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Interpretation of the dynamical behaviour of single molecules or collec-
tive modes in liquids has been increasingly centered, in the last decade, on
complex liquid systems, including ionic solutions, polymeric liquids, super-
cooled fluids and liquid crystals. This has been made necessary by the
need of interpreting dynamical data obtained by advanced experiments,
like optical Kerr effect, time dependent fluorescence shift experiments, two-
dimensional Fourier-transform and high field electron spin resonance and
scattering experiments like quasi-elastic neutron scattering. This commu-
nication is centered on the definition, treatment and application of several
extended stochastic models, which have proved to be very effective tools
for interpreting and rationalizing complex relaxation phenomena in liq-
uids structures. First, applications of standard Fokker–Planck equations
for the orientational relaxation of molecules in isotropic and ordered liquid
phase are reviewed. In particular attention will be focused on the inter-
pretation of neutron scattering in nematics. Next, an extended stochastic
model is used to interpret time-domain resolved fluorescence emission ex-
periments. A two-body stochastic model allows the theoretical interpre-
tation of dynamical Stokes shift effects in fluorescence emission spectra,
performed on probes in isotropic and ordered polar phases. Finally, for the
case of isotropic fluids made of small rigid molecules, a very detailed model
is considered, which includes as basic ingredients a Fokker–Planck descrip-
tion of the molecular librational motion and the slow diffusive motion of a
persistent cage structure together with the decay processes related to the
changing structure of the cage.
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1. Introduction

Simulations and theoretical studies of liquid structures are nowadays
focused on complex liquids, including ionic fluids or melted salts, macro-
molecular fluids like polymers, and oriented phases. Investigations based on
Molecular Dynamics or Montecarlo techniques are the main tool for testing
microscopic theories of the liquid state, due to the rapid growth of compu-
tational power and the availability of realistic potential functions. However,
the complexity of phenomena revealed by simulations and the difficulties
which could arise in relating simulated results with actual experimental ob-
servations of dynamical observables in liquids, make way to the necessity of
employing simplified models. Mesoscopic or stochastic models are suitable
tools to interpret qualitatively, and often quantitatively, complex dynamical
behaviours in liquids.

Extended stochastic models are particularly useful, since they include
two main sets of degrees of freedom, namely rotational and/or translational
variables of primary interest which describe the motion of single molecules
sorted out as ’probes’ or ’solute’ and a set of additional variables of collec-
tive nature, related to solvation spheres, solvent polarization components
and cage structures [1–4]. Models can be defined with a minimum en-
semble of free parameters which are able to reproduce nuclear and electron
spin resonance spectra, optical spectroscopies results like fluorescence emis-
sion resolved in time, optical Kerr effect, light scattering, neutron scatter-
ing, dielectric relaxation, and many other experimental observables. More-
over, stochastic models based on multidimensional Fokker–Planck or Smolu-
chowski operators, once the potential energy of the augmented system solute
plus solvent has been defined, are in principle able to describe the time evo-
lution of the system in an exact way, and they also allow to interpret complex
dynamical behaviours as combinations or superpositions of subsets of coor-
dinates, and to discard irrelevant variables, when their relaxation is too fast
or too slow in the timescale of interest.

This work is concerned with the definition, treatment and application to
cases of interests of several stochastic models, in attempt to review the most
recent, state-of-art results in this research area.

First, applications of standard Fokker–Planck equations for the orien-
tational relaxation of molecules in isotropic and ordered liquid phase are
reviewed. In particular attention will be focused on the interpretation of
quasi-elastic neutron neutron scattering (QENS) experiments in nematics.
No secondary variables or solvent degrees of freedom are included in this
model, but the intrinsic complexity of the experimental QENS is shown to
be captured by the treatment, by including inertial effects and anisotropy.
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An extended stochastic model is used to interpret time-domain resolved
fluorescence emission experiments. A two-body stochastic model allows the
theoretical interpretation of dynamical Stokes shift effects in fluorescence
emission spectra, performed on probes in isotropic and ordered polar phases.
The system under scrutiny is assimilated to a rigid dipole rotating in a ne-
matic phase, characterized by a set of Euler angles describing the instan-
taneous orientation, and coupled to the stochastic reaction field generated
by the polar medium. This treatment has the advantage of directly relat-
ing the theoretical interpretation with macroscopical parameters such as the
dielectric constants and the viscosity of the liquid crystal medium.

Finally, even for the case of isotropic fluids made of small molecules,
a clear separation of time-scales between the relaxation of the solvent (or
‘cage’) structure, and the motions of the single confined molecules, has been
evidenced by molecular dynamics studies. A sophisticated model, which in-
cludes as basic ingredients a Fokker–Planck description of the single molecule
rotational motion and the slow diffusive motion of a persistent cage struc-
ture plus the decay processes related to the changing structure of the cage,
is defined and solved numerically and analytically, and applied to the in-
terpretation of the complex mix of orientational and librational relaxation
phenomena of a typical optical Kerr effect (OKE) experiment.

The paper is organized as follows. In the next Section a general descrip-
tion of different stochastic models is provided, to illustrate existing formal
and physical relations. In Section 3 the application of a rotational Fokker–
Planck model to QENS experiments in isotropic and ordered liquid phases is
presented and discussed. Section 4 is devoted to the interpretation of time
resolved fluorescence emission in polar liquids, with inclusion of an orienting
mean field to mimic a nematic phase. Finally Section 5 describes a more
advanced treatment for isotropic fluids only, which tries to take into account
as completely as possible all the elementary relaxation processes related to
the set up and decay of solvent structures around a rotating probe molecule.

2. Extended stochastic models

We shall first discuss the choice of the set of stochastic variables which
constitute an approximately closed Markovian space. The precise definition
of the stochastic model required for interpreting a given set of experimental
observations is strongly dependent of the time-window of the spectroscopical
technique and the nature of the liquid phase. A general and complete ab
initio definition of all possible stochastic treatment is an unrealistic task,
equivalent, in a sense, to the full comprehension at a microscopic level of
all the possible relaxation phenomena taking place in a liquid. We shall
consider in the following only cases of coupling of local solvent structures
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to the motion of a single rigid molecule, which will be referred to as probe
or solute, and neglect the interference of low-frequency or hydro-dynamical
modes. Our main analysis will be centered on rotational motions, since
they are of great importance for the interpretation of most dynamical data
obtained in liquid phases. The Fokker–Planck model for a rigid rotator
assumes that the environment is responsible for the presence of white-noise
forces providing a dissipative relaxation mechanism, which is superimposed
to the inertial (conservative) motion of the rigid body, described by a classic
Liouville operator. By neglecting the relaxation of the conjugate angular
momentum (which is done only in the condition of high friction) a purely
diffusive dynamics is obtained for the system, according to the standard
Smoluchowski picture.

Let us consider the case of a fluid made of rigid molecules, which may
carry a permanent electric dipole, and interact via short range steric inter-
actions which may give rise to anisotropic (nematic) phases. The motion of
a generic molecule is superimposed to the overall motion of a local cluster
or cage of companions molecule. The cage dynamics itself is rather complex
and is described at best by a mixed motion which is part small step dif-
fusion and part strong collision motion: the former being due to the small
reorientational steps that are taken by the cluster when it moves as a whole,
and the latter resulting from instantaneous changes in the set of molecules
forming the cluster, which enter and leave the cluster randomly. As a con-
sequence of the first kind of motion, only the orientation of principal axis
of the cage is changed; the second kind affects both the orientation of the
cage and its ’internal’ structure. It is possible to recover the Fokker–Planck
description as a particular case of the cage model, by neglecting the coupling
with the cage structure, and a two-body Smoluchowski model by considering
the diffusive regime only (fast decay of the momentum) of the probe, and
discarding the instantaneous changes in structure of the cage. The simplest
stochastic model, i.e. a one-body Smoluchowski model, is obtained directly
from the Fokker–Planck picture by projecting, as fast variables, the compo-
nents of the probe angular momentum, or from the two-body Smoluchowski
description by neglecting coupling with the cage.

2.1. The cage model
The following hypothesis are made to select the stochastic variables and

to define the static and dynamic property of the system:

1. a generic molecule (probe) is represented as a rigid rotating body, with
axial symmetry; either a rigid top with cylindrical symmetry of the
inertia tensor or a rigid needle; the translational degrees of freedom of
the probe are neglected, as they are considered essentially uncoupled
to the rotational motion;
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2. the local environment is made by a cluster of molecules behaving as a
diffusive rigid body, which can be subjected to random changes in its
internal structure;

3. the interaction potential between probe and cage is made up of two
parts: a term responsible for local confined reorientations of the probe
in the cage, and a term which is essentially the usual mean field term
dictating the preferential orientation of the probe with respect to the
external director, in the case of anisotropic phases;

4. an additional set of variables, represented by a vector R is included into
the relevant set of coordinates to describe the local polarization of the
solvent; a one-dimensional polarization variable was used recently to
treat the solvent dynamics of an isotropic polar environment, coupled
to an emitting probe with an internal degree of freedom [1]: here we
use a vector description of the solvent polarization to take into account
solvent effects on the full dimensionality of the rotational motion of
the probe.

The polar solvent dynamics is described by the stochastic reaction field
resulting by an Onsager cavity with the dielectric properties of the bulk
solvent. An advantage of this phenomenological approach is the immedi-
ate relation established with the macroscopical dielectric properties of the
medium, i.e. the dielectric tensor constants ε0 and ε∞. A minor complica-
tion arises from the intrinsic anisotropy of the solvent, at least in the ordered
phase [5].

