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I will present the Lund Model fragmentation in a somewhat different
way than what is usually done. It is true that the formulas are derived
from (semi-)classical probability arguments, but they can be motivated in
a quantum mechanical setting and it is in particular possible to derive a
transition matrix element. I will present two scenarios, one based upon
Schwinger tunneling and one upon Wilson loop operators. The results
will coincide and throw some light upon the sizes of the three main phe-
nomenological parameters which occur in the Lund Model. After that I
will show that in this way it is possible to obtain a model for the cele-
brated Bose–Einstein correlations between two bosons with small relative
momenta. This model will exhibit non-trivial two- and three-particle BE
correlations, influence the observed ρ-spectrum and finally be different for
charged and neutral pion correlations.

PACS numbers: 13.87. Fh

1. Introduction

We have after many years of hard work learned that the results from the
experimental analysis of multiparticle production can be well described in
terms of a coherent partonic cascade, [1,2], followed by a hadronization pro-
cess. This is particularly so for the e+e−-annihilation processes, which I will
use as example in this talk. There is further a very similar picture emerging
in the deep inelastic scattering experiments from HERA (and maybe also
from the purely hadronic hard scattering events seen in FERMILAB).
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The treatment of the partonic cascades requires the use of some quantum
mechanics, at least for the interference patterns between different gluon
radiation patterns. As I will show in my second lecture, these processes have
nevertheless a great similarity to the results in classical hydrodynamical flow
situations. The hadronization parts are on the other hand usually treated
in terms of semi-classically motivated stochastic processes. In this lecture
I will show that at least in the Lund Model, [3], it is possible to consider
the results inside a quantum mechanically motivated framework. Viewed in
that way most of the results of the Lund Model can be understood in “the
ordinary language” and thus be related to the classical results obtained in
earlier models.

One basic motivation for a quantum mechanical treatment is the obser-
vation of the Hanbury-Brown–Twiss effect, [4], (which I will, as is usually
done, term “Bose–Einstein Correlations”, (BEC)) in bosonic distributions.
The ideas of BEC originated in astronomy where one uses the interference
pattern of the photons to learn about the size of the photon emission region,
i.e. the size of the particular star, which is emitting the light. The effect
can be described as an enhancement of the two-particle correlation function
that occur when the two particles are identical bosons and have very similar
energy-momenta. To obtain such a result it is in general necessary to invoke
the wave-patterns of the quanta, [6].

There are, however, at least one possibility to obtain the (two-particle)
BEC in terms of a classically motivated process. Sjöstrand has introduced a
clever device as a subroutine to JETSET, in which the HBT effect is simu-
lated as a mean field potential attraction between identical bosons [5]. Thus,
given a set of energy-momentum vectors of identical bosons, p1, . . . , pn, gen-
erated without any BEC effect, it is possible to reshuffle the set into another
set where each pair on the average has been moved relatively closer to show
a (chosen) BEC distribution, while still keeping to energy-momentum con-
servation for the whole event.

A well-known formula [6] to relate the two-particle correlation function
(in four-momenta pj, j = 1, 2 with q = p1 − p2) to the space-time density
distribution, ρ, of (chaotic) emission sources is,

σd2σ12

dσ1dσ2
= 1 + |R(q)|2 , (1)

where R is the normalized Fourier transform of the source density

R(q) =

∫

ρ(x)dx exp(iqx)
∫

ρ(x)dx
. (2)

This quantity is often, without very convincing reasons, parametrized in
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terms of a “source radius” R and a “chaoticity parameter” λ,

|R(q)|2 = λ exp(−R2Q2) (3)

with Q2 = −q2. The source radii obtained by this parametrization tend
to be similar in all hadronic interactions (we exclude heavy ion interactions
where the extensions of nuclear targets and probes will influence the result),
with R ∼ 0.5− 1 fm, but the chaoticity varies rather much depending upon
the particular data sample and the method of the fit. At present the knowl-
edge of higher-order correlations is still limited in the experimental data,
although, as I will stress, there should be such correlations and the observa-
tion of them is not only a definite prediction but also a decisive test for the
model I am going to present.

The first attempt to provide the Lund Model with a quantum mechan-
ical framework is a method devised in [7]. In particular there is instead
of a probability distribution for the hadrons a production matrix element
with well-defined phases. This was then be used to make a model of the
HBT effect. Although this model stems from different considerations it will
nevertheless contain predictions which are similar to those in the ordinary
approach giving Eq. (1). The correlations are implemented as weights as-
signed to events generated by JETSET. One motivation for this new effort,
performed together with my student Markus Ringnér, was to extend the
model to the general situation when there are several kinds of bosons as
well as many particles of each kind. Another was to obtain a more precise
understanding of the (at that time) somewhat cavalier assumptions behind
the ideas in [7]. (Or as one of my friends told me: “You are allowed to play
around for most parts of your life but at least at some time you ought to
behave in a serious way”. I do not feel serious yet but I am nevertheless
curious).

