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The density of states spectrum in the Drude–Lorentz model of nonpolar
dielectric is calculated for the face-centered crystal lattice structure. The
results are compared with the fluid spectra. In the latter the structure
analogous to the transverse and longitudinal polarization modes in solid
dielectric is shown to exist.
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1. Introduction

Recently there appeared a number of papers (see for example [1–5] and
references therein) devoted to analysis of the electrostatic and optical prop-
erties of Drude–Lorentz fluid. In particular, the spectral representation of
such quantities as electrostatic constant and renormalized polarizability were
found.

It seems that many properties of the above-mentioned systems can be
better understood by considering their solid counterpart - Drude–Lorentz
crystal, which is much simpler and easier to analyze than a fluid. In this
paper we investigate the renormalized polarizability of such a system and
compare the results with those for the fluid. Because of the periodicity of
the crystal structure it is possible to apply reciprocal space techniques, what
allows us to find the electrostatic spectrum of renormalized polarizability
with high accuracy. At the same time we can apply here the methods used
normally in the fluid theory (in particular the continued fraction method)
thereby checking their accuracy by comparing their results with those given
by the standard solid-state techniques.
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2. Drude–Lorentz model of a nonpolar dielectric

In the Drude–Lorenz model of a nonpolar dielectric we represent each
molecule as a fixed nucleus accompanied by the elastically bounded “dis-
persion electron” oscillating with the eigenfrequency ωo. The interaction
potential between any two molecules is limited to dipole-dipole terms. The
Hamiltonian for such a system reads:

H =
∑

i

p2
i

2m
+

∑

i

1

2
mω2

ou
2
i −

1

2
e2

∑

i,j

ui · T̂ij · uj , (1)

where ui is the deviation of the i-th electron from its equilibrium position,
pi – its momentum. T̂ij is the dipol–dipol interaction tensor:

T̂ij = T̂ (ri − rj) , where T̂ (r) =
−Î + 3r̂r̂

r3
. (2)

We consider the dielectric with face-centered crystal structure. We re-
strict ourselves to the cubic structure only for mathematical simplicity —
our calculations are automatically applicable to any other lattice structure.

Let us rewrite now the Hamiltonian (1) in the reciprocal space variables:

u(k) =

√

υ

(2π)3

∑

i

uie
−ik·ri , (3)

p(k) =

√

υ

(2π)3

∑

i

pie
ik·ri , (4)

where the summation is over the lattice points and υ is the elementary cell
volume.

In terms of these variables, the Hamiltonian reads:

H =

∫

BZ

p⋆(k) · p(k)

2m
dk +

∫

BZ

1

2
mω2

ou
⋆(k) · u(k)dk

−
1

2
e2

∫

BZ

u⋆(k) · T̂ (k) · u(k)dk , (5)

where the integral is performed over the Brillouin zone and T̂ (k) is the
Fourier transform of the dipol–dipol interaction tensor:

T̂ (k) =
∑

rn 6=0

T̂ (rn)eik·rn (6)

with the summation over the lattice points.
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Since the above Hamiltonian is quadratic form in u(k), we are able to
express any solution of the equation of motion in terms of the normal modes
(polarization waves) of the form:

un = Aei[k·rn−ω(k)t] (7)

with three mutually orthogonal polarizations for each k. The frequencies
ωi(k) of the modes are given by:

ωi(k) =

√

ω2
o −

e2

m
λi(k) = ωo

√

1 − αoλi(k) i= 1, 2, 3 , (8)

where αo = e2

mω2
o

is a static polarizability in Drude–Lorentz model and λi(k)

are eigenvalues of T̂ (k).
We see that these eigenvalues are connected with the frequencies of col-

lective oscillations of Drude–Lorentz oscillators (eigenvectors of T̂ (k) give
the directions of vibration). In particular, one can show that in the long-
wave case (k → 0) the above described three polarization waves reduce to
one longitudinal and two degenerate transverse waves.

We can now define the density of states in Drude–Lorentz model ρD(ω)
[2,3]: ρD(ω)dω is the number of the polarization waves with the frequencies
between ω and ω + dω.

The above Drude–Lorentz model of a nonpolar dielectric has a simple
electrostatic counterpart. Namely let us consider a crystal lattice in each site
of which there is a polarizable dipole with polarizability α. Next consider
a uniform electric field E0 acting only locally on one of the lattice sites.
The electric dipole moment induced in this site will in its turn induce dipole
moments in other sites and so on. As a result of these interactions, in each
lattice site point dipoles are induced with values determined by:

µj = α

[

E0δj1 +
∑

j 6=k

T̂jk · µk

]

, (9)

where we used an index “1” for the selected site where E0 is applied.
The renormalized polarizability α

′

is defined as the ratio of µ1 to the
applied field:

µ1 = α
′

· E0 (10)

(due to the symmetry of the problem α′ is a scalar). This quantity is a
very important characteristics of a dielectric. Nevertheless, the problem of
finding α′ has not been solved yet, even for such simple systems as the cubic
lattices.
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From Eqs. (9) and (10) one can show that:

α
′

(z) =
υ

24π3

3
∑

i=1

∫

BZ

dk

z − λi(k)
, (11)

where z = 1
α
.

