, as in Example 4,

pA + qB
k(t)−→ (p + q)A , (5)

where p ≥ 0 and q ≥ 0. p and q do not need to be integer.
Another situation arises when one of the reagents is depleted by a reac-

tion (or series of reactions), as in Example 5:

A + B
k−→ 2A

B
g−→ 0 ,

(6)

where the second reaction can summarize several reactions. More compli-
cated reaction schemes can be also analysed using methods discussed below.
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3. Results

In the following we are mainly interested in the dynamics of the reagent
A. We begin by writing deterministic equations describing the kinetics repre-
sented by Equations (1)–(6). Exact analytical solutions are obtained when-
ever possible, and approximate solutions derived when no exact solution is
available. We then use the formulas to obtain a general form of the prob-
ability distribution associated with a given distribution of the parameters
and initial conditions. The variability can be associated with the between-
samples variability. This section is split into two parts, the first discussing
the deterministic dynamics with fixed parameters. The second part concen-
trates on the error propagation due to uncertainty in the parameters and/or
initial conditions. We also discuss one of the examples in detail.

3.1. Deterministic dynamics

General results In the following, the concentrations of A, B, etc. are
denoted by small letters a, b, etc. Apart from Example 5, all other equations
can be written in a general form

da

dt
= k(t)f(a) . (7)

The solution can be obtained in an implicit form

F(a) ≡
a
∫

a0

da

f(a)
=

t
∫

0

k(τ) dτ , (8)

where the initial conditions in the form a(t) = a0 for t = 0 are assumed.
Equation (8) also defines the functional F(a).

Note that the transformation of the independent variable t into k(t) re-
moves the time dependence in Eq. (7), but does not provide any equilibrium
(long-term) values. The transformation becomes singular at t→∞, so that
it is often easier to analyse equations in original variables.

Example 1 If the rates in Eq. (1) satisfy the inequality −dk/dt ≫ g,
the dynamics are dominated by the decay in the rates, and we can write the
equation as

da

dt
≃ k(t)na . (9)
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The solution can be obtained for the initial value problem a(t = 0) = a0

and is listed in Table I. A special case of k(t) = k0 exp(−gt) is given in
Table I as well.

TABLE I

Analytical solutions for Example 1. General solution is shown together with a
special case for k(t) = k0 exp(−gt), and the asymptotic value.

Example 1

Reaction A + B → 2A

General solution a0 exp

(

n
t
∫

0

k(τ) dτ

)

Special case a0 exp
[

nk0

g
(1− exp(−gt))

]

Asymptotic value a0 exp
(

nk0

g

)

The solution to Eq. (9) is known as a Gompertz function and is often used
in biology to describe population and organ growth. The shape is sigmoidal
with a single inflection point and asymptotic value depending on the rates

and the initial condition, a∗ = a0 exp
(

nk0

g

)

(a star here and below denotes

the deterministic equilibrium value). Figure 1(a) gives some examples of the
solution for k0 varying according to a Gaussian distribution with the mean
µ = 1/n and the standard deviation σ = 0.1/n. Note that although the rate
varies by ±10%, the equilibrium value a∗ differs by an order of magnitude.

Example 2 If the concentrations of A described by (1) reach levels
comparable with concentration of B during the period when k(t) ≫ 0, we
need to use the full kinetic equation

da

dt
≃ k(t)(n − a)a . (10)

with a + b = n and therefore b = n − a. The equation can be solved
analytically [4]. See Table II for the general form and a special case of
exponential decay in the rates. Figure 1(b) shows examples of the solutions
a(t). The equilibrium levels of a are reduced as compared with example
1, and they are reached earlier, but there is little change in the qualitative
dynamics. A solution to Eq. (10) for k(t) = const is called a logistic function.

