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QUASIPARTICLES IN HOT GAUGE THEORIES∗
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Because of long range interactions, the elementary excitations in a
quark-gluon plasma have an unusual, non exponential damping.
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1. Introduction

In the weak coupling regime, the basic degrees of freedom of an ultrarel-
ativistic plasma, such as the quark-gluon plasma, can be classified according
to a hierarchy of scales controlled by the temperature T (T ≫ m, where
m is the mass of the plasma constituents), and the coupling strength g (for
a recent review, see e.g. [1]). Two types of degrees of freedom are impor-
tant in the present discussion: i) The plasma particles, which have typical
momenta of order T and a thermal wavelength of order 1/T , comparable
to their average relative distance (r0 ∼ n−1/3 ∼ 1/T ). ii) The collective
excitations which develop at a particular wavelength ∼ 1/gT . For exam-

ple the inverse screening length is λ−1
D ∼

√

g2n/T ∼ gT . Since g ≪ 1,
1/gT ≫ 1/T , and excitations at wavelength 1/gT necessarily involve many
particles (nλ3

D ∼ 1/g3 ≫ 1), i.e. they are collective. Similar considerations
apply to cold and dense plasmas, with a chemical potential µ ≫ m. The
study of these elementary excitations, and in particular of their lifetimes,
has received much attention in the recent past [2–10].

Information about the lifetimes can be obtained from the retarded prop-
agator SR(t,p). A usual expectation is that SR(t,p) decays exponentially
in time, SR(t,p) ∼ e−iE(p)t−γ(p)t. The exponential decay may be associated
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to a pole of the Fourier transform SR(ω,p), located at ω = E(p) − iγ(p).
A quasiparticle excitation is well defined if its lifetime ∼ 1/γ is much larger
than the period ∼ 1/E of excitation, that is, if the damping rate γ is small
compared to the energy E. In this case γ can generally be computed from the
imaginary part of the on-shell self-energy Σ(ω = E(p),p). Such calculations
suggest that γ ∼ g2T for both the single-particle and the collective excita-
tions. In the weak coupling regime g ≪ 1, this is indeed small compared to
the corresponding energies (of order T and gT , respectively), suggesting that
the excitations are well defined, i.e., are weakly damped. However, the com-
putation of γ in perturbation theory is plagued with infrared divergences,
which casts doubt on the validity of these statements.

The first attempts to calculate the damping rates were made in the early
80’s. It was then found that, to one-loop order, the damping rate of the
soft collective excitations in the hot QCD plasma was gauge-dependent, and
could turn out negative in some gauges (see Ref. [2] for a survey of this prob-
lem). Pisarski [3], and Braaten and Pisarski [4], identified the resummation
needed to obtain the screening corrections in a gauge-invariant way: the re-
summation of the so called “hard thermal loops” (HTL) [3–7]. Such screening
corrections are sufficient to make finite the transport cross-sections [8], and
also the damping rates of excitations with zero momentum [4]. At the same
time, however, it has been remarked that the HTL resummation is not suf-
ficient to render finite the damping rates of excitations with non-vanishing
momenta. The remaining infrared divergences are due to collisions involving
the exchange of long wavelength, quasistatic, magnetic photons (or gluons),
which are not screened in the HTL approximation. Such divergences af-
fect the computation of the damping rates of charged excitations, in both
Abelian and non-Abelian gauge theories [9]. The problem appears for both
soft (p ∼ gT ) and hard (p ∼ T ) quasiparticles. In QCD, one may be tempted
to bypass this problem by the ad hoc introduction of an IR cutoff, the
“magnetic mass” which is expected to appear dynamically from gluon self-
interactions. However, since in QED it is known that no magnetic screening
can occur [11], the solution of the problem must lie somewhere else.

As we have shown [10], the determination of the large time behavior of
the retarded propagator of an electron in hot QED requires resummations for
both the fermion propagator and the photon-electron vertex function. Such
resummations, different in nature from the hard thermal loop resummations,
lead to an unusual, non exponential, damping of the excitations. They
modify the analytic structure of the retarded propagator, making it analytic
in the vicinity of the mass shell.
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To be more specific, consider the imaginary part of the fermion self-
energy, near the mass shell, in the one-loop approximation:

Im Σ
(2)
R (ω,≃ p) ≃ −αT ln

ωp

|ω − p|
, (1)

where α ≡ g2/4π, ωp = gT/3 (the plasma frequency), and the approximate
equality means that only the singular term has been kept. For two or more
photon loops, the mass-shell divergences are powerlike. However, no infrared
divergences are encountered when the perturbation theory is carried out di-
rectly in the time representation: the inverse of the time acts then effectively
as an infrared cutoff. For instance, the one-loop correction to the retarded
propagator SR(t,p) at large times is given by

δS
(2)
R (t,p) ≃ −it

t
∫

0

dt′ eipt′Σ
(2)
R (t′,≃ p). (2)

This expression is well defined, but the limit t → ∞ of the integral over t′

[which is precisely the on-shell self-energy Σ
(2)
R (ω = p)] does not exist. We

actually have:

