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New methodology of classification of quantum systems with respect to
their integrability basing on the analytical properties of statistical measures
is proposed. Advantages of this methodology are discussed. Examples of
possible applications of this approach are presented. Model of a paramag-
netic atom moving in external magnetic field is discussed in detail. Predic-
tions of different types of both quantum integrability and quantum chaos
are given.
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1. Introduction

The aim of this paper is to introduce new methodology of classification
of quantum systems with respect to their integrability. A quantum system
with N degrees of freedom is integrable if there exist N globally defined oper-
ators, Im(p̂1, ..., p̂N ; q̂1, ..., q̂N ), for m = 1, ...,N , whose mutual commutators
vanish,

[Îm, In] = 0, (1)

for all m,n = 1, .., N [1–4]. In this paper we consider chaotic systems as
systems where it is impossible to find such operators except the Hamilto-
nian in conservative systems. So far, there is a classification basing on the
general properties of probability distribution of a quantity called spacing.
Spacing is a difference between two adjacent levels in the energy spectrum
of a quantum system. For chaotic systems the distribution of spacing may
be approximated by the Wigner surmise [5–7]

PW (s) =

{

πs
2 exp

(

−πs2

4

)

for s ≥ 0 ,

0 for s < 0 ,
(2)

(1943)
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and for integrable systems is given by the Poisson distribution

PP(s) =

{

exp (−s) for s ≥ 0,
0 for s < 0 .

(3)

These two distributions are distinctively different. Therefore it was possi-
ble to classify quantum systems with respect to their integrability basing
on similarities between a histogram of spacing obtained for the considered
system and functions given by (1), (2) or other formulas binding for different
types of quantum chaotic systems. For more details see [7, 8].

The concept presented below is based on the observation that not the
shape of the statistical measure but rather its class with respect to the
differentiation is significant in the context of quantum integrability. Our
main result is an indication that quantum chaotic system can be defined as
a system with continuous probability distribution of spacing. It is shown
that the observed shortage of small spacings usually explained as a conse-
quence of the level repulsion, is a simple inference from our condition. Since
integrability of the quantum system is connected with the number of inde-
pendent globally defined invariants which are in involution with each other
and our theory is only qualitative, we were not able to formulate a condition
concerning integrable systems. However, using our methodology it seems
possible to reveal the existence of a single invariant for a given, even very
complicated, quantum system. And above all, it is very simple and does not
require any additional significant computations since making a histogram of
spacing, while dealing with such systems, is a standard procedure.

It must be stated that our classification is based on features that do not
depend on the special kind of so called unfolding of the energy spectrum [9].
We have obtained our results using different unfolding procedures. More-
over, we have applied our classification to many systems considered by other
authors, which may have applied very different unfolding techniques. But
there are also other arguments against the objection that our classification
might be based on the artificial effect caused by unfolding. The first one is
that while constructing our methodologywe base on the analytical results,
and the second is the fact that whether the function is continuous or discon-
tinuous at some point is not a local feature but it is possible to conclude it
on the basis of the function behaviour upon some finite extent.

The paper is organized in the following way: In the Section 2 we approach
statistical measures we are talking about, in the Section 3 we test them
by investigating the two-dimensional nonlinear quantum oscillator in both
chaotic and integrable regions. The new methodology of classification of
quantum systems with respect to their integrability is then introduced. In
Sections 4 and 5 we apply our methodology to the periodically driven systems
and to the one-dimensional system which is integrable by the definition,
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whereas its levels exhibit repulsion. In conclusion we summarize our results
pointing out the most important achievements of our classification.