The stochastic variables of the system are then written as:

Y = (Ωo,L,Ωc, ω,R) , (1)

where Ωo are the the Euler angles giving the orientation of the probe with
respect to the director; Ωc are the same quantities for the cage; L is the
conjugate momentum associate to Ωo. The quantity ω is the principal fre-
quency of librations of the probe with respect to the cage, for molecular
rotations about the x and y axis of the cage frame.

The system potential energy is written, by including only the even lead-
ing terms with respect to the ranks of Wigner functions in Ωo, and Ω =
Ωo −Ωc which represents the relative orientation of the probe with respect
to the cage, in the following form:

V (Ωc,Ωo, ω,R) = Vmf(Ωo) + Vc(Ω, ω) + VE(Ωo,R) . (2)

The mean field term is simply written as:

Vmf(Ωo) = −I⊥Ω2D2
0,0(Ωo)/3 ≡ −γD2

0,0(Ωo) , (3)
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while the probe-cage interaction term is written analogously:

Vc(Ω,ω) = −I⊥ω2D2
0,0(Ω)/3 . (4)

The electrostatic term, VE , should accounts for the interaction between
the electric dipole of the molecule and the reaction field. Finite amplitude
fluctuations are imposed to the solvent polarization via a quadratic potential
in R [6]:

VE(Ωo,R) = −1

2
µF∞µ − µR +

1

2
RF−1

or R , (5)

where µ is the electric dipole moment, depending on the orientation if ex-
pressed in the laboratory frame.

Tensors F∞ and F or = F 0 − F∞ are given in terms of the dielectric
tensors ε∞ and ε0, which are diagonal in the LF, and of the electrostatic
depolarization tensors n and n′, defined respectively for the cavity and in
vacuo. A detailed derivation is presented in the Appendix. By choosing a
cavity of spherical shape with radius a, one can show that for a cylindrically
symmetric dielectric tensor ε (i.e. ε1 = ε2 = ε⊥ and ε3 = ε‖), the generic F

tensor is diagonal in the LF, with principal values:

F1 = F2 = F⊥ =
1

4πa3ε0

(1 − n′
⊥)ε⊥ − 2n′

⊥

ε⊥ − n′
⊥(ε⊥ − 1)

(6)

F3 = F‖ =
1

4πa3ε0

(1 − n′
‖)ε‖ − 2n′

‖

ε‖ − n′
‖(ε‖ − 1)

, (7)

where the electrostatic depolarization tensor is:

n′
⊥ =

1

2

∞
∫

0

dz
1

(1 + z)2[1 + (ε‖/ε⊥)z]1/2
(8)

n′
‖ =

1

2

∞
∫

0

dz
1

(1 + z)3/2[1 + (ε⊥/ε‖)z]
. (9)

(10)

The principal values of F 0 and F∞ are obtained substituting the compo-
nents of ε0 and ε∞ in the previous set of equations.

The equilibrium distribution for the system is then given by:

P (Y ) =
exp{−[LtrI−1L/2 + V (Ωc,Ωo, ω,R)]/kBT}P (ω)

2πkBTI⊥
√

2πkBTI‖
∫ ∫ ∫

dΩodΩcdR exp{−V (Ωc,Ωo, ω,R)/kBT} .

(11)



Extended Smoluchowski Models... 1755

Here I is the inertia tensor of the probe, with principal components I⊥ and
I‖, and P (ω) is the reduced distribution on the librational frequency ω,
which has to be defined; a simple Gaussian form was already used in recent
works [2] concerning isotropic phases, although other functions are possible:

P (ω) = exp[−(ω − ω)2/2σ2
ω]/

√

2πσ2
ω . (12)

The time evolution operator is now specified according to the idea that the
system Y constitutes a closed Markovian space whose temporal evolution
is dictated by single elementary processes represented by Fokker–Planck
or diffusive terms. The non-equilibrium distribution is obtained from the
solution of the general equation:

∂P (Y , t)/∂t = −Γ̂P (Y , t) . (13)

First we divide the time evolution operator into a solute related part and
solvent terms:

Γ̂ = Γ̂solute + Γ̂cage + Γ̂S . (14)

The first term contains the operator related to rotation of the probe, i.e. the
Fokker–Planck operator

Γ̂solute = LtrI−1M̂(Ωo)+(T+P )tr
∂

∂L
−kBT

(

∂

∂L

)tr

ξP (Y )

(

∂

∂L

)

P (Y )−1,

(15)

where M̂(Ωo) is the rotation operator acting on Ωo with components in the
molecular frame.

Eq. (15) depends upon the friction tensor ξ, which is diagonal, with

principal components ξ⊥ and ξ‖, in the molecular frame; T = −M̂(Ωo)V is
the torque vector. The precessional torque P is written explicitly as:

P = L×I−1L , (16)

and L× is a matrix such that L×v = L ∧ v for all vectors v. The preces-
sional contribution to the streaming part of the Fokker–Planck operator is
a consequence of the choise of writing the operator in the molecular system
of axes. Precessional effects are null for the case of isotropic inertial tensor
(I⊥ = I‖).

Next we specify the dynamics of the cage by considering two indepen-
dent processes: i) the cage rotation which does not modify the librational
frequencies, and ii) the cage restructuring which randomize both the libra-
tional frequencies and the cage orientation

Γ̂cage = Γ̂cage rot. + Γ̂cage rest. (17)
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For the former dynamical process, a simple rotational diffusion operator will
be employed

Γ̂cage rot. = −M̂(Ωc)
trDP (Y )M̂ (Ωc)P (Y )−1 , (18)

where M̂ (Ωc) is the rotation operator acting on the Euler angles Ωc and
with Cartesian components in the cage frame. It is given by the same form
of M̂(Ωo) after substitution of Ωo with Ωc. An scalar diffusion tensor will
be used for simplicity in all the applications presented in this work, thus
assuming that the diffusional rotation of the cage is essentially isotropic

D = D1 . (19)

The cage restructuring operator is built in the form of an integro-differential
term, i.e. as a master equation which specify the rate of interchange between
two given configuration Y and Y ′: this rate, w is the only parameter of the
cage restructuring process, and the case w → 0 corresponds to absence of
restructuring, i.e. a rigid cage. The explicit form of the cage restructuring
operator has been defined elsewhere [4] for a linear rotator in an isotropic
medium and can defined essentially along the same lines for a rotating non-
linear molecule in an anisotropic medium, i.e. as a master equation which
specify the rate w of interchange between two given configuration Y and
Y ′:

Γ̂cage rest. P (Y , t) =

∫

dY ′[P (Y , t)W (Y → Y ′) − P (Y ′, t)W (Y ′ → Y )] ,

(20)
with a transition kernel W (Y → Y ′) dependent in general on the initial
configuration Y and the final one Y ′. Two constraints are imposed for
choosing the transition kernel: the detailed balance condition and the con-
dition that instantaneous changes of the solvent cage do not modify the
solute configuration, i.e. that the (Ωo,L) variables remain constant during
cage restructuring. Correspondingly we choose a BGK [7] rate kernel with
respect to the solvent (cage and reaction field) variables only:

W (Y → Y ′) = W(Ωc − Ω′
c)δ(Ω

′
o − Ωo)δ(L

′ − L)P (Ω′, ω′,R′) , (21)

where P (Ω′, ω′,R′) is the equilibrium distribution of the solvent variables
in the arrival state for a given solute orientation, i.e. the Boltzmann dis-
tribution with respect to V (Ω′, ω′,R′) multiplied by P (ω′). A function
W(Ωc−Ω′

c) has to be introduced in order to control the distribution in size
of the cage reorientations. The effective rate w can be assigned to the cage
restructuration processes on the basis of the average decay rate of all cage
structures

w =

∫

dY dY ′P (Y )W (Y → Y ′) . (22)
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The term responsible for the relaxation of solvent polarisation is also as-
sumed to be diffusive in nature and it is represented by a Smoluchowski
operator:

Γ̂S = −
(

∂

∂R

)tr

DSP (Y )

(

∂

∂R

)

P (Y )−1 , (23)

where the diffusion tensor DS is given in terms of the solvent relaxation
times:

DS/kBT =





F⊥
or/τ

⊥
S 0 0

0 F⊥
or/τ

⊥
S 0

0 0 F
‖
or/τ

‖
S



 . (24)

The model is completely defined by the following parameters: the stream-

ing frequencies ω
⊥,‖
s =

√

kBT/I⊥,‖, the average librational frequency ω, the
distribution width σω and the mean field frequency Ω. Dynamic parame-
ters, characterizing the rates of dissipation associated with the relaxation

processes, are the collision times τ
⊥,‖
c = I⊥,‖/ξ⊥,‖, the cage diffusion coef-

ficient D and the rate of cage restructuring w. Finally polar static effects
are parameterized by tensors F∞ and F or, i.e. essentially by the dielectric

constants; and dynamical polar solvent effects by τ⊥
S and τ

‖
S , which can be

in turn connected to Debye relaxation times. A compact representation of
the operator is obtained after defining the overall gradient with respect to
all variables, minus the frequency of restructuring of the cage:

∇̂Y =

















M̂(Ωo)
∂

∂L

M̂(Ωc)
∂

∂R

















. (25)

The operator can then be written in the form:

Γ̂ = Γ̂solute + Γ̂ cage rot. + Γ̂S + Γ̂ cage rest.