Example 3 The equation for k(t) = const is known as a monomolecular
equation, and can be generalized as follows
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Fig. 1. Solutions for a(t) for examples considered in the text. (a) corresponds

to example 1 (exponential dynamics), (b) to example 2 (logistic dynamics), (c)

to example 3 (monomolecular dynamics). (d) and (e) show the sensitivity of the

dynamics to changes in p in example 4 (a generalized logistic dynamics). (f) rep-

resents example 5 (system of equations). Insets show the dynamics of the variance

for (a), (c), (d) and (f). For (b) and (e) the dynamics are qualitatively the same

as in (a). 10 randomly chosen solutions starting from the same initial condition

a0 = 0.01 are shown, with k(t) = k0 exp(−gt) and k0 varying according to a Gaus-

sian distribution with the mean µ = 1/n and the standard deviation σ = 0.1µ.

Other parameters are g = 0.1 and n = 500, apart from (c) where µ = 0.1/n and

(f) where µ = 0.5/n and g = 0.03. In (d), p = 0.9, whereas in (e) p = 1.01; q = 1.

Time is in arbitrary units
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TABLE II

The same as Table I, but for the Example 2. F (t) ≡ exp

(

n
t
∫

0

k(τ) dτ

)

Example 2

Reaction A + B → 2A

General solution nF (t)
n−a0

a0
+F (t)

Special case n
{

1 + n−a0

a0

exp
[

−nk0

g
(1− exp(−gt))

]}

−1

Asymptotic value n
{

1 + n−a0

a0

exp
(

−nk0

g

)}

−1

TABLE III

The same as Table I, but for the Example 3. F (t) ≡ exp

(

n
t
∫

0

k(τ) dτ

)

.

Example 3

Reaction B + Y → A + Y

General solution n− (n− a0) {F (t)}−1

Special case n− (n− a0) exp
[

−nk0

g
(1− exp(−gt))

]

Asymptotic value n− (n− a0) exp
(

nk0

g

)

da

dt
≃ k(t)(n − a) . (11)

Eq. (11) can be easily solved to yield the results listed in Table III. The
initial slope of a(t) as a function of t, k0n is larger compared to previous
examples (k0na0), if a0 is small, and the individual curves as well as the
mean and variance do not exhibit any inflection point, figure 1(c). Note
also a significantly reduced variability in the equilibrium values, caused by
a linear rather than exponential character of the growth for small t.

Example 4 The nonlinear equation describing kinetics of Example 4

da

dt
≃ k(t)ap(n− a)q (12)
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has no analytical solution in a general case. For positive integer p (and any
q) a recursive formula can be used in order to evaluate F(a) [6].

∫

da

ap(n− a)q
=

−1

(p− 1)nap−1(n − a)q
− 2− p− q

n(p− 1)

∫

da

ap−1(n− a)q
,(13)

∫

da

(n− a)q
=

1

(q − 1)(n − a)q−1
. (14)

Change of the variable from a to n − a can be also used if q is a positive
integer number, for any p.

Although the implicit equation (8) cannot be solved in this case for
most values of p and q, the evolution of the probability distribution can be
obtained if F(a) can be found; see below and Appendix B.

The solution a(t) follows a sigmoidal curve as long as p > 0. The dynam-
ics are very sensitive to changes in p, and less to changes in q. Figure 1(d)
and 1(e) compare the results for q = 1 and p = 0.9 and p = 1.01; see also
figure 1(b) corresponding to p = 1.0. Lowering p results in a behaviour dom-
inated by the availability of B (equilibrium close to n and little variability),
whereas increasing p above 1 results in a rapid drop of the average equilib-
rium concentration of A. Variability first increases, but then decreases again
as a∗ → 0 with p increasing (figure 1(d)).

Example 5 In this example, B is depleted by two processes, a reaction
with A and a separate decay. As a result, the dynamics is governed by a set
of nonlinear equations with constant coefficients,

da

dt
= kab , (15)

db

dt
= −kab− gb (16)

with initial conditions a(0) = a0 and b(0) = b0. No general analytical
solutions can be obtained. However, F(a) can be found in two special cases,
when a is close to and when it is large compared with a0. We show in
Appendix A that a satisfies an equation

da

dt
= ka

(

a0 + b0 −
g

k
ln

(

a

a0

)

− a

)

. (17)

The equilibrium value is given by a non-zero solution to the equation

a = a0 + b0 −
g

k
ln

(

a

a0

)

. (18)
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Although no analytical formula can be found, it is clear that the equilibrium
value depends on initial conditions as well as on the parameters. The evo-
lution of the probability distribution can be obtained in this case, see below
and Appendix B.