2. Statistical measures

Before presenting our methodology of classification a short description of
statistical measures must be given. Systematic discussion of these measures
is contained in [10, 11]. It was possible, as a result of an observation, that
spacing is in general a two point approximation of the first derivative of the
function E(i) = Ei:

si =
1

i + 1 − i
(Ei+1 − Ei) . (4)

The fact that probability distribution of the differential quotient is used
to characterize quantum systems with respect to its integrability made it
clear, that higher order differential quotients of the function Ei also might
be helpful in this matter. Therefore the second order differential quotient
was introduced as a supplementary characteristic of quantum chaos or inte-
grability:

zi = ∆2Ei =
1

(i + 1 − i)2
(Ei + Ei+2 − 2Ei+1) . (5)

This statistical measure is based on three consecutive energy levels. This
gives rise to a question whether it is the only measure of a clear physical
meaning based on such number of levels. It follows from the theory of finite
elements that this condition is fulfilled by three point approximations of
the first derivative, which may be constructed with the use of three point
asymmetrical and symmetrical elements in the following way:

xi =
1

2(i + 1 − i)
(−3Ei + 4Ei+1 − Ei+2) , (6)

yi+1 =
1

2(i + 1 − i)
(Ei+2 − Ei) . (7)

To find formulas for probability distributions of these quantities for chaotic
systems the most general formula of the random matrix theory RMT
[7,8, 12], the Rozenzweig–Porter formula, may be used:

P (x1, x2, ..., xN ) = CNβ





N
∏

i>j=1

|xi − xj|β exp

(

−1

2

N
∑

i=1

x2
i

)



 , (8)

where β = 1, 2, 4 for GOE, GUE, and GSE, respectively. The abbreviations
GOE, GUE, GSE mean Gaussian Orthogonal Ensemble, Gaussian Unitary
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Ensemble and Gaussian Symplectic Ensemble. These ensembles have been
introduced in RMT. In the following properties of GOE will be investigated,
and for the purpose of this article the only important fact is that GOE
consists of real random symmetrical matrices. Probability distributions for
the considered finite elements were obtained with the use of an ensemble
consisting of 3 × 3 matrices, so N = 3 was assumed in (8). The formulas
for probability distribution of quantities s, x, y and z, see (4)–(7), for a
quantum integrable system with three randomly distributed energy levels,
which will be denoted as I(3) were also found in [10] and [11]. For the
sake of completeness of this paper results both for GOE(3) and integrable
system I(3) are summarized in the Appendix. These theoretical tools must
be however tested before they are used in investigations concerning quantum
chaos. Such tests should be done on a system with well known properties
for which many energy levels can be easily computed. This will be done in
the first part of the next section. In the second part of that section there
will be given an extensive discussion answering the question how these tools
might be helpful in the proper classification of quantum systems.

3. The classification of quantum systems

In order to tests measures mentioned in previous section we chose a
system consisting of two coupled anharmonic oscillators analyzed in [13]:

H = 1
2(p2

1 + p2
2) + V1(x1) + V2(x2) + V12(x1 − x2) . (9)

The potentials Vi(x) are defined as

Vi(x) = vi(αix
2 + βix

4 + γix
6), (i = 1, 2, 12) . (10)

The properties of this system were investigated for ~
2 = 0.2. Values of other

parameters are gathered in the following table:
TABLE I

Values of parameters for potential defined by (9).

i vi αi βi γi

1 100 1.56 −0.61 0.32
2 100 0.69 −0.12 0.03

12 v12 −1.00 0.25 0.08

The most interesting parameter is v12 because for v12 = 0 this system is
integrable and for v12 = 100 is almost chaotic. For the purposes of test-
ing statistical measures reminded in the previous section it was necessary
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to compute approximately 10000 energy levels. Harmonic oscillator basis
was used to construct Hamiltonian matrix. In the actual calculations two
matrices 5538×5538 were diagonalized because sets of states with positive
and negative parities do not couple with each other. For further calcula-
tions we took only 4000 middle levels from each spectrum. Data gathered
from both spectra are showed on histograms. Figures 1(a), 1(b), 1(c), 1(d)
present experimental histograms taken from the chaotic system, whereas
figures 2(a), 2(b), 2(c), 2(d) show histograms calculated for the integrable
case. Dashed and dotted curves plotted on these figures are theoretical prob-
ability distributions for I(3) and GOE(3), respectively (except Fig. 1(a),
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Fig. 1. The histograms of: 1(a) spacing, 1(b) the second order differential quotient,