= −∇̂
tr
Y aY P (Y )∇̂Y P (Y )−1 + Γ̂ cage rest. , (26)

where aY is the matrix:

aY =









0 −kBT1 0 0

kBT1 kBT (ξ − L×) 0 0

0 0 D1 0

0 0 0 DS









. (27)
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2.2. Fokker–Planck model

We are now able to underline the formal relations which exist with pre-
vious stochastic models. Let us consider the Fokker–Planck model (FP).
By assuming that the probe is much larger than the solvent particles, we
may consider that the coupling of the cage structure with the probe itself
is rather weak: for a massive probe immersed in a fluid of microscopic par-
ticles, the cage structure looses meaning. Thus coupling with Ωc and ω is
neglected. Also, if non polar molecules are considered, the coupling with
the reaction field or solvent polarisation disappears For a generic function
depending only upon the probe coordinates, f(Ωo,L), the time evolution
operator is obtained in the standard Fokker–Planck form:

Γ̂FP=LtrI−1M̂(Ωo)+(T +P )tr
∂

∂L
−kBT

(

∂

∂L

)tr

ξP (Ωo, L)

(

∂

∂L

)

P (Ωo, L)−1 ,

(28)

which is naturally equivalent to Γ̂solute, defined with respect to a potential
which includes only Vmf .

2.3. Smoluchowski models

The standard Smoluchowski model (S) is immediately recovered from
the FP model under the well-known condition of fast relaxation of the probe
momentum components; this condition can be formally expressed in terms
of collisional times and streaming frequencies by assuming that:

τ⊥,‖
c << 1/ω⊥,‖

s , (29)

i.e. the perpendicular and parallel collision times must be very small com-
pared to the time scale of the conservative motions. A straightforward pro-
jection is performed with respect to the fast variables L and a standard
Smoluchowski operator is obtained:

Γ̂S = −M̂(Ωo)
trDRP (Ωo)M̂ (Ωo)P (Ωo)

−1 , (30)

where P (Ωo) =
∫

dLP (Ωo,L) is the Boltzmann distribution with respect
to the mean field potential only and where the effective diffusion tensor,
diagonal in the molecular frame, has the principal components:

D
⊥,‖
R = ω⊥,‖

s
2
τ⊥,‖
c . (31)

A two-body Smoluchowski model (S2) can be considered, when (i) probe
inertial motions are negligible, (ii) no polar static and dynamical effects are
taken into account, (iii) cage restructuring is neglected. The time evolution
operator obtained in this case is

Γ̂S2 = − M̂ (Ωo)
trDRP (Ωo,Ωc)M̂ (Ωo)P (Ωo,Ωc)

−1

− DM̂(Ωc)
trP (Ωo,Ωc)M̂ (Ωc)P (Ωo,Ωc)

−1 , (32)
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i.e. it corresponds to the motion of two diffusive bodies coupled by the local

potential V (Ωo−Ωc) with axially symmetric diffusion tensor (D⊥
R and D

‖
R)

for the probe, and the isotropic diffusion coefficient D for the cage. This
model has been extensively used in the interpretation of ESR spectra of
paramagnetic probes in liquid crystals [8]and glassy fluids [9].

Finally, a Smoluchowski model (SS) which includes the probe orientation
and the polarization field as principal stochastic variable is obtained by
retaining only the relaxation and static terms pertaining to Ωo and R:

Γ̂SS = − M̂ (Ωo)
trDRP (Ωo,R)M̂ (Ωo)P (Ωo,R)−1

−
(

∂

∂R

)tr

DSP (Ωo,R)

(

∂

∂R

)

P (Ωo,R)−1 . (33)

This model has been used to rationalize time resolved fluorescence emission
spectra of large rotating probes in polar isotropic and nematic phases [10,11].

2.4. Numerical solution

The usefulness of stochastic models can be limited if an efficient tech-
nique to extract the necessary information, i.e. to calculate explicitly the
correlation functions of interests and their dependence upon the parame-
ters, is not available. When relatively large phase space of variables are
considered, tools to accomplish this task are lacking. However, very efficient
procedures can be applied to rather complex problems by combining the
projection of the time evolution operator in a functional space of functions,
either orthogonal or non-orthogonal, and a treatment of the resulting and
highly effective iterative techniques on sparse matrices like the Lanczos algo-
rithm. Efficient approximate techniques are also available which are based
upon the separation of timescales among different subsets of variables.

In general, the first step to solve numerically a stochastic model is to
choose a suitable set of basis functions |N〉, which is usually defined as the
direct product of sets of functions defined for the coordinates or groups of
them. The collective index N identifies completely each member of the basis
set. The superposition matrix S, with elements

SN,N ′ ≡ 〈N |N ′〉 (34)

is eventually required to account for the non-orthogonality of the basis set.
Once the basis functions are chosen, the matrix representation must be gen-
erated for a generic correlation function of two observables f(Y ) and g(Y )
given as linear combinations of the basis elements

f(Y )P (Y )1/2 =
∑

N

fN |N〉 g(Y )P (Y )1/2 =
∑

N

gN |N〉 . (35)
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Let us consider the correlation function in the symmetrized form

G(t) = 〈f | exp(−Γ̂ t)|gP 〉 = 〈fP 1/2| exp(−Γ̃ t)|gP 1/2〉 (36)

defined with respect to the symmetrized time evolution operator

Γ̃ ≡ P (Y )−1/2Γ̂ P (Y )1/2 . (37)

Actual calculations are necessarily performed with a truncated set of basis
elements, and this is equivalent to substitute the full correlation function
with a projected counterpart

G(t) = 〈fP 1/2| exp(−Γ̃ P̂t)|gP 1/2〉 , (38)

P̂ being the projection operator onto the subspace spanned by the truncated
basis set

P̂ =
∑

N,N ′

|N〉(S−1)N,N ′〈N ′| , (39)

with the summations restricted to the allowed values of indexes N and N ′.
By expanding in Taylor series the exponential term

G(t) =
∑

k

(−t)k

k!
〈fP 1/2|(Γ̃ P̂)k|P 1/2g〉 =

∑

k

(−t)k

k!
f †(ΓS−1)kSg

= f † exp(−ΓS−1t)Sg (40)

one recovers the matrix form of the correlation function to be evaluated
with the methods of linear algebra. The coefficients of expansions (35) are
collected in the arrays f and g, while Γ is the matrix representation of the
evolution operator

ΓN,N ′ = 〈N |Γ̃ |N ′〉 . (41)

Because of the lack of symmetry in the matrix ΓS−1, we can employ the
Lanczos algorithm for symmetric or non-symmetric matrices which generates
iteratively an orthogonal or bi-orthogonal basis, respectively. The required
number of iterations is typically much smaller than the matrix dimension.

3. Interpretation of quasi-elastic neutron scattering in liquids

The autocorrelation function of a generic observable f is defined as:

G(t) = f(0)f(t) = 〈f | exp(−Γ̂ t)|fP 〉 (42)

being Γ̂ the time evolution operator for the variables whose dynamics has
been retained either because f depends directly upon them (primary vari-
ables), or because they are associated to the primary variables (momenta,
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cage variables, polarisation vectors and so on): P is the Boltzmann distri-
bution. The time Fourier transform is defined as

S(ω) =
1

2π

+∞
∫

−∞

dt exp(−iωt)G(t) = F̂ [G(t)] . (43)

The physical observable in QENS experiments is related to the scattering
function Ss(Q, ω), where Q is the scattering vector associated to the trans-
ferred linear momentum ~Q and ω is the angular frequency related to the
energy ~ω exchanged between the quasi-elastic process involving the neutron
beam and the single (incoherent) scattering centre. In the following, only
a single proton nucleus is considered, defined by vector rH in the labora-
tory frame. The full scattering function is defined according to the following
expression [12, 13]:

Ss(Q, ω) = F̂ [Is(Q, t)] , (44)

where Is(Q, t) is the intermediate scattering function, which is the Fourier
transform in the space domain of the Van Hove positional autocorrelation
function for the scattering centre:

Is(Q, t) = exp[iQ · rH(0)] exp[−iQ · rH(t)] . (45)

3.1. Neutron scattering correlation function

In the case of slow translational dynamics, by taking into account just the
rotational motions with fixed centre of mass of the probe molecule, the au-
tocorrelation function is expanded in terms of a sum of correlation functions
of Wigner rotational matrices of all ranks, weighted by factors depending
upon the experimental geometry (which is defined by the vector Q) and the
molecular motion. For a collection of scattering centres, the additivity law
holds for Ss(Q, ω). In the case of a rod-like molecule the total scattering
function be expressed in the following form by using the Rayleigh expansion
of the complex exponential:

Ss(Q, ω) = (4π)2
+∞
∑

l1,l2=0

(ı)l1(−ı)l2jl1(QrH)jl2(QrH)

×
∑

m,m′

Y ∗
l1m(ΩQ

L)Y ∗
l1m′(ΩH

M)Yl2m(ΩQ
L)Yl2m′(ΩH

M)

× F̂{Dl1
mm′ [Ωo(0)]Dl2

mm′ [Ωo(t)]} , (46)

where ΩQ
L = (φL

Q, θL
Q) are the angles defining the orientation of Q in the

laboratory frame, and ΩH
M = (φM

H , θM
H ) are the angles for the orientation
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of the single proton, i.e. the incoherent scattering centre, in the molecular
frame; jl(z) are Bessel spherical functions. The indexes m,m′ assume all
the values compatible with the rank of the spherical harmonics functions.
The full scattering function can be divided in two contributes:

Ss(Q, ω) = EISF(Q)δ(ω) + Sqe(Q, ω) , (47)

where EISF(Q) is the elastic incoherent structure factor, i.e. the pure elastic
component, and Sqe(Q, ω) is the quasi-elastic term which contains informa-
tion about the relaxation processes. The expansion of the product of two
spherical harmonics allows one to write the quasi-elastic component in the
form

Sqe(Q, ω) =

+∞
∑

l1,l2=0

∑

m,m′

∑

k1,k2

(−1)m+m′
(ı)l1(−ı)l2 [l1l2]jl1(QrH)jl2(QrH)

× C(l1l2k1;−m m)C(l1l2k2;−m′ m′)C(l1l2k1; 0 0)C(l1l2k2; 0 0)

× Pk1
(cos θL

Q)Pk2
(cos θM

H )

× F̂{δDl1
mm′ [Ωo(0)]δDl2

mm′ [Ωo(t)]} , (48)

where k1, k2 assume all the integer values between | l1 − l2 | and (l1 + l2);
[l1l2] stands for (2l1 +1)(2l2 +1), and δDl

m,m′ is the Wigner matrix function
minus its average with respect to the Boltzmann distribution P . The elastic
component EISF(Q) is easily obtained as :

EISF(Q) =
+∞
∑

l1,l2=0

ıl1+l2[l1l2]jl1(QrH)jl2(QrH)

× Pl1(cos θL
Q)Pl1(cos θM

H )Pl2(cos θL
Q)Pl2(cos θM

H ) Pl1 Pl2 ,

(49)

and Pl(cos θ) is a Legendre polynomial; Pl is the order parameter of l-rank:

Pl = Pl(cos βo)P . (50)

In expression (49) the sum is limited to l1, l2 assuming even values. The
extension of these relations to the isotropic case is immediate.