Σ
(2)
R (t,p) ≃ −iαT

e−ipt

t
, (3)

for t ≫ 1/ωp and, therefore,

δS
(2)
R (t,p) ≃ −αTt

t
∫

1/ωp

dt′

t′
= αTt ln(ωpt). (4)

This correction exponentiates in an all-order calculation:

SR(t,p) ∝ exp (−αTt ln ωpt), (5)

for t ≫ 1/ωp. This result applies to both hard particles and soft collec-
tive excitations (with a slight modification). For a massless fermion with
momentum p ∼ T or larger, or a massive (m ≫ T ) test particle, a more
accurate result has been obtained:

SR(t ≫ 1/ωp) ∝ exp{−αTt[ln(ωpt) + 0.12652 · · · + O(g)}. (6)
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2. Lifetime of quasiparticles

Before I explain how this result was obtained, let me recall how, and why,
infrared divergences occur in the calculation of the lifetime of a quasiparticle
in a hot QED plasma. Physically, what limits the lifetime of a quasiparticle
excitation is the collisions of the quasiparticle with the other particles in the
plasma [8]. The collision rate can be estimated directly in the form γ = nσ,
where n ∼ T 3 is the density of plasma particles, and σ the collision cross
section. Restricting ourselves first to the Coulomb interaction, we can write
σ =

∫

dq2(dσ/dq2), with dσ/dq2 ∼ g4/q4. Thus,

γ ∼ g4 T 3

∫

dq2 1

q4
, (7)

which is badly infrared divergent. One knows, however, that in the plasma
the Coulomb interaction is screened, so that the effective electric photon
propagator is not 1/q2 but 1/(q2 + m2

D), where mD ∼ gT is the Debye
screening mass. With this correction taken into account, the collision rate
becomes

γ ∼ g4T 3 1

m2
D

∼ g2T, (8)

which is now finite, and of order g2T , as announced.
However, screening corrections are not sufficient to eliminate all the di-

vergences due to the magnetic interactions. To see that, consider the trans-
verse part of the photon polarization tensor Π(q0, q). At small frequency
and momentum, it is imaginary:

Π(q0, q) ≈ i
3π

4
ω2

pl

q0

q
. (9)

When its contribution is included in the magnetic photon propagator, one
obtains the following contribution to γ:

γ ∼ g4T 3

∫

dq

q
∫

−q

dq0
1

q4 + (3πω2
plq0/4q)2

. (10)

The integral over q0 can be calculated, with the result

γ ∼ g2T

ωpl
∫

dq

q
(11)

which remains logarithmically divergent.
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3. The contribution of static photons

The physical origin of the remaining infrared divergences can be traced
back to the collisions involving the exchange of very soft, unscreened, mag-
netic photons. This is reflected in the fact that the dominant contribution
to the integral (10) is concentrated at very small q0. In fact,

1

q4 + (3πω2
plq0/4q)2

∼q→0
4

3ω2
pl

δ(q0)

q
. (12)

A similar observation can be made when calculating γ from the imaginary
part of the self energy, on the unperturbed mass-shell ω = p :

γ = −
1

4p
tr (/p Im Σ(ω + iη,p))

∣

∣

∣

ω=p
. (13)

In the Matsubara formalism, we have:

Σ(p) = − g2T
∑

q0=iωm

∫

d3q

(2π)3
γµ S0(p + q) γν Dµν(q) , (14)

where k = p + q, p0 = iωn = i(2n+1)πT , and ωm = 2πmT , with integers n
and m. It may be verified that the infrared logarithmic divergence in Eq. (11)
arises entirely from the magnetic contribution of the term q0 = iωm = 0 in
the Matsubara sum of Eq. (14). One finds similar divergences in all the
diagrams contributing to Σ, which have an arbitrary number of magnetic
photon lines carrying zero Matsubara frequency.

The fact that the dominant divergences are, in the Matsubara formalism,
concentrated in the sector with zero Matsubara frequency, is an important
simplification which allows us to resum them in closed form. Thus, one can
ignore fermion loop insertions on static photon propagators (the transverse
polarisation tensor at zero frequency is proportional to q2, and represents
a minor modification of the photon propagator). Therefore, in order to
isolate the dominant divergences, we may use the “quenched approximation”,
in which the retarded fermion propagator can be written as the following
functional integral

SR(x, y) =

∫

[dA]GR(x, y|A) exp
{

−1
2

(

A,D−1
0 A

)

0

}

, (15)

where G(x, y|A) is the fermion propagator in the presence of a static back-
ground gauge field, and

(

A,D−1
0 A

)

0
=

1

T

∫

d3xd3y Ai(x)D−1
0 ij(x − y)Aj(y). (16)
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In this equation, the factor 1/T has its origin in the restriction to the zero
Matsubara frequency. The propagator D0 ij is that of a free static photon,

Dij
0 (x) ≡

∫

d3q

(2π)3
eiq·x Dij

0 (q) (17)

with, in the Coulomb gauge, Dij
0 (q) = δij/q2. (The final result can be shown

to be gauge independent.)