1(c) asymmetrical three point element, 1(d) symmetrical three point element for

two-dimensional nonlinear oscillator in the chaotic region (solid line). Analytically

predicted probability distributions for I(3) model (dashed line) and GOE(3) (dotted

line) except Fig. 1(a) where probability distribution for GOE(2) is presented.
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Fig. 2. The histograms of: 2(a) spacing, 2(b) the second order differential quotient,

2(c) asymmetrical three point element, 2(d) symmetrical three point element for

two-dimensional nonlinear oscillator in the integrable region (solid line). Analyti-

cally predicted probability distributions for I(3) model (dashed line) and GOE(3)

(dotted line) except Fig. 2(a) where probability distribution for GOE(2) is pre-

sented.

where the function from the Wigner surmise is plotted). The presented fig-
ures were taken as an experimental evidence, that theoretical predictions
for GOE(3) and I(3) are good approximations of the statistical measures
calculated for systems with large N .

Careful survey of both theoretical and numerical data presented here
shows that analytical properties of the considered probability distributions
are not accidental. There seem to exist some general rules from which one
may predict general behaviour of a given statistical measure for any quantum
system knowing only whether it is integrable or not. We found these rules
and give them in three observations.
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Observation 1 Statistical measures calculated for quantum systems belong-
ing to different classes with respect to their integrability are functions of
different classes with respect to their differentiability.

To account for this observation on the basis of presented data we will
discuss our plots in more detail. We start from the probability distributions
of spacing presented in Fig. 1(a). These well known functions are smooth ev-
erywhere except the origin. At this point probability distribution of spacing
of the integrable system is a discontinuous function, whereas the probability
distribution for the chaotic system is continuous but nodifferentiable one at
this point. Therefore, using more formal language it may be said that the
first one belongs to the class of discontinuous functions, whereas the second
one to the class of continuous functions C0. Fig. 1(b) presents distributions
of the second differential quotient of the energy spectrum and like in previ-
ous case the only interesting point is zero. For this value of an independent
variable both functions take their maximum values. In the case of integrable
system the derivative of the probability distribution does not exist at this
point, whereas for the chaotic one it does. Therefore, the probability distri-
bution for the integrable system belongs to the class C0 while the probability
distribution for chaotic one is a smooth function (class C∞). Analogous sit-
uation is for the probability distributions of the asymmetrical three point
element plotted in Fig. 1(c). Also here the derivative of the probability
distribution calculated for integrable system does not exist at the point for
which the function takes its maximum value. The only difference is that it
takes place at the point different from zero. This case is the most important
one for our discussion because it clearly shows that the property noticed of
different classes of functions is not connected with a certain distinguished
point. The last case is presented in Fig. 1(d), where the probability distri-
bution of three point symmetrical element is presented. It is the first one of
the considered cases in which one may find nondifferentiability of the prob-
ability distribution of the integrable system not connected with a maximum
of this function. Above we discussed only probability distributions of the
three point asymmetrical and symmetrical elements for integrable system
because functions corresponding to chaotic system are for these cases every-
where smooth i.e. belong to the class C∞. Therefore, all four cases confirm
our observation and the last two ones indicates that we do not generalize
observations related to some specific features of probability distributions
presented here.

Observation 2 Probability distributions of the n-point finite elements cal-
culated for quantum systems belonging to one class with respect to their inte-
grability are functions of the same class with respect to their differentiability.
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We formulate this as a generalization of the observations related to the
probability distribution of the three-point finite elements presented in Figs
1(b), 1(c), 1(d). They are independent statistical measures with different
shapes. But, nevertheless, all functions presented here for the integrable sys-
tem belong to the class C0 whereas all functions for chaotic systems belong
to the class C∞. Although this observation is made on the basis of only two
quantum models: GOE(N) and I(N) we think that it is very unlikely that
six considered functions belong to the proper classes accidentally.