A drastic simplifications of the previous expressions is achieved when
symmetries are taken into account. Thus, the number of the independent
auto-correlation functions of Wigner matrices to be calculated is largely re-
duced. It is interesting to note that only the autocorrelation functions, or
the mixed correlation functions with l1, l2 both even or odd, contribute to
the scattering function. Further simplified expressions can be obtained in
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the case of a single scattering centre located on the long-molecular axis of
probe, that is θM

H = 0. In this case, it is simple to demonstrate that only

correlation functions δDl1
m,0[Ωo(0)]δDl2

m,0[Ωo(t)] have a non-zero weight. In

particular, in the case of the centre placed on the long axis and Q ‖ ẑ (that
is parallel to the director of the uniaxial phase, in the case of a nematic
liquid crystal), the relation (48) becomes :

Sqe(Q, ω)θH=0,Q‖ =

+∞
∑

l1,l2=0

(ı)l1(−ı)l2[l1l2]jl1(QrH)jl2(QrH)

×F̂{δDl1
00[Ωo(0)]δDl2

00[Ωo(t)]} . (51)

In the case of Q ⊥ ẑ the expression for Sqe(Q, ω) is more complex. In
any case, a selection rule due to the intrinsic symmetries of the spherical
harmonics functions for θL

Q = π
2 limits the correlation functions with non-

null weight to those with l1 6= |m| + 1 and l2 6= |m| + 1.
It is interesting to investigate the behaviour of the quasi-elastic function

for Q parallel and perpendicular to the director of the phase — when the
centre is located on the long axis — for small arguments of the Bessel func-
tions (approximately QrH ≤ 1). In such case, the correlation functions of
the first-rank Wigner functions have dominant weights upon the others. In
particular, the following approximations have been numerically tested:

Sqe(Q, ω)Q‖ = 9 j1(QrH)2F̂{δD1
00[Ωo(0)]δD1

00[Ωo(t)]} , (52)

Sqe(Q, ω)Q⊥ = 9 j1(QrH)2F̂{δD1
10[Ωo(0)]δD1

10[Ωo(t)]} . (53)

3.2. Fokker–Planck dynamical model for neutron scattering

A standard FP model has been applied recently to the calculation of cor-
relation functions (48) and (49), for the case of a rotating scattering centre in
nematic liquid phases. Cage and solvent polarisation effects should in princi-
ple be included to achieve a better understanding of the QENS observables;
however, the additional complexity in the neutron scattering interpretation
— the signal is always linked to complicate combinations of many orien-
tational correlation functions — and the difficulties in the analysis of the
experimental data suggest the opportunity of considering standard models,
before attacking the problem of solvent static and dynamical effects. The
following analysis is then based on the exact numerical exploration of the FP
only because this model can be considered as a paradigmatic interpretation
of the rotational dynamics of a probe molecule (at least in the absence of
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cage effects). The results presented here have been selected with the pur-
pose of showing that the model is sensitive to geometric (orientation of vector
Q), frictional (collisional times, i.e. probe friction tensor) and phase-related
(mean-field potential) parameters. Actual comparison between experimental
observations and model simulation are currently carried on [14].

The dynamical model, i.e. the time evolution operator for the phase
space of variables given by the Euler angles Ωo and the conjugate momentum
vector L is given by Eq. (28), defined with respect to the mean-field potential
specified by Eq. (3). The model is then controlled by the two streaming

frequencies ω⊥
s and ω

‖
s ; by the collisional times τ⊥

c and τ
‖
c ; and finally by

the potential strength parameter γ.
Let us now specialize the general numerical treatment described above

to this particular case. We represent the FP operator in matrix form with
respect to the following set of basis functions

|N〉 ≡
(

[Jo]

8π2

)1/2

DJo

Mo,Ko
(Ωo)

∗

×Hen1
(L1/

√

kBTI⊥)Hen2
(L2/

√

kBTI⊥)Hen3
(L3/

√

kBTI‖)

× exp(−LI−1L/4kBT )/(2π)3/4 . (54)

The ensemble of elementary indexes are collectively represented by N :

N ≡ (Jo,Mo,Ko, n1, n2, n3) . (55)

Matrix elements are calculated analytically; explicit expressions for related
or similar computational problems have been presented elsewhere [15]. Let
us analyze separately the functional dependence on the different stochastic
variables. For the solute orientational degrees of freedom the Wigner func-
tions of orientation Ωo have been chosen. For the angular momentum the
Hermite functions of the scaled momentum vector are employed like in pre-
vious studies of the Brownian rotational motion of linear molecules. These
functions are orthogonal: the general analysis is simplified since the over-
lap matrix is equal to the identity matrix. Matrices dimensions are rather
large: truncation parameters chosen for the results presented here have been
Jmax

o = 4 − 5 and nmax
i = 6 − 7, which correspond to dimensions of 10000-

20000. Lanczos algorithm has been employed to calculate the correlation
functions. We present here a few preliminary simulations, calculated for the
case of a nematic with order parameter P2 = 0.33, i.e. γ = 1.5kBT . For the

case of a spherical rotator, ω⊥
s = ω

‖
s = 1 ps−1, and for a cylindrical rotator,

ω⊥
s = 0.7 ps−1 and ω

‖
s = 1.3 ps−1. In both cases the collisional times have

been chosen all equal to 1 ps (isotropic friction tensor). The value of |Q||rH |
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has been fixed to 0.5 and 2 in the spherical case, and 2 in the cylindrical case.
In order to show the dependence of the geometry of the scattering centre,
three orientations of Q with respect to the phase director have been consid-
ered, namely 0◦, 45◦ and 90◦. Finally, the scattering centre has been always
taken along the z-axis of the rotating probe. The experimental geometry is
summarized in Fig. 1.

Q

r
H

θ
L

Q
θ

M

r

y

yM

L

xL

zL

xM

zM

Fig. 1. Experimental geometry of a quasi-elastic neutron scattering experiment

with a single scattering center.

The first set of calculated result is given in Fig. 2. The first two drawings,
(a) and (b), present Sqe with respect to ω for the spherical case; the third
one, (c), has been calculated for the cylindrical case. The simulations clearly
show a strong dependence upon the angle between Q and the director, θL

Q.

At intermediate values of θL
Q, the increased |Q||rH | parameter is responsible

for lowering significantly Sqe(0): compare (a) and (b). The anisotropy in the
inertia tensor is the cause of a further shift to higher frequencies, especially
at high values of θL

Q, cfr. (c). The dependence of the geometrical factor of

a given rotational correlation function with respect to θL
Q can be explored
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Fig. 2. Quasi-elastic component of the scattering function. Full lines: θL

Q = 0◦;

dashed lines: θL

Q = 45◦; dotted lines: θL

Q = 90◦. (a): isotropic case, |Q||rH | = 0.5;

(b): isotropic case, |Q||rH | = 2; (c): anisotropic case, |Q||rH | = 2.

directly, by defining

Ss(Q, ω) =
∑

l1,l2,m,m′

a(l1, l2,m,m′)F̂ [Dl1
m,m′(0)Dl2

m,m′ (t)] . (56)

In Fig. 3 we report as functions of θL
Q the coefficients a(1, 1, 0, 0), a(1, 1, 1, 0)

(a) and a(2, 2, 0, 0), a(2, 2, 1, 0), a(2, 2, 2, 0) (b), which correspond to dom-
inant terms, for |Q||rH | = 1. This analysis allows to obtain approximate
expressions for the scattering function by including only a few contribution,
cf. Eqn (52) and (53). In Fig. 4, we show the exact and approximate
calculated Sqe for θL

Q = 0 (a) and 90 (b), when |Q||rH | = 1: the agree-

ment is better for small values of |Q||rH |, i.e. small arguments of the Bessel
functions which appear in the definition of the scattering function.
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Fig. 3. Coefficients a(1, 1, 0, 0), a(1, 1, 1, 0) (a) and a(2, 2, 0, 0), a(2, 2, 1, 0),

a(2, 2, 2, 0) (b). for |Q||rH | = 1.