Some solutions of Eq. (16) are shown in figure 1(f), for different values of
k = k0. Note that although the overall shape of a single replicate is similar
to other Examples (1, 2 and 4), the variability among the replicates follows
a different pattern. There is a well pronounced increase in the variability
around t = 30 (arbitrary units) followed by a decrease to a non-zero value at
the equilibrium. The decrease is caused by the dynamics of b rather than by
an approach to the maximum concentration as in figure 1(d) and Example 4.

3.2. Uncertainty due to parameter change

In the following we assume that the parameters (and/or initial condi-
tions) are drawn from a certain random distribution, but they remain fixed
throughout the course of the reaction. In particular, we assume that the
rate k0 ≡ k(t = 0) is the main determining factor, and is distributed with
a probability distribution ρ(k0). Alternatively, the initial condition for a
(and/or b) as well as the decay rate g can vary between replicates.

Examples of the distributions include a uniform distribution on an inter-
val (µ− ξ, µ+ ξ), U(µ− ξ, µ+ ξ) and a Gaussian distribution, G(k0;µ, σ) =
(2πσ2)−1/2 exp(−(k0 − µ)2/(2σ2)). We denote the average value of k0 by µ
and the variance by σ2.

In Appendix B we show how the uncertainty in the parameters propa-
gates through the solution of the differential equation. For the varying rate,
k0, we show that

P{a(t)} =

(

∂a(t)

∂k0

)

−1

ρ (k0 (a(t))) , (19)

where P{a(t)} is the distribution of a(t) at a given time. ρ (k0 (a(t))) denotes
a function ρ(k0) where k0 is substituted by an appropriate expression in
terms of a. If k0 is varying in the rate function k(t) = k0 exp(−gt), then

P (a) =
g

(1− exp(−gt)) f(a)
ρ

(

gF(a)

1− exp(−gt)

)

. (20)

This equation holds for Examples 1 through 4. Table IV lists f(a) and F(a)
so that the appropriate formulas for P (a) can be obtained.
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TABLE IV

Functionals f(a) and F(a) for examples 1–4.

Example f(a) F(a)

1 na n ln
(

a
a0

)

2 (n− a)a n ln
(

a
n−a

/ a0

n−a0

)

3 n− a n ln
(

n−a0

n−a

)

4 ap(n− a)q Recursive formula, (13) and (14)

5 ka
(

b0 − g
k

ln
(

a
a0

)

− (a− a0)
)

Available in special cases, see Ap-
pendix A

3.3. Particular example

We use Example 1 in order to illustrate the results obtained above. Fig-
ures 2(a) and 2(b) show sample solutions of Eq. (9) for the same initial
conditions and the parameter k0 varying between replicates (compare fig-
ure 2(a) and 2(b) with figure 1(a)). Other parameters are fixed, g = 0.1
and n = 500. k0 was drawn from a uniform distribution on the interval
(0.9, 1.1)/n (figure 2(a)) or from a Gaussian distribution with the mean 1/n
and the standard deviation 0.1/n (figure 2(b)). There is a considerable
variation in the equilibrium values, much more pronounced for the Gaus-
sian distribution which is unlimited at its upper tail. Although k0 should
always be strictly positive, we did not consider a cut-off in the Gaussian
distribution. Rare events of k0 < 0 can be interpreted as a reverse reaction,
A←− 2A.

Figures 2(c) and 2(d) compare the distribution P (a) for t → ∞ (equi-
librium value). The distributions are well approximated by appropriate an-
alytical formulas (see Table IV and Eq. (20) ). The distributions are highly
skewed, with a long tail for large values of a. Note the differences in limits
for the horizontal axis in figures 2(c) and 2(d).

