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We propose a new method of analysing of time series founded on AIP
patterns. We tested the method on a time sequence corresponding to lam-
inar phase of intermittency generated by logistic equation.

PACS numbers: 05.45. +b

Artificial insymmetration patterns (AIP; also known as symmetrized dot
patterns), have been introduced to the literature by Pickover [1] as qualita-
tive methods of visualizing correlation functions in the time series of data.
To aid the human with interpretation of underlying patterns, the data is
mapped in a fashion which artificially induces symmetry into the data set.
Such a mapping seems to have remarkable potential for enabling human ob-
servers to resolve small differences between virtually identical time series.
The AIP transformation is given by

ℵ : F (t) = S(rj , Θij , Φij) , (1)

where S is traditional function of r in radial polar coordinates, while Θ and
Φ are two polar angles.

rj =
Fj − L

H − L
ξ , (2)

Θij = Θ′ +
Fj+1 − L

H − L
ξ , (3)

Φij = Θ′
−

Fj+1 − L

H − L
ξ , (4)
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where j = 1, 2, 3, . . . , N − 1, Θ′ = (360◦/m)i, i = 1, 2, 3, . . . ,m. Here N
is the number of points in the time series, m is the number of symmetric
mirrored or conjugate plane reflections, H is the maximum value in the data
set, and ξ represents the maximum value used to normalize or scale the data.
In practice, good AIP patterns require approximately 200 points to produce
reliable characteristics (Figure 1).
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Fig. 1. A — AIP pattern for random noise; B — AIP pattern for logistic map

xn+1 = axn(1 − xn), with a = 4.0, x0 = 0.2.

To diagnose different disturbances in heart rhythm we used the AIP
pattern procedure [2] (Figure 2). The AIP patterns are sometimes almost
identical for different kinds of arrhythmia. Our aim is to achieve more precise
readings of AIP patterns and then in the near future a method of obtaining
color patterns. We are convinced that a good quality color AIP pattern may
contain more information than a black and white version. Using color pat-
terns would allow more precise readings of characteristics and differentiation
of time sequences.
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Fig. 2. AIP pattern for a normal heart rhythm.
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In this work we employed a method of constructing a histogram corre-
sponding to the AIP pattern generated by the analysed time sequence. We
tested this procedure on a time sequence corresponding to laminar phase
of intermittency generated by logistic map (Figure 3). Time sequence was
divided into two parts and for each of them we produced corresponding AIP
pattern. Both patterns are indistinguishable (Figure 4). We made a his-
togram for each of the patterns (Figure 5), and calculated the difference
(Figure 6).
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Fig. 3. The time series for logistic map, parameters a = 3.8284, x0 = 0.5.
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Fig. 4. A — AIP pattern for region 1 (i ∈ (50, 100)); B — AIP pattern for region

2 (i ∈ (100, 150)).

What is the advantage of constructing a histogram for AIP patterns
over a method of comparing ordinary histograms made for a time sequence?
The AIP algorithm can spot the correlations between different regions (not
necessarily neighbouring) of a time sequence (distance between those regions
can be determined by choosing appropriate parameters of algorithm), which
in some situations could turn out to be advantageous (for instance in heart
rhythm analysis, where long distance correlations occur).
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Fig. 5. Histograms for region 1 (A) and 2 (B).
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Fig. 6. The difference between the histograms from Figure 5.

We are currently examining the possibility of employing this method in
monitoring in real time terms changes taking place in nonstationary time
sequences. We aim to achieve means of foreseeing possible serious malfunc-
tions in mechanical systems.
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