4. Time resolved fluorescence in ordered phases

In this Section, we consider the case of the rotational dynamics of an elec-
tric dipole in a polar solvent, treated as a rigid diffusive rotator coupled to a
vector representing the fluctuating polarization of the medium. The model
has been already used recently to interpret the dynamical Stokes shift of
fluorescence emission spectra obtained from rigid coumarin dyes in polar
isotropic liquids and liquid crystals [10, 11]. Exact computational solutions
of the full time evolution operator have been presented, and compared to
measured time resolved fluorescence spectra. Here we review some of these
results and we present some new conclusions concerning semi-analytical so-
lutions which are possible when one chosen subset of variables (the rotational
degrees of freedom of the emitting probe, or the vector polarization) is sig-
nificantly faster than other degrees of freedom. In particular, we intend
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Fig. 4. Exact (full lines) and approximate (dashed lines) Sqe for θL

Q = 0 (a) and 90

(b), for |Q||rH | = 1.

to show that several different dynamical regimes can result by changing the
anisotropy ratio, i.e. the ratio between the characteristic timescales of solute
and solvent. Both Stokes shift time correlation functions, which are immedi-
ately related to solvation dynamics, and orientational correlation functions
for the probe coordinates will be calculated and discussed.

4.1. Experimental observable

The emission spectrum I of an excited singlet state can be written quite
generally as a double integral over all the ground and excited states con-
figurations, where each configuration is represented by a point of the phase
space, which includes all relevant degrees of freedom of the molecule in the
time window of the experiment. in the following we employ a quite general
definition of the observable unregarding the particular nature of the chosen
set of coordinates. We shall use the symbol Y o to represent a given con-
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figuration of the ground state, whereas Y will be employed to describe the
excited state.

For the case of experiments performed in linearly polarized light, the
signal is given, neglecting constant factors depending on the instrumental
apparatus, by the expression [16]:

I(ωA, ωE, t) =

∫

dY odY [eA · µA(Y o)]
2gA[ωA − ∆ω(Y o)]P

(0)(Y o)(57)

× [eE · µE(Y )]2gE [ωE − ∆ω(Y )]P (Y o,Y , t) .

Here eA,E are the directions of the polarization vectors for the absorp-
tion and emission light, respectively; µA(Y o) and µE(Y ) are the transition
dipole moments; ωA,E are the absorption and emission frequencies; gA,E are
band-shape functions in absorption and emission, centered at the frequency
∆ω(Y o) and ∆ω(Y ), respectively, related to the difference in energy be-
tween the two states for a given point Y of the phase space

∆ω(Y ) = [E1(Y ) − E0(Y )]/~ . (58)

Eq. (58) requires, to be complete, the knowledge of the Boltzmann equi-
librium distribution for the ground state, P (0)(Y o) and the distribution at
time t for the excited state, P (Y o,Y , t) which depends parametrically also

on Y o through the initial conditions. A time evolution operator Γ̂ for the
distribution in the excited state can be introduced. The time evolution equa-
tion is then obtained including a source term S(Y o,Y , t) and a sink term
kE(Y ) [1]:

∂

∂t
P (Y o,Y , t) = −[Γ̂ + kE(Y )]P (1)(Y o,Y , t) + S(Y o,Y , t) (59)

P (Y o,Y , 0) = 0 , (60)

which is formally solved to give:

P (Y o,Y , t) =

t
∫

0

dτ exp{−[Γ̂ + kE(Y )]τ}S(Y o,Y , t − τ) . (61)

In the following Sections, our main interest will lie in simulating emission
spectra, so that a fixed frequency of absorption ωA can be chosen. The
sink, source and absorption band shape functions can also be simplified: (a)
the sink function kE(Y ), responsible for the decay of the population of the
excited state is taken as a simple exponential decay with time constant given
by the fluorescence life-time τF ; for sake of simplicity we assume kE(Y )



1770 A. Polimeno et al.

to be independent on the configuration coordinate Y (see ref. [17] for a
discussion on the wavelength dependence of kE(Y )); (b) the source function
S(Y o,Y , t) is chosen as the product of two Dirac delta functions in space
and time:

S(Y o,Y , t) = δ(Y o − Y )δ(t) , (62)

i.e. an instantaneous, point-to-point excitation from the ground to excited
state is allowed; (c) the dependence of the band shape function, gA[ωA −
∆ω(Y o)], upon Y o, at the selected frequency of absorption ωA, is neglected.
The following simplified expression for I(t) is then obtained (systematically
neglecting constant factors)

I(ωE , t) = exp(−t/τF )

∫

dY [eE · µE(Y )]2gE [ωE − ∆ω(Y )]

× exp(−Γ̂ t)[eA · µA(Y )]2P (0)(Y ) . (63)

Eq. (63) can be used to interpret the emission fluorescence signal in linearly
polarized light. Notice that the time distribution function of the excited
state is depending directly on the ground state equilibrium distribution and
on the projection of the absorption transition moment upon the polarization
plane of the exciting radiation.

We may now proceed to specialize our methodology to an experimental
setup of interest. Let us consider a rigid emitting solute molecule (probe)
which is reorienting in a polar environment. The medium may exists either in
an ordered (nematic) or in an isotropic phase. The relevant set of coordinates
is then chosen accordingly; first, the orientation of the probe molecule has
to be included, represented by a set of Euler angles Ω = α, β, γ which define
the MF orientation with respect to the laboratory frame (LF). If a cylindrical
symmetry is assumed for the molecule the azimuthal angle γ is separated
(see below).

4.2. Dynamics

We need to define the time evolution operator Γ̂ . We adopt a purely
diffusive description for both coordinates, Ωo and R. The complete time
evolution operator is then given by Eq. (33). Two diffusional tensors, DR

for the rotation, diagonal in the molecular frame, and DS for the solvent
polarization, diagonal in the laboratory frame, need to be defined. Assump-
tions can still be made to simplify the treatment: the simple potential given
by Eq. (3) is chosen for for the orientational interaction, both in the ground
and excited states, i.e. the assumption is made that the steric interaction
in the two states are essentially the same. Next, dipole vectors µo and µ1
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are assumed to be aligned to the z-axis of the molecular frame; i.e. in the
laboratory frame, for i = 0, 1:

µi = µiz(Ωo) , (64)

where z = (cos αo sin βo, sin αo sin βo, cos βo)
tr. Since no explicit coupling

with the azimuthal angle γ is present, the parallel tumbling time τ
‖
R does

not enter the calculation of correlation functions for observables not depend-
ing upon γ. A further hypothesis is made when noticing that the anisotropy
of both tensors F or and F∞ is rather small, since for reasonable values of
dielectric constants the difference between perpendicular and parallel com-
ponents is less than 2 %. In the following we shall consider both tensors as
isotropic, F or = For1 and F∞ = F∞1.

The final time-evolution operator describing the rotation of the probe in
its excited state, is finally given in terms of the coordinates Y = Ω,R, and
the potential energy is

V (Y ) ≡ E1(Y ) = −γP2(cos βo) − µ1z(Ωo)R +
1

2For
R2 (65)

minus constant terms. The static properties of the systems are now de-
fined essentially in terms of parameters which can be, at least roughly, esti-
mated or predicted: λ can be obtained by calculations of orienting potentials;
µ0 can be evaluated by standard semi-empirical electronic calculations; µ1

can be measured from the polarity of various solvents using the Lippert–
Mataga relation; For is given in terms of dielectric parameters. The dynam-
ical parameters are also, in principle, measurable or approximately known:

τR ≡ τ⊥
R from the Stokes–Einstein relation and the solvent viscosity, τ

⊥,‖
S

from dielectric relaxation experiments. In practice, many of these quantities
are ill-defined or difficult to measure, but at least an estimate of their orders
of magnitude can be given.

4.3. Correlation functions

The Stokes-shift signal is easily obtained in the form of a correlation
function when the interpretation is limited to the case of completely depo-
larized light. An average of Eq. (63) with respect to all directions of eE

and eA can be performed [18]. Only constant factors are generated, which
can be neglected. Finally, we are left with the evaluation of the following
function:

I(ω, t) =

∫

dY g[ω − ∆ω(Y )] exp(−Γ̂ t)P (0)(Y ) . (66)
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The straightforward dependence upon the life-time of the excited state can
be neglected. The band shape function g(ω) can be estimated to be a simple
Gaussian function. The intensity of the fluorescence emission at each time is
centered of a frequency ωmax(t) whose shift in time is defined as the Stokes
shift function:

C(t) =
ωmax(t) − ωmax(∞)

ωmax(0) − ωmax(∞)
. (67)

By neglecting any change in time of the spectral width, the frequency of
maximum is identified with the averaged frequency:

ωmax(t) = ω(t) =

∫

dωωI(ω, t) =

∫

dY ∆ω(Y ) exp(−Γ̂ t)P (0)(Y ) . (68)

This expression can be further simplified by writing

P (0)(Y ) = exp[(µ0 − µ1)zR/kBT ]P (Y ) , (69)

and expanding the exponential with respect to (µ0−µ1)/kBT . If the expan-
sion is arrested to the first order term, which is acceptable if one assumes
that the excited state does not differ much from the ground state dipole,
after some algebra the following expression is found:

C(t) = (zR − µ1)(0)(zR − µ1)(t)/(zR − µ1)2 . (70)

Notice that this expression depends upon a mixed function, defined with
respect to Ω and R. Since zR = RM

3 , where RM is the rescaled reaction
field with components in the molecular frame, one can also write:

C(t) = RM
3 (0)RM

3 (t)/RM
3

2
. (71)

The Stokes shift correlation is by definition a quantity depending upon the
solvent polarization. Standard spectroscopic observables are usually given
by dipolar, quadrupolar and higher ranks rotational correlation functions,
which are defined for functions depending upon the probe coordinates only,
analogously to the case of neutron scattering discussed in the previous Sec-
tion For instance, dielectric relaxation and fluorescence depolarization are
related respectively to rotational correlation functions with j = 1 and j = 2:

Gj
m(t) = Dj

m,0(0)Dj
m,0(t) . (72)

Notice that in both cases it is the ground state dynamics which is explored,
so that the dipole moment should be defined by µ0. In the following we shall
consider a generic dipole intensity µ.
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4.4. Results