Observation 3 There are several classes of both chaotic and nonchaotic
systems.

Indeed it is obvious that quantum harmonic oscillator constitutes a sepa-
rate class of integrable systems, because all probability distributions of finite
elements for this system are given by the Dirac delta function. Therefore, in
the view of our classification different behaviour of quantum harmonic oscil-
lator is observed not only for the distribution of three point finite elements
but also for the distribution of spacing. It is worth noticing that it is not an
extraordinary exception or a special feature of one dimensional systems as
one could expect after considering the model discussed in Section 5. Instead,
it seems to be an intrinsic feature of many dimensional harmonic oscillator as
one can expect from [14]. Therefore, it seems that quantum mechanics dis-
tinguishes two different types of integrable systems. The fact that there are
also different classes of quantum chaotic systems is more clear. For example
it has been calculated in [10] that probability distributions of spacing for
GUE(3) and GSE(3) belong to the class C∞. This behaviour differs distinc-
tively from that observed for GOE where probability distribution of spacing
belongs to the class C0. Therefore, from the point of view introduced here
the kind of chaos in systems whose properties can be described by GOE
should be different from that observed in systems described by GUE and
GSE. Here we do not discuss properties of other statistical measures calcu-
lated for GUE(3) and GSE(3) because they have not been verified by the
experimental data, and we should not consider them as properly describing
the behavior of the real physical systems with large N . It must be stated
that both integrable and nonchaotic systems belong to the same classes in
our classification because of the quantitive character of integrability. There-
fore it is impossible to introduce in this manner classes of integrable systems.
We may call them nonchaotic instead. These three observations constitute
our phenomenological methodology of classifying quantum systems with re-
spect to their integrability on the base of statistical measures. To make it
easier we formulate two inferences:

Inference 1 The probability distributions of spacing for quantum chaotic
systems are at least continuous functions.
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Inference 2 The probability distributions of three point statistical measures
for quantum chaotic systems belong to the class C∞.

We will show that the introduced methodology is better then the old one,
and it also has greater capabilities for explaining the nature of real quan-
tum systems. So why this approach is better then the old one? The answer
is very simple. So far quantum system has been believed to be chaotic if
the shortage of small spacings in its energy spectrum was observed. On
the other hand, the only theoretical model of a spectrum of the integrable
system was the model I(N) in which levels are randomly distributed and
completely uncorrelated. These approaches do not seem appropriate. First,
because there is at least one quantum integrable system with the shortage of
small spacings: it is quantum harmonic oscillator. Secondly, because Pois-
son or Poisson-like distributions of spacing belonging to many integrable
systems can be obtained from band matrices [13]. It is not well understood
yet, but undoubtedly testifies that energy levels interact with each other.
These facts are commonly known but they are considered as insignificant,
in relation to profits from previous approach. Therefore we will indicate
that the methodology presented here gives better results and does not have
such unpleasant features. The trouble with harmonic oscillator vanishes.
Probability distribution of spacing for this system is given by Dirac delta
function which is by its definition discontinuous and integrable function.
Our approach properly classifies systems with the significantly degenerate
energy spectrum as nonchaotic ones. On the other hand, continuity of spac-
ing distribution in connection with definition of spacing implies that there
are relatively few small spacings in the energy spectrum of quantum chaotic
systems. This fact agrees with the predictions of the old approach. It is
also very important that using our approach we are able to properly clas-
sify systems which are wrongly classified by the old methodology. Here, we
discuss two simple examples taken from [15]. In that paper, there are pre-
sented histograms of spacing for two quantum systems. Fig. 2 [15] shows a
probability distribution of spacing for Rydberg states of a certain model of
hydrogen atom in external magnetic field. As Rydberg atoms are known as
exhibiting quantum chaos one may think that the histogram approximates
Wigner probability distribution. Indeed, in this model there is a strong level
repulsion but there is also a jump of this probability distribution for larger
s. Histogram in Fig. 3 [15] is constructed for classically chaotic system and
although its shape is slightly more complicated, it exhibits the same be-
haviour for small and big spacings as the previous one. Accordingly to the
old classification both systems are chaotic. In our methodology they are
nonchaotic, because this probability distributions seem to be discontinuous
functions. Indeed, authors of the considered paper showed that this strange
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behaviour of probability distributions of spacing might be explained in terms
of coupling between chaotic states obtained from RMT and randomly dis-
tributed states considered as belonging to integrable system. Thus in this
case our methodology is perfectly confirmed.