In the next section I will survey those features of the Lund model, that
are necessary for the following and also make a connection to Feynman
graphs for multiparticle production as well as the results of Regge theory.
After that I will present the BEC model and apply it to situations where
there are many (n) identical bosons. The resulting expressions contain a sum
of in general n! terms, i.e. it is of exponential type from a computational
point of view. It is possible to subdivide the expressions in accordance with
the group structure of the permutation group. Although the higher order
terms provide small contributions in general the computing times are still
forbidding. In order to speed up the calculations we have instead introduced
the notion of links between the particles. In this way it is possible to obtain
expressions of a power type from a calculational point of view, which are
perfectly tractable in a computer.
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I will end with a set of results and predictions from the model but the
main reason for this talk is to present the basic ideas. For those who are
interested in the details of “how it works” there is a Monte Carlo simulation
program available from Markus (markus@thep.lu.se).

2. Some features of the Lund hadronization model

In the Lund string model the basic quantity is the confining color field
which is spanned between the (original) qq̄-pair via the color-connected glu-
ons. It is approximated by some particular modes of the massless relativistic
string where the endpoints of the string are identified with the q and q̄ and
where the gluons are assumed to behave as internal excitations on the string.
The string can break up into smaller pieces by the production of qq̄-pairs
(i.e. new endpoints). Such a pair will immediately start to separate because
of the string tension, which in the rest frame of a string segment corresponds
to a constant force κ; phenomenologically κ ≃ 1 GeV/fm. Final state mesons
are formed from a q and a q̄ from adjacent vertices, as shown in Fig. 1.
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Fig. 1. The decay of a Lund Model string

Each breakup vertex will separate the string into two causally discon-
nected parts. From the causality, together with Lorentz covariance and
straightforward kinematics, it is possible to derive a unique breakup rule for
the string by means of (semi-)classical arguments [8].

The unique breakup rule results in the following (non-normalized) prob-
ability for a string to decay into the hadrons (p1, . . . , pn).

dP (p1, . . . , pn) =

[

∏

i

(Ndpiδ(p
2
i −m2

i ))

]

δ





∑

j

pj − Ptot



 exp(−bA) , (4)

where A is the area of the breakup region as indicated in Fig. 1 and N and
b are two parameters. Actually as we will find below the parameter b can be
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given a fundamental color dynamical interpretation, while N plays the role
of a “density” for the hadronic states (and it will in particular contain also
the transverse momentum fluctuations “out of the string plane” if dpi is a
four-dimensional energy-momentum space region).

Before I continue I would like to remark that this picture may seem very
different from the ordinary Feynman diagramatics language in multiparti-
cle production. Nevertheless in reality it is conceptually very similar. To
see that consider anyone of the vertices, e.g. the one from which the q̄j is
stemming in Fig. 1. We assume that it has lightcone coordinates (x+j, x−j)
in a frame where the origin is (0, 0) and the original q0 and q̄0 have (light-
cone) energy momenta (P+, 0) and (0, P−) (with P+P− = s, the cms energy
squared).

Then the above-mentioned partitioning at the vertex j corresponds to a
separation of the whole event into two groups of particles, denoted (1, . . . , j)
and (j + 1, . . . , n) in Fig. 1, with energy-momenta (P+ − κx+j , κx−j) and
(κx+j , P− − κx−j). These two particle jets move roughly along the q0 and
q̄0 directions, respectively. Pictorially this can be described as in Fig. 2, i.e.

the (q0, q̄0) are transferred to the two final state groups with a momentum
transfer between them of the size q = (κx+j ,−κx−j) (the sign determined
by the way we have drawn its direction; it must as all momentum transfers
be a space-like vector).

P-

P+

+x

+x ,κ x- )κ

P- x- )κ

x-

( -P+

κ ( ,-x+=q

κ( , -

)

Fig. 2. The space-time picture with a production vertex at (x+, x−) is dual to a

momentum space picture similar to a Feynman graph with a momentum transfer

q = (κx+,−κx−) between the particles produced “to the left” and “to the right” of

the space-time vertex.