The availability of analytical formulas makes it possible to study the
evolution of probability distribution P (a) in time. Figure 3 compares the
results of numerical solution of Eq. (9) for 500 values of k0 with predictions
of analytical formulas from Table IV and Eq. (20), for some values of t
(arbitrary units). The agreement between numerical solutions and analytical
prediction is very good, although the size of the sample was relatively small
(500) as compared with the variability between replicates. The shape of
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Fig. 2. Example 1: (a) and (b) show 10 random replicates of the solution of Eq. (9)

for identical initial conditions a0 = 0.01 and parameters g = 0.1 and n = 500,

differing by the parameter k0 drawn from a uniform distribution on the interval

(0.9, 1, 1)/n (a) and a Gaussian distribution with the mean 1/n and the standard

deviation 0.1/n (b). Probability distributions P (a) for t → ∞ are shown in (c)

(underlying uniform distribution) and in (d) (underlying Gaussian distribution), es-

timated by numerical solution of Eq. (9) for 500 values of k0 (points) and predicted

by analytical formulas in Table IV and Eq. (20) (lines), cf.Eq. (??)

P (a) is Gaussian if plotted as a function of ln(a), reflecting the formula

P (a) =
g

(1− exp(−gt)) a
ρ

(

g ln(a/a0)

1− exp(−gt)

)

∼ exp











−

(

ln(a/a0)− 1−exp(−gt)
g µ

)2

2σ2
(

1−exp(−gt)
g

)2











(21)



1728 A. Kleczkowski

a

P(
a)

0.01 0.10 1.00 10.00 1000.00

0.0

0.5

1.0

1.5

2.0

t=5

t=0

(a)

a

P(
a)

0.01 0.10 1.00 10.00 1000.00

0.0

0.05

0.10

0.15

t=10

t=15

(b)

a

P(
a)

0.01 0.10 1.00 10.00 1000.00

0.0

0.005

0.010

0.015

t=20

t=25

t=100

(c)

Fig. 3. Example 1: Evolution of the probability distribution P (a) obtained by

solving Eq. (9) with 500 different values of k0 (points) and by applying analytical

formulas, Eq. (21). t = 0 and 5 in (a), 10 and 15 in (b), and 20, 25 and 100 in

(c) (time in arbitrary units). Solutions of Eq. (9) are shown for t = 5, 10 and 100

only. Other parameters as in figure 2. Note that the horizontal axis is logarithmic

in this figure, but linear in figure 2(d)
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The maximum of the distribution (the mode) moves according to the
formula

amax = a0 exp

(

1− exp(−gt)

g
µ

)

and follows the deterministic dynamics with the average parameter k0 = µ.
Note that the distribution P (a) is not symmetric, although the distribution
of k0 and of P (ln(a)) are symmetric. As a result of this, the mode and median
of the distribution of P (a) coincide, but the mean can be very different. We
explore this idea further elsewhere.

3.4. Characterizing the variability

The magnification of differences in initial conditions is often character-
ized by the Lyapunov exponent [7, 8]. Since the solutions of the equations
considered here always settle on the equilibrium, the concept of the Lya-
punov exponent is not applicable. Nevertheless, we can discuss the depen-
dence of equilibrium values on the parameters. An analogue of the Lyapunov
exponent has been introduced in [3]. Define χj in terms of a partial deriva-
tive of the final state of one of the reactants (e.g. a(t)) with respect to a
given parameter xj (e.g. k0)

χj =
∂ (a∞)

∂xj

(

a∞

xj

)

−1

. (22)

The magnification factor, χj, is defined in terms of relative changes, so
that if xj is changed into xj(1 + ǫ), a∞ becomes a∞(1 + χǫ) (with ǫ being a
small number). Here we assume that the parameters form a vector, ~x, and
xj is its j-th component. Then

χ2
j =

V (a∞)

V (xj)

(

<a∞>xj

<xj>

)

−2

. (23)

<xj> and V (xj) represent the mean and the variance of xj , and <a>xj
and

V (a) represent the mean and the variance of a generated by an uncertainty
in xj. The analogue of the Lyapunov exponent can then be defined as [3]

λj = ln(χj)

for any of the parameters. High and positive values of λ suggest a strong
dependence of the final state of the reaction on the particular parameter.