4. The Bloch–Nordsieck approximation

In the kinematical regime of interest, an approximate expression for
GR(x, y|A) is obtained by neglecting the recoil of the fermion in the succes-
sive emissions or absorptions of very soft photons. More precisely, we can
approximate a typical fermion propagator entering the perturbative expan-
sion of GR(x, y|A) by

S0(ω,p + q) =
−ωγ0 + (p + q) · γ

(ω + iη)2 − ε2
p+q

≃
−1

ω − εp − v · q + iη

γ0 − p̂ · γ

2
,(18)

where q is a linear combination of the internal photons momenta and
v ≡ ∂εp/∂p (v = p̂ for the ultrarelativistic fermion). This is the familiar
structure encountered in most treatments of infrared divergences in QED and
which is economically exploited within the Bloch–Nordsieck model
(see, e.g. [12]). In this model, G(x, y|A), satisfies the following equation
(Dµ = ∂µ + igAµ)

−i (v · Dx)G(x, y|A) = δ(x − y), (19)

which can be solved exactly. For retarded boundary conditions, and for
static fields:

GR(x, y|A) = i θ(x0 − y0) δ(3) (x − y − v(x0 − y0)) U(x, y) , (20)

where U(x, y) is the parallel transporter

U(x, x − vt) = exp







ig

t
∫

0

ds v · A(x − vs)







(21)

which involves the integral of the gauge potential along the straight line
trajectory of the particle.
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The retarded propagator SR(x−y) is calculated by inserting the expres-
sions (20), (21) of GR(x, y|A) in the functional integral (15). Its Fourier
transform with respect to x − y can be written as

SR(t,p) = iθ(t)e−it(v·p) ∆(t), (22)

where

∆(t) ≡

∫

[dA]U(x, x − vt) exp
{

−1
2

(

A,D−1
0 A

)

0

}

(23)

contains all the non-trivial time dependence. The functional integral is easily
done:

∆(t) = exp







−
g2

2
T

t
∫

0

ds1

t
∫

0

ds2 vi Dij
0 (v(s2 − s2)) vj







. (24)

In this equation, Dij
0 (x) is the coordinate space representation of the mag-

netostatic photon propagator (see Eq. (17)).
The s1 and s2 integrations in Eq. (24) can be done by going to the Fourier

representation. One obtains thus:

∆(t) = exp

{

−g2T

∫

d3q

(2π)3
D̃(q)

(v · q)2

(

1 − cos t(v · q)
)

}

, (25)

where vi Dij
0 (q)vj ≡ D̃(q). The integral in Eq. (25) has no infrared di-

vergence, but one can verify that the expansion of ∆(t) in powers of g2

generates the most singular pieces of the usual perturbative expansion for
the self-energy. (The integral in Eq. (25) presents an ultraviolet logarithmic
divergence. However, one should recall that the restriction to the static pho-
ton mode implies that such an integral is to be cut off at momenta q ∼ ωpl.)

Calculating the integral in Eq. (25), one finds that at times t ≫ 1/ωpl

the function ∆(t) is of the form (α = g2/4π)

∆(ωplt ≫ 1) ≃ exp
(

−αTt ln ωplt
)

. (26)

A measure of the decay time τ is given by

1

τ
= αT ln ωplτ = αT

(

ln
ωpl

αT
− ln ln

ωpl

αT
+ ...

)

. (27)

Since αT ∼ gωpl, τ ∼ 1/(g2T ln(1/g)). This corresponds to a damping rate
γ ∼ 1/τ ∼ g2T ln(1/g), similar to that obtained in a one loop calculation
with an infrared cut-off ∼ g2T .
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However, contrary to what perturbation theory predicts, ∆(t) is decreas-
ing faster than any exponential. It follows that the Fourier transform

SR(ω,p) =

∞
∫

−∞

dt e−iωtSR(t,p) = i

∞
∫

0

dt eit(ω−v·p+iη) ∆(t), (28)

exists for any complex (and finite) ω. Thus, the retarded propagator SR(ω)
is an entire function, with sole singularity at Im ω → −∞.

In order to obtain the more accurate result (6), one needs to include the
contributions of the non vanishing Matsubara frequencies. I refer to the last
of Refs. [10] for details.

5. Conclusions

An important conclusion of this work is that quasiparticles exist and
have a damping rate small compared to their energy. The weak coupling
calculations are consistent, but non trivial resummations are necessary. This
provides a sound basis for the calculation of the transport properties of the
quark-gluon plasma.

The results can be extended to massive particles and collective modes,
and also to QCD. For QCD, however, the damping rates cannot be obtained
in closed form, but only through an Euclidean functional integral which
could, in principle, be calculated on a lattice.

Finally, it is interesting to note that the peculiar decay of quasiparticle
excitations could be also observed in other physical systems with long range
interactions or correlations [13, 14].

Most of the work presented in this lecture has been done in collaboration
with Edmond Iancu. I wish to thank M. Polyakov for pointing out to me the
reference [14] in which a strikingly similar study is carried out for a totally
unrelated problem: that of the propagation of light in a random medium,
with a long-range noise correlation function.
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