It does not take much thought to understand that the same construction
can be made at any vertex and that the vertex positions in space-time in

this way corresponds to the momentum transfers in energy-momentum space

between the final state particles. Therefore the area fragmentation law can
be related in a unique way to a description in terms of a multiperipheral
ladder graph with production vertices for the on-shell particles, {p}j , and
with propagators, {q}j , between these vertices. The whole situation in the
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ladder graph is in a precise way dual to the space-time description in Eq. (4)
and Fig. 1.

I will not write out the corresponding “local” formulas but we may deduce
the general properties directly from the “global” Eq. (4). We firstly note that
it contains a phase space factor, which in order to give large contributions
will require many particles. On the other hand the negative area exponential
will similarly tend to suppress large production regions. There is an evident
compromise in terms of the area below a “typical” hyperbola. The area
would then be |Q2|∆y with |Q2| ≃ 1/b (≃ 1.5 GeV2 phenomenologically)
and with ∆y = log(s/s0), where s0 is a scale of the order of a typical
hadronic mass squared. We can go further and show that in this typical
hyperbola decay we obtain 〈n〉 ≃ ∆y/ρ particles with a a rapidity density
ρ ≃ |Q2|/s0. There will not be any large subenergies (pj + pj+1)

2 (large
rapidity gaps means “loss of entropy” from the phase space factor) and the
momentum transfers are evidently limited (inclusively the distribution in
proper time τ , which is related to the momentum transfer as τ = |Q|/κ of
the vertices τ2 = x+jx−j ≡ |Q2

j |/κ
2 is a gamma-distribution governed by

the b-parameter).
For such a model all the arguments from the old multiperipheral models

(and also those of Gribov to obtain Regge behaviour from unitarity) works.
We obtain easily that the total probability for any multiparticle state in the
Lund Model is a power in the cms energy

∑

n

∫

dP (p1, . . . , pn) ≃ sa. The
parameter a is determined from a (“local”, i.e. involving a single vertex)
integral equation (once again as in the unitarity equations, etc). It should
come as no surprise that the parameter values we obtain for a ≃ 0.5 and
for b correspond to the ρ trajectory intercept and slope, respectively. After
all it is the light u and d flavors which are overwhelmingly produced in the
Lund Model!

All of these considerations might, of course, motivate an interpretation
of the Lund Model results in terms of “ordinary” quantum mechanical pro-
duction formulas. The key is to reconsider the result in Eq. (4), which was
derived from (semi-)classical probability concepts in [8], in terms of Fermi’s
golden rule, i.e. that the transition probability is the final state phase space
multiplied by the square of a transition amplitude |M|2. In the next section
I will provide such motivations for interpreting the negative area exponential
as the square of a matrix element. There are at least two possible mecha-
nisms, viz. a quantum mechanical tunneling process a la Schwinger and/or
the possible relationship to the Wilson loop operators in a gauge field theory.
We will find that they provide very similar answers to the problem.
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3. Schwinger tunneling and Wilson loop operators

We note that while a massless qq̄-pair without transverse momentum
can be produced in a point-like way anywhere along the string, a massive
pair or a pair with transverse momentum must classically be produced at a
distance so that the string energy between them can be used to fulfil energy-
momentum conservation. If the transverse momentum is conserved in the
production process, i.e. the qq̄ with masses µ obtain ±~k⊥, respectively, then
the pair may classically be realized at a distance δx = 2µ⊥/κ, where µ⊥ is

the transverse mass
√

µ2 + ~k2
⊥.

The probability for a quantum mechanical fluctuation of a pair, occurring
with µ⊥ at the (space-like) distance δx, is in a force-free region given by the
free Feynman propagator squared:

|∆F(δx, µ⊥)|2 ∼ exp(−2µ⊥δx) = exp

(

−
4µ2

⊥

κ

)

. (5)

A corresponding quantum mechanical tunneling process in a constant force
field will according to WKB methods give

∣

∣

∣

∣

exp

(

−

∫ δx

0

√

µ2
⊥ − (κx)2dx

)∣

∣

∣

∣

2

= exp

(

−
πµ2

⊥

κ

)

≡ P (µ⊥) . (6)

The difference is that in the force-free case we obtain an exponential sup-
pression 4µ2

⊥/κ but when the constant force pulls the pair apart we obtain
the somewhat smaller suppression πµ2

⊥/κ. Besides the mass suppression
(which phenomenologically will suppress strange quark-pairs with a factor
of ∼ 0.3 compared to “massless” up and down flavored pairs) we obtain the
transverse momentum Gaussian suppression

exp

(

−
1

2σ2
k2
⊥

)

with 2σ2 =
κ

π
. (7)

The value of σ as used in JETSET is a bit larger than the result in Eq. (7)
but this can be understood as an effect of soft gluon generation along the
string. The transverse momentum of a hadron produced in the Lund Model
is then the sum of the transverse momenta of its constituents.