4. Driven systems

The case of driven quantum systems seems to be slightly more compli-
cated in view of our classification. The best known example of such systems
is a quantum kicked rotator introduced by Casati et al. [16]. It is a quantized
version of the standard map [17]. The Hamiltonian of the classical system
reads:

H =
p2

2I
− kI

T
cos φ

∑

n

δ(t − nT ) . (11)

Below we use the dimensionless units, i.e., we assume I = 1, T = 2π.
Hamiltonian equations can be integrated over one period of the driving force
to give the classical standard map

φn+1 = φn + 2πpn, (12)

pn+1 = pn + (K/2π) sin φn+1 . (13)

The kick strength K = 2πk controls the stochasticity of the standard map.
For K → 0, the system is nearly integrable; for K ≈ 1 the last Kolmogorov–
Arnol’d–Moser torus disappears and diffusion in the p direction becomes
possible. The classical system becomes fully chaotic. The quantum mechan-
ical behavior generated by (12),(13) is found to be very different from the
classical one [16, 18–22]. In particular the diffusion in phase space is sup-
pressed and the motion is quasiperiodic [18, 19]. It was shown [20–22] that
the mechanism of this suppression is similar to Anderson localization [23,24].
Consequently the quasienergy states are exponentially localized in the same
way electronic states are localized in disordered solids. This phenomenon in
analogy with Anderson localization is called dynamical localization.

In the paper by M. Feingold et al. [26] the separation distribution of
quasienergies for the kicked rotator was analyzed. The authors concluded
that this distribution is the Poissonian one. It is similar to the correspond-
ing distribution of the energies of localized electronic states in disordered
solids [27] and supports the correspondence between these problems. This
distribution is different from that obtained for time independent chaotic
systems and indicates the existence of a brand new constant of motion.

As another example of a driven quantum system it will be considered
one dimensional hydrogen atom in a microwave field. The following formula



On the Classification of Quantum Systems . . . 1953

holds for the classical Hamiltonian of this system [25] (atomic units are
used):

H = − 1

2n2
+ εn2 cos ωt

(

3

2
− 2

∞
∑

s=1

s−1J ′

s(s) cos sλ

)

, (14)

where Js are Bessel functions. The classical map is then obtained in the
form

N = N + k sinφ, (15)

φ = φ + 2πω(−2ωN)−
3

2 , (16)