Thus α′(z) has the following spectral representation:

α
′

(z) =

∞
∫

−∞

ρ(ν)

z − ν
dν (12)

with positive, normalized to unity spectral density:

ρ(z) = lim
ǫ→0

υ

24π4
Im





3
∑

i=1

∫

BZ

1

z − λi(k) − iǫ
dk



 . (13)

The relation (8) allows us to connect the spectral density ρ(ν) with the
density of states in Drude-Lorentz model ρD(w). We have namely:

ρD(ω) =
2mω

e2
ρ(ν =

m

e2
(ω2

o − ω2)) . (14)

Hence the problem of finding the dynamical properties of the Drude –
Lorentz model may be reduced to analysis of the simple electrostatic system.

3. The calculation of the spectral density ρ(z)

According to Eq. (13) to find the spectral density one should perform

the Fourier transform of the dipol – dipol interaction tensor T̂ (k), solve its
eigenproblem and carry out the integral (13) over the Brillouin zone. The
sum (6) can be calculated using the method described by Nijboer and de
Wette in [7] based on the Ewald summation procedure.

There exist numerous methods of computing the integrals of the form
(13) — such integrals arise often in all frequency distribution functions cal-
culations. Different methods of dealing with such integrals are described at
length in the review article by Gilat [8]. Here we are going to use two of
the standard methods described in there. The first is RS (“root sampling”)

method in which one solves the T̂ (k) eigenproblem for k vectors forming
a fine uniform mesh in the irreducible section of the first Brillouin zone.
Then those values are sorted out into number of channels thereby forming a
histogram which approximates the spectrum.
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The second method applied by us was LA (“linear analytic”) method, in
which one computes the eigenvalues λi(k) as well as their gradients ∇λi(k)
at evenly spaced points in reciprocal space and then finds λ in between by
means of a linear extrapolation.

Finally, we used an alternative semi-analitical method of calculating ρ(z)
with use of the continued-fraction representation of α′(z) (CF method). The
possibility of finding such representation is ensured [9, 10] by the fact that
renormalized polarizability has a spectral representation of the form (12).
We have proceeded in the way analogous to that described in [1]. In this pa-
per, CF method was used to calculate electrostatic spectrum of renormalized
polarizability in fluids. In such systems, because of the lack of periodicity,
one cannot apply standard solid state methods using the reciprocal-space
formulation.

However in our case one can compare the results of continued fraction
method with those of the well known techniques (like RS or LA method)
and thereby check the accuracy of the CF method.

Fig. 1 presents the spectra obtained by the use of RS, LA and CF meth-
ods. We see that the three methods give practically undistinguishable results
(except for the neighbourhood of critical points — here the curve obtained
by CF method would be a bit smoothed-out, because, as we have mentioned,
CF gives the semi-analytical expression for ρ(z)).

Fig. 1. The electrostatic spectrum for the fcc lattice

4. The comparison of the obtained spectrum

with the analogous results for fluids and conlusions

Fig. 2 shows the ρ(z) spectrum for the fcc lattice together with the
analogous spectra of a fluid of hard spheres, each having in its center a
polarizable dipole with polarizability α [2]. We use the variable z′ = zυ

where υ is the specific volume and then rescale the spectrum to satisfy
the normalization condition. The fluid spectrum was calculated for the
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Fig. 2. The comparison of the electrostatic spectrum of a dense fluid ρ(z′) with the

fcc spectrum.

volume fraction (i.e. the ratio of the volume occupied by spheres to the
total volume) Φ = 0.5, what corresponds to the dense fluid. We see that the
ρ(z) spectrum for the crystal lattice is modelling the behaviour of ρ for the
dense fluid in a quite a good way. Of course, in the fluid spectrum we will
not find singularities (because of the lack of periodicity). That is why there
are no sharp peaks in the fluid spectrum and on the whole it is much more
smooth than the solid one. The structure, however, remains the same. In
particular, one can find the characteristic two peaks in the fluid spectrum,
the counterparts of which for the solid are connected with the longitudinal
and transverse polarizability modes.

What is even more interesting, this two-peaked structure survives also in
the diluted fluid — the traces of it can be seen even for the Φ = 0.1! This can
be seen in Fig. 3 that shows the renormalized polarizability spectra taken

Fig. 3. The electrostatic spectra for the fluid for the volume fractions

Φ = 0.1, 0.2, 0.3, 0.4, 0.46, 0.5.
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from [2] for 5 different volume fractions (starting from the dense (Φ = 0.5)
down to the very diluted (Φ = 0.1) fluid). We observe here that, although
the spectrum broadens and smooths down, the structure remains the same.
The peaks, in particular, appear for the same values of z, independent on
density. We know from the Fig. 2 that at these z values are localized also
the peaks in the solid dielectric spectrum. Therefore it seems that even for
the low densities the fluid “feels” the transverse and longitudinal polarization
modes.

It is worth to point out that this structure was not so far described ana-
lytically. The approximate analytical expression for ρ(z) derived by Cichocki
and Felderhof [6] in the low density limit does not show the above mentioned
two-peak structure. The problem seems to be that in fluid one cannot de-
compose ρ(z) into the contributions coming from the respective eigenvalues

of T̂ (k). Instead one performs an average over configurations which does
not favour any direction in space. Hence simple approximations lead in a
“natural way” to one-peak structure. The above facts must be taken into
consideration is one wants to describe the fluid spectra in a proper way.
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