We may use the elementary result in Eq. (6) to calculate the persistence
probability of the vacuum, P, as it is defined in [9]. It is the probability that
the no-particle vacuum will not break up, owing to pair-production, during
the time T over a transverse region A⊥, when a constant force κ is applied
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along the longitudinal x-direction over a region L:

P =
∏

t∈(0,T ),x∈(0,L),~k⊥,s,f

(1 − P (µ⊥)) = exp





∑

t,x,~k⊥,s,f

log(1 − P )



 . (8)

We have then assumed that the field couples to (fermion) pairs with spin s
and flavors f and we sum over all possibilities for the production. As each
pair needs a longitudinal size δx = 2µ⊥/κ and, according to Heisenberg’s
indeterminacy relation, will live during a time-span 2π/2µ⊥ there is at most
κLT/2π pairs possible over the space-time region LT . The transverse mo-
mentum summation can be done by Gaussian integrals from an expansion of
log(1−P ) and the introduction of the well-known number of waves available
in a transverse region A⊥: (A⊥/(2π)2)d2k⊥. In this way we obtain for the
persistence probability

P = exp(−κ2LTA⊥Π) with Π =
nfns

4π3

∞
∑

n=1

1

n2
exp

(

−
nπµ2

κ

)

, (9)

where nf , ns is the number of flavor and spin states.
There are two remarks to this result. Firstly, although the method to

treat the integration over time and longitudinal space, by close-packing rea-
sonably sized boxes, may not seem convincing the final formula in Eq. (9)
coincides with the one obtained by Schwinger [10], for the case of a constant
electric field E . Then κ is identified with the force of the charges in the
external field, i.e. κ→ eE .

Secondly, the result is in evident agreement with the formula for the
decay of the Lund string in Eq. (4) if we identify LT with the (coordinate
space) area size A. In this way we also obtain the result that the parameter
b is

b = κ2A⊥Π , (10)

i.e. it corresponds to the transverse size of the (constant) force field, which
we have modeled by the string. The quantity Π is 1/(12π) for two massless
spin 1/2-flavors.

The second quantum mechanical approach is to note that a final state
hadron stems from a q from one vertex j and a q̄ from the adjoining vertex
j + 1. In order to keep to gauge invariance it is then necessary that the
production matrix element contains at least a gauge connector between the

vertices: exp(i
∫ j+1
j

gAµdxµ), where g is the charge and Aµ the gauge field.

Consequently the total production matrix element must contain (at least) a
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Wilson loop operator:

M = exp(i

∮

gAµdxµ) (11)

with the integration around the region A (note that the field is singular along
the border line and we are therefore not allowed to distort the integration
contour inwards). The operator in Eq. (11) was predicted (and inside lattice
gauge calculations also found) to behave as

M = exp(iξA) (12)

with the real part of ξ, Re(ξ) = κ. In the present situation where the
force field region decays we expect an imaginary part, corresponding to
the pair production rate according to the well-known Kramers–Kronig [11]
relationship for the dielectricity in matter, in this case the QCD vacuum.

Before I continue let me make a few remarks on the notion of “gauge-
connector”. It is well-known that (local) gauge transformations (with the
gauge function Λ(x)) are implemented in such a way that while the vector
potential field Aµ → Aµ + ∂Λ/∂xµ the corresponding fermion fields obtain
a phase change ψ → ψ exp(igΛ). This means that a theory where Aµ is
coupled to a conserved current is gauge invariant (for a non-abelian theory
like QCD some care must be exercised; the “conservation of the current”, just
as e.g. “unitarity” is in Feynman language taken care of by the introduction
of formal “ghost” field compensations).

Further, fermion quantities like ψ̄Oψ (with O a Dirac matrix) evalu-
ated in the same point are then obviously gauge invariant. But this does

not apply to situations when the fermion–antifermio pair stem from differ-

ent production points. Then the gauge connector, which was introduced by
Schwinger, is a necessity. A use of Stoke’s theorem tells us that the quantity
ξ in Eq. (12) is for a loop with a space-like (time-like) normal the magnetic
(electric) field flux through the loop. It is multiplied by the effective charge
and consequently it will therefore be influenced by the dielectricity of the
vacuum which is governed by the pair production rate (for the non-abelian
QCD this means a “running” as we will soon find).