The exact dependence upon time of the relevant observables can be cal-
culated by solving numerically the dynamical problem, i.e. by representing
the time evolution operator in matrix form in a suitable set of basis functions
in Y . The resulting linear algebra problem is then reduced in the usual way
to the diagonalization of the matrix, to find the eigenvalues (i.e. the decay
modes) of the problem. The correlation functions represented by Eqns. (71)
and (72) are then resolved into a sum of exponentials. We represent the
Smoluchowski operator in matrix form with respect to the following set of
basis functions

|N〉 ≡
(

[Jo]

8π2

)1/2

DJo

Mo,Ko
(Ωo)

∗

× Hen1
(δR1/

√

ForkBT )Hen2
(δR2/

√

ForkBT )Hen3
(δR3/

√

ForkBT )

× exp(−δR2/4ForkBT )/(2π)3/4 , (73)

where δRi = Ri −µzi is the shifted reaction field. Matrix elements are again
calculated analytically. The basis set is very similar to the one employed for
the Fokker–Planck case previously analyzed; it is a standard orthonormal
set. Matrices dimensions are again significantly large: truncation parameters
chosen for the results presented here have been Jmax

o = 5−6 and nmax
i = 5−6,

which correspond to dimensions between 7000 and 20000. Alternatively,
calculations can be performed using a non-orthogonal basis set

|N〉 ≡
(

[Jo]

8π2

)1/2

DJo

Mo,Ko
(Ωo)

∗

×Hen1
(δR1/

√

ForkBT )Hen2
(δR2/

√

ForkBT )

×Hen3
(δR3/

√

ForkBT )P (Y )1/2 , (74)

which is different for the presence of the weighting factor in P (Y ); the
two basis sets are equivalent for γ = 0 (isotropic phase). For γ < 3kBT ,
preliminary calculations show that the non-orthogonal basis allows to reduce
the truncation factor Jmax

o to 3 − 4. The use of non-orthogonal basis sets
for the numerical solution of stochastic models is probably a very promising
computational methodology for multidimensional problems. A systematic
exploration of this technique is under way (see next Section).

The complete numerical approach should be followed when the time-
scales of the various processes involved (rotation and solvent relaxation) are
relatively close, so that clear separation of time-scales is difficult. Simplified
treatments are possible when the anisotropy of diffusion σ = τR/τS , where
τS is the averaged solvent correlation time, is significantly different from 1.



1774 A. Polimeno et al.

We employ the methodology introduced in Ref. [2] to treat asymp-
totically multidimensional Fokker–Planck or Smoluchowski which can be
considered as the equivalent of the Born–Oppenheimer (BO) treatment of
Schrödinger operators for electrons-nuclei systems. We shall consider two
distinct cases. In the first case, slow probe tumbling (or fast solvent relax-

ation) i.e. σ >> 1 or τR >> τ
⊥,‖
S . We may then separate our coordinates in

a slow set Ωo and in a fast set R. In the case of the Stokes shift signal the
approximated result is obtained in the simple form

C(t) =
2(1 − P2)

3
e−t/τ⊥

S +
2P2 + 1

3
e−t/τ

‖
S . (75)

For an isotropic system S = 0 and τ⊥
S = τ

‖
S ≡ τS :

Ciso(t) = e−t/τS , (76)

i.e. only the solvent relaxation times are explicitly present. Next let us
consider a generic rotational correlation function, Gj

m(t), defined by Eq. (72).
In this case the solvent appears not the influence the observed time decay,
which assumes, in the isotropic case, the analytical form:

Gj
miso(t) = e−j(j+1)t/τR , (77)

whereas in the case of a liquid crystal phase will be obtained solving nu-
merically the dynamical problem defined by Eq. (72) with the one-body
Smoluchowski operator defined with respect to the potential Vmf . Thus our
conclusions concerning the regime of slow tumbling, or fast solvent relax-
ation can be summarized as follows: standard rotational correlation func-
tions, which depend upon the probe coordinates only, do not depend at all
on the solvent relaxation. On the contrary, the Stokes-shift function has no
slow decaying component, and it is completely determined by the solvent
relaxation.

The dynamical regimes obtained for a fast tumbling motion and rela-

tively slow solvent relaxation, i.e. τR ≪ τ
⊥,‖
S , or σ << 1 are more complex,

but of some interest since for complex solvents the dielectric relaxation times
can be of the order of nanoseconds and the rotational correlation time τR

of the solute molecule can be comparable in magnitude or even smaller. In
general, however, the Stokes shift correlation function behaviour in the limit
of slow solvent is relatively complex, even in the isotropic case: it contains a
slow decay term, which depends upon the solvent decay times and represents
the evolution of the slow relaxing polarization in the potential obtained af-
ter averaging the fast rotational coordinates; and a fast decay term, which
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becomes negligible in the limit of strong coupling, which is essentially ob-
tained by an inhomogeneous average, with respect to all possible value of
the polarization vector, of rotational dipolar correlation functions. Detailed
expressions are reported elsewhere [19].
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Fig. 5. Experimental (dots) and simulated (lines) Stokes shift decay curves at

T = 311.5 K and T = 323 K, for coumarin C503 in ZLI 1167.

Actual experiments have been recently performed to measure time re-
solved fluorescence emission of coumarins in liquid crystals which meet most
of the practical requirements [11]: coumarin 503 (C503) in ZLI 1167, a ne-
matic eutectic mixture of 4-alkyl-4’-carbonitril-bicyclohexyl. C503 is a rigid
molecule, which does not show photo-physical processes in the excited state;
it shows a non-structured fluorescence band well separated from the absorp-
tion band. Finally, ZLI 1167 has the main advantages of being transparent
in the region under investigation and of having a nematic phase at relatively
low temperature. The interpretation of the available experimental results
has been carrier extensively in another work [11]. Here we show some se-
lected results. In Fig. 5 two experimental and simulated Stokes shift decay
curves are shown, for T = 311.5 K and T = 323 K: the agreement be-
tween theory and experiment is rather good, and all parameters, both static
and dynamics, have been estimated from existing data in the literature.
The analysis of several decay curves taken at different temperatures shows
that the relaxation dynamics is clearly bi-exponential in the nematic phase

(γ 6= 0, τ⊥
S < τ

‖
S) and it becomes nearly mono-exponential in the isotropic

phase. Due to the influence of the solvent coordinates, the Stokes shift
correlation function has a weaker dependence upon temperature of simple
rotational correlation functions. In Fig. 6, we show a series of calculated
first rank correlation function, G1

0(t), for several temperatures. The temper-
ature dependence of the effective correlation times relative to the calculated
G1

0(t) and C(t) are reported in Fig. 7. The correlation times are calculated
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as time integrals of the corresponding correlation functions. The first rank
orientational correlation function is expected to be strongly influenced by
the presence of a nematic barrier, and in fact at the isotropic-nematic tran-
sition, a relatively large increase, of ca. 130%, for the correlation time is
obtained. The value of ca. 10 ns at 311.5 K, is not unreasonable compared
with parallel dielectric relaxation times of other liquid crystals in the same
range of temperature and viscosity.
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Fig. 6. Calculated first rank correlation function, G1
0
(t), for several temperatures.
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Fig. 7. Correlation times relative to the calculated G1
0
(t) (full line) and C(t) (dashed

line).

On the contrary, the Stokes shift correlation function shows a qualita-
tively different behaviour. First we note that the values of correlation times
at various temperatures are much lower than the corresponding values of
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the orientational first rank correlation function. More interesting is the ob-
servation that the isotropic-nematic transition does not affect significantly
the C(t) function, as observed experimentally, the change for the correlation
time at the transition temperature being of ca. 15%.

5. The cage model for a linear rotator

Finally we shall consider the case of an isotropic non-polar fluid and
the application of an extended Fokker–Planck stochastic model to the inter-
pretation of the rotational motion of an axially symmetric probe, coupled
to a diffusional cage. The cage model for the rotational motion of a lin-
ear molecule is based on a series of hypothesis which define the static and
dynamic property of the system: (a) a generic molecule (probe) is repre-
sented as a rotator; the translational degrees of freedom of the probe are ne-
glected, as they are essentially uncoupled (neglecting any hydro-dynamical
roto-translational coupling) from the rotations; (b) the local environment is
made by a cluster of molecules (cage) and it behaves as a diffusive rigid body,
subjected to random changes in its internal structure; (c) the interaction po-
tential between probe and cage is responsible for fast confined librations of
the probe: the overall motion is then given by the superposition of the rota-
tion of the cage, the librations of the probe, and the random restructuring
process of the cage potential. After defining the phase space and the time
evolution law for the system, we shall proceed to consider explicitly the
fast and slow processes, in order to solve the dynamics on the basis of the
separation of timescales

5.1. Phase space

According to Refs [2, 4] the phase space describing axially symmetric
molecule rotating in the field generated by a cage solvent structure is given
by the collection of variables

Y = (Ωo,L,Ωc, ω) . (78)

It is preferred to change the representation of the time evolution operator
to the following set of variables

X = (Ω,L,Ωc, ω) , (79)

where Ω = (α, β, γ) has been defined in Section 2 as the the relative orien-
tation of the molecular frame with respect to the cage frame.

The system potential energy is written by including only the leading
terms with respect to the ranks of Wigner functions in Ω in the following
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form:
V (Ω, ω) ≡ Vc(Ω, ω) = −I⊥ω2D2

0,0(Ω)/3 . (80)

The time evolution operator is now specified according to the idea that the
system X constitutes a closed Markovian space whose temporal evolution
is dictated by single elementary processes represented by Fokker–Planck
or diffusive terms. The non-equilibrium distribution is obtained from the
solution of the general equation:

∂P (X , t)/∂t = −Γ̂P (X, t) . (81)

The operator Γ̂ is obtained as the sum of three terms

Γ̂ = Γ̂solute + Γ̂cage rot. + Γ̂cage rest. , (82)

which have been defined in Section 2 with respect to coordinates Y : they
describe the solute Fokker–Planck dynamics, the rotational diffusion of the
cage and the restructuring of the cage, respectively. The solute term can be
written in X just by substituting M̂(Ωo) with M̂(Ω) [2].