where N is energy divided by ω, φ = ωt− sλ, k = 0.822πεω
5

3 . This “Kepler
map” yields an approximate description of the motion of the classical elec-
tron. It is possible to locally approximate (15),(16) by a standard map [28].
Thus (15),(16) show that global diffusion is to be expected for K > 1. While
quantizing the map (15),(16) which describes an unbounded motion in φ
under a periodic perturbation,“a new integral of motion will appear (“quasi-
impulse”), besides quasienergy; for a given unperturbed level n0, it will be
just the fractional part of N0 = −n0/(2ω0) = −NI” [25]. One predicts thus
for the quantum kicked rotator a new constant of motion, since the local
correspondence between these systems holds. It was shown for the quantum
rotator [29] that for ~ → 0 (~ = 1/1944) the spacing distribution resem-
bles the predictions for chaotic systems given by GOE, while for ~ → 1
(~ = 625/1944) one gets almost perfect approximation of the Poissonian
distribution. Some difficulty is however connected with the classifying of
these systems for large values of K. According to the work by Izrailev [30]
a Wigner type distribution of spacing of quantum kicked rotator is observed
in this regime. It is in good agreement with that which should be pre-
dicted from the behaviour of quasieigenstates. In this range of parameters
quasieigenstates are strongly overlapping and the localization vanishes. It
seems to be in contradiction to what we have written about the correspon-
dence between spacing distribution and integrals of motion since there seems
that the value of K does not affect the constant of motion indicated before.
However, if one divides both sides of the equation (13) by ~ it becomes clear
that in fact this equation depends only on one parameter K/~ and the case
of small ~ is equivalent to the case of large K. Thus, for large values of K
the additional integral of motion disappears and the system is chaotic as one
should expect from the behavior of the spacing distribution.

5. A one dimensional system with strange spacing distribution

Here we will illustrate how our methodology works in the slightly more
complicated case. The considered system was first proposed and initially
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investigated in [31]. Probability distribution of spacing in system with half
integer angular momentum subjected to constant magnetic field and moving
in one dimensional box showed a very strange shape. The system changes
its properties (its linear dimension) as a result of coupling between magnetic
field and angular momentum, in analogy to the paramagnetic atom. The
Hamiltonian of such an atom may be written in the simplified form:

H = − d2

dx2
+ κ2σx , (17)

where σx is the Pauli matrix:

σx =

(

0 1
1 0

)

.

The quantity κ is a measure of the rate of transitions between two internal
states of the atom. Different dimensions of the atom in different angular
momentum states are reflected by boundary conditions. If it is in the state
|12 ,+1

2〉, the box extends from −a to +a and when it is in the state |12 ,−1
2〉

the walls of this box are in −b and +b, and it is assumed that b − a = ∆ > 0.
Details of the analytic calculations for this model are given in [31]. Here we
will discuss the case of the equation for eigenvalues belonging to symmetric
eigenstates, which gives infinite number of levels:

2k cot k∆ = q+ tan q+a + q− tan q−a ,

E = +k2, q± =
√

k2 ∓ κ2 . (18)

The computations were performed with a = 1, κ = 200 and ∆ = 0.01. The
spectrum of 105 energy levels was calculated. Then histograms of the intro-
duced statistical measures were made. They are plotted in figures 3(a), 3(b),
3(c), 3(d) together with theoretical probability distributions for chaotic and
integrable quantum systems. The histograms differ distinctively both from
the predictions of RMT and the model of an integrable system with randomly
distributed levels. The histogram of spacing is not convincing because of its
strange shape. It is not clear if this function is discontinuous or rather only
non-differentiable at its maximum. The shape of the histograms suggests
rather the second possibility. Because we are not able to find out the answer
to this question on the basis of numerical computations, one may propose
that this system is chaotic because the second possibility is more probable
and the system shows a classical example of the repulsion of levels. But us-
ing our methodology we must resort in this case to the procedure provided
by the second inference and examine properties of probability distributions
of three point elements. These probability distributions are presented in
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figures 3(b), 3(c), 3(d). As one can see, all probability distributions of these
elements are discontinuous or belong to the class C0. Therefore, on the basis
of the inference 2 we can say that this system is not chaotic. But inference
2 does not entitle us to decide if these functions are continuous or not. We
would like to stress that our methodology gives univocal results despite of
the incomplete knowledge of the actual shape of the considered probability
distributions and that they often contradict the old theory. Therefore, using
our methodology we find out that this system is not chaotic.
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Fig. 3. The histograms of: 3(a) spacing, 3(b) the second order differential quotient,

3(c) asymmetrical three point element, 3(d) symmetrical three point element for

one-dimensional model of paramagnetic atom, bin size 0.02 (solid line). Analyti-

cally predicted probability distributions for I(3) model (dashed line) and GOE(3)

(dotted line) except Fig. 3(a) where probability distribution for GOE(2) is pre-

sented.
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Fig. 4. The histograms of: 4(a) spacing, 4(b) the second order differential quo-

tient, 4(c) asymmetrical three point element, 4(d) symmetrical three point element

for one-dimensional model of paramagnetic atom with bin size 0.0002 (solid line).