The two interpretations of the area law, i.e. the Schwinger tunneling in
Eq. (9) and the Wilson loop operator result in Eq. (12) can be related if
we note that according to Gauss’ Law the integral over the extension of the
force field should correspond to the charge. For a thin string we should then
obtain for the area falloff rate b ∝ κ2A⊥ ∝ κα. Although Gauss’ law is more
complicated for a non-abelian field with triplet and octet color-charges and
similarly octet fields it is possible to make a case for an identification of the
parameter b (expressed in energy-momentum space units) as

b =
nf ᾱ

12κ
(13)
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which is what we should expect from the expected imaginary part of the
dielectricity in Eq. (12) (ᾱ = 3g2/(4π) is then the effective QCD coupling,
including the color factors). The result is also phenomenologically supported
if we consider a partonic cascade down to a certain transverse momentum
cutoff k⊥c and then use the Lund Model hadronization formulas to obtain
the observed properties of the final state. In that way we may determine
the parameters in the model as functions of the partonic cascade cutoff. A
remarkably good fit to the b-parameter is given by C/ log(k2

⊥c/Λ
2) with C

according to Eq. (13) (thereby including the QCD running coupling) and
Λ ≃ .5 GeV [12].

Independently of the precise identification of b, we obtain a possible
matrix element from Eq. (12), again with A expressed in space-time units

M = exp(iκ − bκ2/2)A (14)

which not only will provide us with the Lund decay probability in Eq. (4),
but also can be used in accordance with [7] to provide a model for the BEC
effect for the correlations among identical bosons.

4. The Bose Einstein Correlation Model

We now consider a final state containing (among possibly a lot of other
stuff) n identical bosons. There are n! ways to produce such a state, each
corresponding to a different permutation of the particles. According to quan-
tum mechanics the transition matrix element is to be symmetrized with re-
spect to exchange of identical bosons. This leads to the following general
expression for the production amplitude

M =
∑

P

MP , (15)

where the sum goes over all possible permutations P of the identical bosons.
The cross section will then contain the square of the symmetrized ampli-
tude M

|M|2 =
∑

P



|MP |
2



1 +
∑

P ′ 6=P

2Re(MPM
∗
P ′)

|MP |2 + |MP ′ |2







 . (16)

In the JETSET scheme the probability to obtain the final state configuration
would be given by

|M|2 =
∑

P

|MP |
2 (17)
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instead of the probability in Eq. (16). Comparing Eq. (16) and Eq. (17)
we find that the quantum mechanical symmetrization can be introduced by
weighting the produced event with

w = 1 +
∑

P ′ 6=P

2Re(MPM
∗
P ′)

|MP |2 + |MP ′ |2
. (18)

The outer sum in Eq. (16) is as usual taken care of by generating many
events.

IA

2I
1

2
1 B

Fig. 3. The two possible ways, (. . . , 1, I, 2, . . .) and (. . . , 2, I, 1, . . .), drawn with

solid and dashed lines respectively, to produce the entire state when two of the

bosons are identical. The open circles show the two different production points for

each identical boson and the arrows indicate the space-time difference, δx, between

the two production points for the two production configurations. A and B denote

the two vertices surrounding the identical bosons.

In order to see the main feature of symmetrising the hadron production
amplitude in the Lund Model we consider Fig. 3, in which two of the pro-
duced hadrons, denoted (1, 2), are assumed to be identical bosons and the
state in between them is denoted I. We note that there are two different
ways to produce the entire state corresponding to the production configura-
tions (. . . , 1, I, 2, . . .) and (. . . , 2, I, 1, . . .),i.e. to exchanging the two identi-
cal bosons. The two production configurations are shown in the figure and
the main observation is that they in general correspond to different areas!

The area difference, ∆A, depends only on the energy momentum vectors
p1, p2 and pI , but can in a dimension-less and intuitively useful way be
written

∆A

2κ
= δpδx , (19)

where δp = p2 − p1 and δx = (δt; 0, 0, δz) is a reasonable estimate of the
space-time difference, along the surface area, between the production points
of the two identical bosons. We note that the space-time difference δx is
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always space-like. In Fig. 3 δx, for the two production configurations, is
indicated by arrows, together with open circles showing the corresponding
production points. The production points are in this way defined by the
centres of the particles space-time rectangles.

We go on to consider the effects of transverse momentum generation in
the qq̄-vertices. First we note that the total transverse momenta of the sub-
state 1, I, 2 in Fig. 3 stem from the q and q̄ generated at the two surrounding
vertices, A and B. This is, owing to momentum conservation, fixed by the
properties of the hadrons generated outside of the sub-state. Using this we
find that there is a unique way to change the transverse momenta in the
vertices surrounding the intermediate state I such that every hadron has
the same transverse momenta in both production configurations.