The rotational diffusion motion of cage is described, in the X phase
space according to the expression

Γ̂cage rot. = −D[M̂(Ωc) − E(Ω)M̂(Ω)]trP (X)

×[M̂(Ωc) − E(Ω)M̂(Ω)]P (X)−1 . (83)

The third term, for the random restructuring of the cage, has again the
form of a master equation which describes the interchange between two given
configuration X and X ′:

Γ̂cage rest. P (X , t) =

∫

dX ′[P (X , t)W (X → X ′)−P (X ′, t)W (X ′ → X)] ,

(84)
with a transition kernel W (X → X ′) dependent in general on the initial
configuration X and the final one X ′, which is now written as:

W (X → X ′) = W(Ωc−Ω′
c)δ(Ω

′ +Ω′
c −Ωc−Ω)δ(L′−L)P (Ω′, ω′) (85)

according to Eq. (21).

5.2. Fast and slow processes

Our purpose is to evaluate the auto-correlation function for the generic
observable f(X)

G(t) = f [X(0)]f [X(t)] =

∫

dXf(X)∗ exp(−Γ̂ t)f(X)P (X) . (86)
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We shall specifically analyze the correlation functions probing the solute
dynamics and which are required in the interpretation of spectroscopic ob-
servations [20]. For the solute orientation we shall consider the spherical
harmonics which can be specified as Wigner functions of the first two an-
gles of Ωo = (αo, βo, γo), i.e. correlation function Gj

m(t): index m can be
neglected due to the absence of mean field potential, i.e. due the isotropy
with respect to the laboratory frame. It is also of relevance the correlation
function for the component of the angular momentum perpendicular to the
long axis of the molecular frame, defined as

GL(t) ≡ L⊥(0) · L⊥(t) . (87)

It should be evident that exact solutions for the correlation functions are
derivable only numerically. In Ref. [4], a full numerical solution of a closely
related problem, in which the solute dynamics is described by a linear ro-
tator instead of a axially symmetric rigid body, has been worked out, and
examples have been shown of correlation functions and spectroscopical ob-
servables related to them which have been obtained through (i) the matrix
representation of the time evolution operator on a complete set of basis
functions and (ii) the direct diagonalization of the resulting matrix. The
procedure was shown to be very effective, although the number of coupled
degrees of freedom to be considered is relatively high. However, a full explo-
ration of the entire range of parameters and dynamical regimes predicted by
the model can be also accomplished by some totally or partially analytical
approximated treatment. Full numerical solution can then be used for ’fine
tuning’ of the model, to better relate simulation results with experimental
measurements.

To summarize, the cage model is fully specified once a value is attributed
to the parameters ωs =

√

kBT/I (streaming frequency), τc = I⊥/ξ⊥ (colli-
sional time), D (cage diffusion coefficient), and functional forms have been
defined for P (ω) and W(Ωc − Ω′

c). Notice that dependence upon I‖ and
ξ‖ is absent due to the axial symmetry of the cage potential, i.e. γc, γ and

LM
z are uncoupled coordinates. For later use we introduce the equilibrium

distribution on the cage variables only

PS(XS) ≡
∫

dXF P (XF ,XS) = P (ω)/8π2 (88)

is independent of the cage orientation Ωc. Correspondingly the full equilib-
rium distribution is conveniently factorized as

P (XF ,XS) = PS(XS)P (XS |XF ) , (89)

where P (XS |XF ) = P (ω|Ω,L) is the conditional probability of fast vari-
ables for a given set XS of slow variables. which is also independent of the
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cage orientation Ωc. Such a distribution should be sharply peaked about the
solute stationary state at β = 0, in order to be consistent with the derivation
of the cage potential as an expansion about the potential minimum.

5.3. Slow cage dynamics

By taking for granted the time scale separation between fast librational
motions and slow cage dynamics, we examine in this section the relaxation
of the slow variables XS = (Ωc, ω). The general techniques for treating
stochastic problems characterized by variables with different time scales has
been discussed in Ref. [2] (see in particular its Appendix B) on the basis
of the analogy with the Born–Oppenheimer method of quantum mechanics.
Here we shall apply that method to the axial cage model presented in the
previous section.

The behavior of the system at long time scales is determined by the
relaxation of the slow variables only, and it is described by a distribution
contracted on the fast variables XF

PS(XS, t) ≡
∫

dXF P (XF ,XS , t) . (90)

The projection onto the subspace of functions of slow variables supplies the
required time evolution equation

∂PS(XS , t)/∂t = −Γ̂SPS(XS, t) , (91)

with the projected operator Γ̂S defined implicitly by the identity

Γ̂Sg(XS)PS(XS) ≡
∫

dXF Γ̂ P (X)g(XS) (92)

for any g(XS). A slow component is extracted from any function f(X) in
the following form

fS(XS) ≡
∫

dXF f(X)P (XS|XF ) . (93)

Correspondingly in the autocorrelation function G(t) of Eq. (86), a slow
component GS(t) is identified by the relation [2]

GS(t) =

∫

dXSfS(XS)∗ exp(−Γ̂St)fS(XS)PS(XS) . (94)
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By inserting into Eq. (91) the evolution operator defined in the previous
section, the following equation is obtained

∂

∂t
PS(XS , t) ≡ M̂(Ωc)

trDM̂(Ωc)PS(XS , t)

+

∫

dX ′
S [PS(X ′

S , t)WS(X ′
S → XS) − PS(XS , t)WS(XS → X ′

S)]

(95)

without contributions from Γ̂solute since it operates on fast variables only.
The first term at the r.h.s. of Eq. (95) derives from the cage rotation op-

erator (83) after elimination of the rotation operator M̂(Ω) on the relative
orientation Ω belonging to the set of fast variables. The other term is the re-
sult of the projection of the Master Equation (20) for the cage restructuring,
with the following reduced kernel WS for transitions of slow variables

WS(XS → X ′
S) ≡ 8π2W(∆Ωc)PS(X ′

S)

∫

dΩPω(Ω)Pω′(Ω−∆Ωc) , (96)

where Pω(Ω) is the Boltzmann distribution with respect to Vc(Ω, ω), nor-
malized in Ω:

Pω(Ω) = exp[−Vc(Ω, ω)/kBT ]

/

∫

dΩ exp[−Vc(Ω, ω)/kBT ] . (97)

If one assumes
W(∆Ωc) ≡ W(|∆βc|) , (98)

then it is possible to show that WS(XS → X ′
S)/PS(X ′

S), i.e. the reduced
kernel for a transition XS → X ′

S , is a symmetric function in |∆βc|.
The simple structure of the evolution operator Γ̂S for the slow variables,

allows the analytical derivation of the slow decaying part of the orienta-
tional correlation function. No slow component is recovered for the corre-
lation function Eq. (87) of the angular momentum, since the corresponding
projected functions fS vanish. On the contrary a large contribution of the
cage dynamics is found for the solute rotational motion. The orientational
observable is conveniently written as

f = Dj
m,0(Ωo) =

∑

k

Dj
m,k(Ωc)Dj

k,0(Ω) (99)

from which the following slow component is derived

fS = Dj
m,0(Ωc)d

j(ω) , (100)
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with coefficients

dj(ω) ≡
∫

dΩDj
0,0(Ω)Pω(Ω) . (101)

One can expand the generic solution of Eq. (95) in terms of Wigner functions

of Ωc, Dj
m,k(Ωc) and then solve for the unknown expansion coefficients in ω

and t, which are obtained from a master equation in ω only. In particular,
under condition (98), the only relevant function for the correlation function
corresponding to Eq. (100) is given by

∂

∂t
Pj(ω, t) = −D⊥j(j + 1)Pj(ω, t)

+

∫

dω′[Pj(ω
′, t)w(ω′ → ω) − Pj(ω, t)w(ω → ω′)] ,

(102)

where the initial condition is

Pj(ω, 0) = dj(ω)P (ω) , (103)

and the reduced kernel is:

w(ω → ω′) =

∫

dΩcdΩ′
cWS(XS → X ′

S) . (104)

It follows that the slow part of the correlation function for the probe rotation
is given by the following expression

Gj
S(t) =

1

2j + 1
exp[−j(j + 1)D⊥t]

∫

dωPj(ω, 0)Pj(ω, t) , (105)

which is independent from the parallel component D‖ of the diffusion ten-
sor. Expression (105) shows that the slow decaying component of the probe
rotational correlation function has a Brownian-like dependence upon rank
[constant j(j + 1) term] and a correction factor due to cage restructuring,
which is intrinsically multi-exponential.

5.4. Fast librational motions.

In the hypothesis that a well defined separation exists between the time
scales of cage dynamics and of solute librational motions, the evolution of
fast variables XF = (Ω, L) can be analyzed separately [2]. First one isolates

from the full evolution operator Γ̂ the part Γ̂F which operates on the fast
variables only. In the following calculations we assume that

Γ̂F = Γ̂solute (106)
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by neglecting the contributions of the cage terms, for instance the terms of
Γ̂cage rot. Eq. (83) with rotation operators acting on Ω. The same separation
of the two types of motions justifies such an approximation as long as it
requires the condition |Γ̂solute| >> |Γ̂cage rot. + Γ̂cage rest.| for their typical
rates. However, it breaks down when the friction ξ vanishes, and a purely
conservative dynamics is described by Γ̂solute without any relaxation to
equilibrium. Then the cage terms become the main source of relaxation also
of the probe coordinates, and their contribution cannot be neglected in Γ̂F .
Approximation Eq. (54) is legitimate when the relaxation of fast variables
is driven mainly by the frictional operator, that is if

1/τc >> D⊥, w (107)

1/τc being the typical rate for the collisional part of Γ̂solute, with the con-
tributions of cage rotations and cage restructuring estimated according to
their rate coefficients.