The above definitions can be generalized for a(t) at any time t. This
allows us to study the evolution of the uncertainty in time and to find parts
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Fig. 4. Example 1: (a) and (c): Time evolution of the evolution of the magnification

factor, χj , and (b) and (d) of the analogue of the Lyapunov exponent, λ. (a) and

(c) show the results for the Example 1 (dynamics limited by the decaying rate) and

(b) and (d) for the Example 5 (dynamics limited by the availability of one if the

reagents). All parameters as in previous figures

of the dynamics which are mostly influenced by changes in the particular
parameter. Although for a given distribution and a model it is possible to
obtain an analytical formula for λj, we give numerical solutions for the Ex-
ample 1, see figure 4(a)–(b), and compare with the results for the Example
5, figure 4(c)–(d). For Example 1, λ quickly reaches positive values, sug-
gesting the particular sensitivity of the solution to changes in k0, both at
the equilibrium and in the transient. On the contrary, changes in k0 affect
strongly the transient dynamics of the Example 5, but the equilibrium seems
to be rather unaffected (λ < 0).
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4. Discussion

In the paper we have discussed the evolution of a dynamical variable de-
scribing the concentration of a substrate in one or more chemical reactions
for which the probability of the reaction decays to zero with time. For such
systems transients are reflected in the final state which varies as the pa-
rameters and/or initial conditions change. We analysed the evolution of the
associated probability distribution of the concentration, with the stochastic
element introduced by differences in one or more parameters. The variability
is caused by imperfections in preparing chemical systems and environmental
factors. Once the parameters are fixed, the evolution is considered to be
deterministic. In fact, additional sources of uncertainty must be also consid-
ered. Amongst them the demographic variability caused by small numbers
of reacting molecules or growing foci is most important. This effect depends
on the size of the system and can be reduced by increasing the size of an
individual replicate. In order to reduce the between-sample variability we
need to consider dividing the system into more independent components. In
many situations this leads to a trade-off effect, and an optimal size of the
sample can be found.

The results presented here are important from the point of view of param-
eter estimation and fitting. Very often the exact parameters and sometimes
even the exact mechanisms are not known, and the model must be identi-
fied from the data. The estimation procedure depends on the shape of the
probability distribution, which in turn depends on unknown distributions
of parameters and the model. However, some simple assumptions (like the
Gaussian shape of the parameter k0 considered here) can be made. The
existence of analytical solutions and predictions about the evolution of the
probability distribution can be crucial in determining a fitting procedure.

The work presented here can be extended in two directions. First, more
complicated and more realistic models can be discussed. For some of them,
analytical deterministic solutions can be found, and for some the evolu-
tion of the probability distribution can be obtained without solving the
equations; see Example 4 and 5. Second, other sources of variability, and
especially time-dependent additive and/or multiplicative noise, can be con-
sidered. Some previous work [9,10] suggests that analytical solutions for the
transient behaviour can be obtained in such a case, and we plan to include
this type of analysis in the second part of the paper.

Finally, a spatial aspect of the reactions can be included in the analysis.
Many biochemical and biological processes occur in the presence of low or
no mixing, whereas the above formalism assumes perfect mixing and/or
homogenous initial state. If the mixing is low, complicated spatial patterns
can result and affect the time evolution (Kleczkowski, unpubl.), both in the
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deterministic and stochastic case. The spatial structure can be confined to
a plane or extend into three dimensions.

I am very grateful to the organizers of the Marian Smoluchowski Sym-
posium on Statistical Physics, Zakopane, 1997, for allowing me to take part
in the conference. Discussions with C.A. Gilligan and K.M. Briggs (Cam-
bridge) were also extremely useful.