Suppose as an example that we have generated ±k⊥A in the vertex A and
±k⊥B in the vertex B (i.e. so that −k⊥A and k⊥B defines the sub-state).
Then to conserve the transverse momenta of the observed hadrons when
changing production configuration from (1, I, 2) to (2, I, 1) it is necessary to
change the generation of transverse momenta in the two vertices surrounding
I as follows (in an easily understood notation):

±k⊥I → ±(k⊥A + k⊥B − k
′
⊥I) ,

±k
′
⊥I → ±(k⊥A + k⊥B − k⊥I) . (20)

This means that exchanging two bosons with different transverse momenta
will result in a change in the amplitude as given by Eq. (7) for some of the
vertices.

From the amplitudes in Eq. (14) and Eq. (7) we get that the weight in
the Lund Model can be written

w = 1 +
∑

P ′ 6=P

cos ∆A
2κ

cosh

(

b∆A
2 +

∆(
∑

p2
⊥q)

2σ2
p⊥

) , (21)

where ∆ denotes the difference with respect to the configurations P and P ′

and the sum of p2
⊥q is over all vertices. We have introduced σp⊥ as the width

of the transverse momenta for the generated hadrons, (i.e. σ2
p⊥

= 2σ2).
Using Eq. (19) for a single pair exchange one sees that the area difference

is, for small δp, governed by the distance between the production points
and that ∆A increases quickly with this distance. We also note that ∆A
vanishes with the four-momentum difference and that the contribution to
the weight from a given configuration, P ′, vanishes fast with increasing area
difference ∆A.

From these considerations it is obvious that only exchanges of pairs with
a small δp and a small δx will give a contribution to the weight. In this



Bose–Einstein Correlations in the Lund Model 1897

way it is possible to relate to the ordinary way to interpret the BEC effect,
cf. Eq. (2).

It is straightforward to generalize Eq. (19) to higher order correlations.
One notes in particular that the area difference does not vanish if more than
two identical bosons are permuted and only two of the bosons have identical
four-momenta.

Models for BEC have been suggested, e.g. [13], with similar weight func-
tions, but it is important to note that the weight in this model has a scale
both for the argument to the cos-function as well as for the function which
works as a cut-off for large δp and δx (in our case a cosh-function). Fur-
ther the two scales in the model are different and well-defined, at least
phenomenologically.

5. Implementation and results

To calculate the weight for a general event, with multiplicity n, one has
to go through n1!n2! . . . nN ! − 1 possible production configurations, where
ni is the number of particles of type i and there are N different kinds of
bosons. For a general e+e−-event at 90 GeV this is not possible from a
computational point of view.

We know however that the vast majority of configurations will give large
area differences and they will therefore not contribute to the weight. From
basic group theory we know that every group can be partitioned into its
classes and this also goes for the well-known permutation group. I will
not go into the details but it is possible to define an “order” number for
the classes. This can be defined so that the minimum length over which
particles are moved by the permutation increases with the order and con-
sequently the area differences also increase and the contributions quickly
decrease. Nevertheless, there are plenty of configurations of low order which
are also very small and this is not acceptable when taking computing time
into account. We have therefore abandoned an expansion into the classes of
the permutation group.

We have instead approximated the sum in Eq. (21) with a sum over
configurations of all orders with significant contributions to the weight. This
has been done by introducing exchange-links between particles. We have
only taken into account interference with configurations where all particles
are produced in positions from which there is a link to a particle’s original
production position. Defining a link matrix, L, as follows

Lij =

{

1 if there is a link between particles i and j,
0 otherwise,
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one gets a simple representation of the configurations to be considered. The
function of a link, Lij, is to enable moving particle i to particle j’s posi-
tion. It is important to note that a general link matrix enables higher order
permutations even though the links are defined between pairs only. If all
elements in L are 1, it corresponds to considering all n! permutations, while
only the original configuration is considered if L is the identity matrix.

We introduce the concept of link-size as the invariant four-momentum
difference together with the invariant mass of the particles produced in be-
tween the pair (in rank). By only accepting links between particles if the
size of the link between them is smaller than some cut-off link-size, δc, we
get a prescription for the exchange matrix of an event.

In this way, by specifying the allowed two-particle exchanges, we get, to
all orders, which configurations to take into account. We have found that
for a given δc one includes all configurations that provide a contribution
larger than some ǫ to the weight. Taken together this means that we get all
the important contributions to the weight if we chose δc so large that the
neglected terms smaller than ǫ give a negligible change for every weight.

We have used a cut-off link-size such that there is a link between identical
bosons if one of the following conditions is fulfilled.

• Q2 = −(pi − pj)
2 < Q2

max ≃ 1 GeV2.

• the invariant mass of the particles produced in between (along the
string) the pair is less than m2

max ≃ (20 GeV)2.