Hereafter we shall taken for granted the condition Eq. (107), by calculat-
ing non-equilibrium distributions on the fast variables according to Eq. (54).

It should be emphasized that Γ̂F which operates on XF variables, has also a
parametric dependence on the slow variables, in particular on the librational
frequency ω which determines the strength of the cage potential. Therefore
its solutions are parametrically dependent on the slow variables XS, and
in the conditional probability of XF at time t with initial condition X0

F at
time t = 0 one should specify also the value of XS :

P (XS,X0
F |XF , t) = exp(−Γ̂F t)δ(XF − X0

F ) . (108)

At asymptotically long times such a probability attains the equilibrium dis-
tribution on XF conditioned by XS

lim
t→∞

P (XS,X0
F |XF , t) = P (XS |XF ) . (109)

The separation of fast and slow processes is performed by employing the
following approximation for the conditional probability on all the variables

P (X0|X, t) = δ(XS − X0
S)[P (XS ,X0

F |XF , t)

−P (XS |XF )] + P (XS |XF )PS(X0
S |XS , t) , (110)

where PS(X0
S |XS , t) is the conditional probability for the slow variables

only to be derived as a solution of Eq. (91). The first term at the r.h.s. of
Eq. (110) describes the relaxation of fast variables when the slow ones are
still frozen in correspondence of their initial value X0

S . Let us consider a
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time t∗ which represent a time scale intermediate between those of the fast
and the slow motions. At such a time Eq. (110) is simplified as

P (X0|X, t∗) ≃ δ(XS − X0
S)P (XS|XF ) (111)

that is the slow variables have still their initial values, while the conditioned
equilibrium distribution is recovered for the fast variables. At later times the
relaxation of slow variables becomes operative according to the second term
at the r.h.s. of Eq. (110). Within this longer time scale the fast variables are
always characterized by an equilibrium distribution P (XS |XF ) conditioned
by the value of XS . It should be emphasized that, besides the previous
phenomenological justification, a formal derivation of Eq. (110) is possible
by applying the Born–Oppenheimer approximation to stochastic problems,
as shown in Appendix B of Ref. [2].

By calculating a generic auto-correlation function according to Eq. (110),
two different contributions are identified

G(t) = GS(t) + GF (t) , (112)

where GS(t) is the slow component given by Eq. (94). The time dependence

of the fast part GF (t) is determined by operator Γ̂F of Eq. (54) for the fast
variables only according to the equation

GF (t) =

∫

dXSPS(XS)

∫

dXF δf(X)∗ exp(−Γ̂F t)δf(X)P (XS|XF ) ,

(113)
where δf(X) is the observable devoid of its slow component fS(XS)

δf(X) ≡ f(X) − fS(XS) . (114)

Notice that because of Eq. (109), GF (t) vanishes outside the time window
for the relaxation of fast variables. By taking into account the parametric
dependence of Γ̂F on the slow variables, Eq. (113) can be written as an
average of XS-dependent elementary correlation functions defined in the
XF functional space. In the case of of solute orientational observables

δf =
∑

k

Dj
l,k(Ωc)δDj

k,0(Ω) , (115)

where the ω-dependence has been left implicit in functions

δDj
k,0(Ω) ≡ Dj

k,0(Ω) − dj(ω)δk,0 (116)

one derives a fast component of the correlation function in the following
form

Gj
F (t) = (2j + 1)

∫

dωP (ω)
∑

l

∫

dΩdL δDj
l,0(Ω)∗

× exp(−Γ̂F t) δDj
l,0(Ω)P (ω|Ω,L) , (117)
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where the integration on the cage orientation has been performed analyti-
cally. In a similar way an explicit form is derived for the correlation func-
tion of the angular momentum without a slow component. Because of the
torques deriving from the cage potential, no analytical solution for the fast
component of the correlation functions is available. Exact solutions can be
obtained only numerically [4].

5.5. Spectroscopical observables and cage model

From the knowledge of orientational correlation functions one can cal-
culate spectroscopic observables, like the far infrared signal of a rotating
molecule and, within some approximation, the optical Kerr effect. The di-
electric constant ε = ε(ω) is related to the normalised first rank correlation
function of the rotating probe:

ε0(ε − ε∞)(2ε + ε∞)

ε(ε0 − ε∞)(2ε0 + ε∞)
= 1 − iω

∞
∫

0

e−iωtG1(t)/G1(0) , (118)

where ε0 = ε(0), ε∞ = ε(∞). The absorption coefficient α(ω), i.e. the Poley
signal or far infrared spectrum, is the obtained as the imaginary part of the
wave vector k(ω) = ω

√

ε(ω)/c (where c is the speed of light):

α(ω) =
ω

c

√

−ε′(ω) + |ε(ω)|
2

. (119)

A model calculation is shown in Fig. 8, for ε0 = 10 and ε∞ = 1 (not
unreasonable for a molecule like, e.g., benzonitrile). Other parameters are

ωs = 2ps−1 τc = 8ps D⊥ = 0.2ps−1 . (120)

By comparing the simulation with actual far infrared spectrum, one can no-
tice a substantial agreement of all qualitative features, namely the broad line
shape of the band, which cannot be obtained with simpler diffusional Brow-
nian models. Fig. 9 shows the corresponding simulated dielectric relaxation
spectra.

An analysis of the model to recover the optical Kerr effect signal (OKE),
even at a simplified level, is more difficult. First one assumes i) that only
liner polarisable molecules are examined (e.g. CS2), for which µ(Ωo) =
α(Ωo)E(t) and α(Ωo) is the molecular polarisability tensor, with α⊥ and
α‖ as principal values; E(t) is the time-dependent electric field. Next ii) one
assumes that the cage model holds in the presence of the external electric
field, and that the librational frequency distribution is the same. One can
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Fig. 8. Far infrared absorption signal.
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Fig. 9. Real and imaginary part of the dielectric permittivity.
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Fig. 10. Optical Kerr effect signal.

show that the cage operator previously defined is unmodified, so that the
time-dependent electric field enters only in the streaming part of the solute
operator. The time evolution of the distribution is then:

∂

∂t
P (Y , t) = −[Γ̂0 + Γ̂1(t)]P (Y , t) , (121)

where Γ̂0 is the time-evolution operator at E = 0 and Γ̂1(t) is the time-
dependent Liouvillean defined with respect the electrostatic potential V el =
EtrαE. The excitation of a typical OKE experiment can be reproduced by
assuming iii) that

Ei(t)Ej(t) = δi,zδj,zE
2
elδ(t) . (122)

By applying a first order perturbation treatment, whose details will be given

elsewhere, one shows that birifrangence ∆n(t) = n‖(t) − n⊥(t) =
√

ε‖(t) −
√

ε⊥(t), which can be related to the OKE signal, is obtainable in terms of
a simple correlation function:

∆n(t) =
2π

3

N∆α2E2
el

IkBT
√

1 + 4πNαiso
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×
∫

dY D2
0,0(Ωo)e

−Γ̂0tP (Y )(Y )LM̂ y(Ωo)D2
0,0(Ωo) ,

(123)

where N is the number of molecule for unit of volume, αiso = (2α⊥ +α‖)/3,
∆α = α‖ − α⊥. An example of simulated OKE is shown in Fig. 10.
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ity Contract: ERBCHRXCT930282 and PECO extension Contract ERB-
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Appendix A

Derivation of the F tensor

For a generic ellipsoidal body (and cavity) of volume V , the F tensor is
written (in SI units):

F =
1

4πε0V
ε1/2[ε − n′(ε − 1)]−1[(1 − n′)εn′′ − n′(1− n′′)]ε−1/2 , (124)

where n is the electrostatic depolarization tensor for an ellipsoidal empty
cavity surrounded by the dielectric; n′ is the electrostatic depolarization
tensor for an ellipsoidal cavity filled by the dielectric, in vacuo; n′′ is simply
ε−1/2nε1/2.

Operatively, ε is diagonal by definition in the LF, with principal values εi

(i = 1, 2, 3). The depolarization tensor for the cavity, is defined with respect

to the auxiliary tensor M for the ellipsoid; in the LF M (L) = Ea−2Etr,
and a is the diagonal tensor whose principal values are the semi-axes of the
cavity, while E is the Euler matrix which transforms a vector from the MF
to the LF.

The representations of n in the LF and MF are analogously related,
n(L) = En(M)Etr, where the principal values n(M) are given in terms of
a. Similarly, n′ is defined in terms of an auxiliary tensor M ′, which in the

LF is M ′(L)
= ε1/2M (L)ε1/2. For the case of a spherical cavity, a = a1,

n(L) = n(M) = 1/3, M ′(L)
= ε/a2. Thus n′ is diagonal in the LF, too, with

components:

n′
i =

εi

2

∞
∫

0

dz
1

(1 + εiz)[(1 + ε1z)(1 + ε2z)(1 + ε3z)]1/2
(125)
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and F is also diagonal in the LF, with components:

Fi =
1

4πa3ε0

(1 − n′
i)εi − 2n′

i

εi − n′
i(εi − 1)

. (126)

By choosing ε1 = ε2 = ε⊥ and ε3 = ε‖ the formulas reported in the main
text are obtained.
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