Appendix A

Analytical solution of model 3

Consider the following set of equations

da

dt
= kab , (24)

db

dt
= −kab− gb , (25)

dz

dt
= gb , (26)

where we introduced a variable z representing an ’inactive’ state of substrate
B, so that a + b + z = const = n. Then,

da

dz
=

k

g
a , (27)

ln

(

a

a0

)

=
k

g
(z − z0) , (28)

b = n− z − a = n− z0 −
g

k
ln

(

a

a0

)

− a , (29)

where z0 = n − a0 − b0. Using the above formula we can obtain a closed
equation for a, cf. Eq. (16).

Special cases The integral
∫

da

a
(

b0 − g
k ln

(

a
a0

)

− (a− a0)
) ≡

∫

da

f(a)
(30)

cannot be evaluated analytically for any value of a. Two special cases can
be, however, distinguished. If a = a0(1 + δ) with δ small, then

f(a) = a
(

b0 − a0δ −
g

k
ln(1 + δ)

)

, (31)
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= a0(1 + δ)
(

b0 − a0δ −
g

k

(

δ − δ2 + O(δ3)
)

)

, (32)

= a0

(

b0 +
(

b0 −
g

k
− a0

)

δ −
(

a0 − 2
g

k

)

δ2 + O(δ3)
)

. (33)

Alternatively, if a− a0 ≫ g/k ln(a/a0), i.e. for a≫ a0, the logarithm in
(30) can be neglected and

∫

da

a
(

b0 − g
k ln

(

a
a0

)

− (a− a0)
) ≃

∫

da

a (b0 + a0 − a)

=
1

a0 + b0
ln

(

a

a0 + b0 − a

)

. (34)

Equations (33) and (34) can now be evaluated analytically.
Appendix B

General properties of the error propagation

Let us assume that a is a solution of the equation

da

dt
= k(t)f(a) . (35)

In the following we shall consider a particular form of k(t) = k0 exp(−gt).
Then, the solution can be obtained by separating the variables, and given
in an implicit form

F(a) ≡
a
∫

a0

da

f(a)
=

t
∫

0

k(τ) dτ =
k0

g
(1− exp(−gt)) ≡ G(k0) . (36)

Then, the conversion factor can be obtained by an implicit differentiation of
F (a),

∂a

∂k0
=

(

∂F(a)

∂a

)

−1 (dG(k0)

dk0

)

= f(a)
1− exp(−gt)

g
. (37)

Note that there is no need of solving Eq. (35) explicitly or even evaluating
the integral in Eq. (36).

In order to express the probability distribution of the parameter(s) in
terms of a(t) we need to change the variables in the form of the underlying
probability distribution. From (36) we obtain

k0 =
gF (a)

1− exp(−gt)
. (38)
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Combining Eq. (37) and Eq. (38) we obtain a general form

P (a) =
g

(1− exp(−gt)) f(a)
ρ

(

gF(a)

1− exp(−gt)

)

. (39)

Similar expressions can be obtained if g or a0 is changing. For the latter,
if the full solution a(t) is known, conditioned on the initial condition a(t =
0) = a0, we can express a0 in terms of a(t) by changing the independent
variable t into −t.

For a particular choice of k0 distributed according to a Gaussian distri-
bution with a mean µ and a variance σ2 we obtain

P (a) =
g√

2π σ f(a) (1− exp(−gt))
exp

(

−(F(a)− µ (1− exp(−gt))/g)2

2 (σ (1− exp(−gt))/g)2

)

.

(40)
Note that if g → 0 in Eq. (39), k(t) → µ and (1 − exp(−gt))/g → t, so

that

P (a) =
1

tf(a)
ρ

(F(a)

t

)

, (41)

and, for the Gaussian shape,

P (a) =
1√

2π σ f(a) t
exp

(

−(F(a)− µ t)2

2 (σ t)2

)

(42)

This represents a function, centred at the deterministic solution deter-
mined by an implicit equation F(a) = µ t, with a width σ f(a) t. If the
solution, a(t), of the deterministic equation (35) settles on an equilibrium
a∗, then f(a) → 0, and usually f(a) ∼ exp(−µt) so that f(a) t → 0 for
t → 0. The probability distribution in (40) becomes a δ-function reflecting
the deterministic character of the motion.
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