Including links larger than this give no contribution to the weight and no
noticeable effect in any observable known to us (except the computing time
in the simulation!).

In order to see the properties of the weight distribution I show in Fig. 4
that the majority of the weights are close to and centered around unity.
There is also a tail of weights far away from unity in both directions. The
tail of positive weights is shown as an insert and the distribution looks like a
power. If we subdivide the events into sets with similar number of links and
study the weight distributions for these sets separately, we find, however,
that the weight distribution for each set is basically Gaussian. The width
of these Gaussians increases with the number of links in the corresponding
set, as shown in Fig. 5. The power like behaviour of the weight distribution
is therefore merely a consequence of summing over events with different
number of links. It should be emphasized that the negative weights only
are a technical problem. Summing over many events results in positive
probabilities for all physical observables, which is obvious from Eq. (16).

I have gone into some detail on the precise way of calculating in our
model because I know that there is a large interest for similar calculations
in the polish high-energy community. There is another problem related to
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Fig. 4. The distribution of Bose–Einstein weights for two-jet states in JETSET.

The tail of positive weights is shown in the insert.

Fig. 5. The distribution of Bose–Einstein weights for two-jet events subdivided

into sets with different number of links, nl. Two samples for 3 ≤ nl ≤ 5 and

10 ≤ nl ≤ 12 are plotted.

the resonances and their decays. A large fraction of all final-state bosons
stem from decays of short-lived resonances with lifetimes comparable to the
time scale in string decay. Therefore they may contribute to the Bose–
Einstein effect. To include their decay amplitudes and phase space factors
and symmetrise the total amplitude is very difficult and it is furthermore
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not known how to do that in a model-consistent way. We have used a Γmin

so that particles with a width larger than Γmin are assumed to decay before
Bose–Einstein symmetrization sets in and the matrix elements are evaluated
with their decay products regarded as being produced directly, ordered in
rank.

Our results are fairly independent of Γmin as long as it is small enough
for the ρ’s to decay before the symmetrization. It turns out, however, that
the correlation function depends somewhat on the decay products of η′. The
production rate of η′ used in JETSET was questioned in [14], in connection
with BE correlations. We have used reduced production rates for η and η′

by setting the extra suppression factors in JETSET to 0.7 and 0.2 respec-
tively, in accordance with the DELPHI tuning [18] and then our results are
consistent with the ones presented at LEP.

From the basic ideas in the model and from Eqs (21) and (19) we may
conclude that

• it is the transverse momentum fluctuations, which plays the role of
“chaoticity” in this model

• the correlation length in Q depends inversely on the (space-like) dis-
tance between the production points of the identical bosons. Therefore
the Bose–Einstein correlation length, that is dynamically implemented
in this model, can be described as the flavour compensation length, i.e.

the region over which a particular flavour is neutralized (along the color
force field, i.e. the string).

It is then a natural prediction (which is also confirmed from our simulations)
that there will be a different correlation length in “transverse” and “longitu-
dinal” directions. These directions are then defined wrt. the thrust direction
of the event and to be precise in the “longitudinal” cms frame, where the
particles have opposite and equal longitudinal momentum components. An-
other obvious prediction, also noticeable in the model, is that neutral pions,
that can be produced without any state I “in between” have a smaller longi-
tudinal (coordinate space) correlation length than the charged pions where
there must be a compensating charge state in between.

One could have hoped that kaon pairs should show a longer (coordinate
space) correlation length but their very scarcity together with the well-known
fact that they as decay products from resonances have larger transverse
momentum than the corresponding pionic decay products means that there
is no definite signal. Neither is it possible to use events with “many” kaons
to obtain a longer pionic correlation length (the kaons are again too few to
“crowd” the phase space).

Bose–Einstein correlations acting between identical bosons may have sig-
nificant indirect effects on the phase space for pairs of non-identical bosons.
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We have studied mass distributions of π+π− systems to see how our model
affects systems of unlike charged pions. Many analyses use π+π− distribu-
tions to quantify the Bose–Einstein correlations, using the unlike-charged
distributions as reference samples with which to compare the like-charged
pion distributions. We have found that the assumption that the two-particle
phase space densities for π+π− systems are relatively unaffected by Bose–
Einstein symmetrization is fairly good. Taking the ratio of the π+π− mass
distributions with and without Bose–Einstein symmetrization applied gives
that the mass distribution is not altered much by the symmetrization, and
that the effect is smaller than 5% in the entire mass range.

It has, however, been observed experimentally that the Breit–Wigner
shape for oppositely charged pions in the decay of the ρ resonance [20–22]
is distorted. We have therefore analysed π+π− distributions when the pair
comes from the decay of a ρ0. We find that the weighting depletes the region
around the ρ mass and shifts the masses towards lower values and there is
also a slight increase in the width of the distribution in accordance with the
experimental findings.

The existence of higher order dynamical correlations, which are not a
consequence of two-particle correlations, is of importance for the under-
standing of BE correlations. There are very few experimental studies of
genuine three-particle correlations, mainly because of the problem of sub-
tracting the consequences of two-particle correlations and the need for high
statistics of large multiplicity events. Genuine short-range three-particle
correlations have been observed in e+e− annihilations by the DELPHI ex-
periment. They conclude that they can be explained as a higher order
Bose–Einstein effect [23].

A word of clarification is necessary here. In the BEC model of Sjöstrand,
[5], there are also three-particle correlations due to the reshuffling to conserve
the total energy-momentum. In our model three-particle correlations are
inherent and actually, if the distributions again are divided into transverse
and longitudinal ones serve to exhibit the string direction even further.

To reduce problems with pseudo-correlations due to the summation of
events with different multiplicities we have used three-particle densities nor-
malized to unity separately for every multiplicity in the following way

ρ̃
(a,b,c)
3 (p1, p2, p3) =

∑

n≥8

P (na, nb, nc)ρ̃
(na,nb,nc)
3 (p1, p2, p3), (22)

ρ̃
(na,nb,nc)
3 (p1, p2, p3) =

1

na(nb − δab)(nc − δac − δbc)

1

σ(na,nb,nc)

d3σ(na,nb,nc)

dp1dp2dp3
,

(23)
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where n is the charged multiplicity, σna,nb,nc
is the semi-inclusive cross sec-

tion for events with ni particles of species i, and

P (na, nb, nc) =
σ(na,nb,nc)

∑

na,nb,nc
σ(na,nb,nc)

. (24)

We have aimed to study the genuine normalized three particle correlation
function, R̃3, defined as

R̃3 = [ρ̃3(p1, p2, p3) − ρ̃2(p1, p2)ρ̃1(p3) − ρ̃2(p1, p3)ρ̃1(p2) − ρ̃2(p2, p3)ρ̃1(p1)

+2ρ̃1(p1)ρ̃1(p2)ρ̃1(p3)]/(ρ̃1(p1)ρ̃1(p2)ρ̃1(p3)) + 1 , (25)

where we have used an abbreviated notation for the ρ̃3 from Eq. (22), and ρ̃1

and ρ̃2 are the corresponding one- and two-particle densities, normalized in
accordance with Eq. (22) and Eq. (23). R̃3 is equal to one if all three-particle
correlations are consequences of two-particle correlations.

In order to calculate the ρ̃2ρ̃1 and ρ̃1ρ̃1ρ̃1 terms in Eq. (25) the common
experimental procedure is to mix tracks from different events. In order to
minimize the computing time we have used combinations of charged pions
in the following way to approximate Eq. (25)

R̃3 ≡
ρ̃
(±,±,±)
3w − 3(ρ̃

(±,±,∓)
3w − ρ̃

(±,±,∓)
3 )

ρ̃
(±,±,±)
3

, (26)

where w, as previously, denotes weighted distributions. There are a couple
of things to note in connection with Eq. (26). If there are genuine positive
three-particle correlations for (+ + −) and (− − +) combinations, as ob-
served by the DELPHI collaboration [23] they will if they come from BE

symmetrization contribute to the R̃3 in Eq. (26), but they will reduce the
signal. Secondly, we note that there is a possible bias from two-particle
correlations from (+−) combinations but that it is small as discussed pre-
viously. We also note that using the normalization in Eq. (23) reduces
problems with contributions from like- and unlike-charge combinations hav-
ing different multiplicity dependence. It should also be observed that the R̃3

in Eq. (26) can be studied experimentally since getting the ρ̃3w’s of course
is achieved by analysing single events and the ρ̃3 samples can be made by
mixing events.

We have analysed the three-particle correlations as a function of the
kinematical variable

Q =
√

q212 + q213 + q223 with q2ij = −(pi − pj)
2 (27)



Bose–Einstein Correlations in the Lund Model 1903

Fig. 6. The Q-dependence of the genuine three-particle correlation function R̃3,

defined in the text.

Fig. 6 shows R̃3, the genuine three-particle correlation function for like-
sign triplets, as approximated in Eq. (26). A strong correlation is observed
for small Q-values. There is a dip in the curve for Q-values around 1 GeV
which is compatible with the depletion of ρ0’s around its mass and gives an
indication of the error from using unlike-charged pions in the approximation
of R̃3.
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