Analytically predicted probability distributions for I(3) model (dashed line) and

GOE(3) (dotted line) except Fig. 4(a) where probability distribution for GOE(2)

is presented.

Our methodology was introduced not on the basis of the formal reasoning
from well known theorems and axioms, but rather as a certain generalization
of our observations so its predictions should be verified as often as possible.
It appears that the discussed case provides such a possibility. Large amount
of available energy levels enable us to change the size of the bin on histograms
from 0.02 to 0.0002. These new histograms are shown in figures 4(a), 4(b),
4(c), 4(d). They are distinctively different from those with larger bin size.
It is worth noticing that the probability distribution of spacing is not uni-
versal for all scales of variable s. Histograms for quantities s, x and z seem
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now to approximate Dirac delta function and the histogram for y consists of
two symmetrical peaks. It is obvious that histograms consisting of only one
narrow peak may be obtained from the spectrum of the quantum harmonic
oscillator. Such an oscillator is the best known integrable system. These
similarities of spectra properties suggest that considered system should be
almost integrable. Therefore, presented histograms entitle us to come up
with a hypothesis that the model of moving atom is almost integrable, al-
though its true nature is not known yet. This conclusion stays in good
agreement with our knowledge about integrability of quantum systems. It is
a known fact that one dimensional systems are integrable. Besides, already
in [31] it was found that rigidity function ∆3(L) [8,31] has the same charac-
ter as for harmonic oscillator. In this way we have shown that the considered
system is actually almost integrable so it belongs to the introduced class of
nonchaotic systems as we deduce using our methodology. This fact is very
important for the theory of quantum chaos because it is the first integrable
system in which the repulsion of levels was observed (see [31]).

6. Conclusions

Now we would like to sum up the most important steps of our reasoning.
There has been so far no deeper understanding of the importance of the sta-
tistical measures introduced in [10]. First, because for all systems for which
it is possible to make histograms of these statistical measures it is also possi-
ble to make histogram of spacing, and this was considered to be decisive for
the proper classification of quantum system with respect to its integrability.
Secondly because theoretical probability distributions of these measures were
calculated only for RMT models and integrable I(3) model. There seemed
to be no connection between these probability distributions and histograms
of introduced measures calculated for quantum systems whose nature was
yet unknown. Our approach proved that these two statements are not cor-
rect. Moreover, it appears that new statistical measures are indeed useful
and that they are simple complementary characteristics of quantum chaos,
as was predicted in the paper [10]. Their significance for proper interpreta-
tion of the behaviour of the probability distributions of spacing seems now
undoubtful.

The methodology introduced here is based on three simple observations
proved to be clear, simple, and powerful in determination whether quantum
system is chaotic or not. Its application to such different systems like: N -
dimensional quantum harmonic oscillator, nonlinear 2-dimensional oscilla-
tor, several driven Hamiltonian systems, Rydberg atom, and a special model
of the one dimensional paramagnetic atom subjected to the magnetic field
allowed us to properly classify these systems. We think that these examples
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illustrate how general is our methodology and suggest potential possibilities
of using it in the future.

One of the most interesting predictions seems to be univocal classification
of second system described in [15] as a nonchaotic one. It is very important
because this system is completely chaotic in the classical limit and there is
so far no idea how to explain this phenomenon.

The most important is, in our opinion, the following conclusion: It seems
that after the pioneering work where the spacing distributions of different
chaotic and generic integrable systems were developed the general problems
of quantum chaos where abandoned contrary to more specific applications.
Although our classification might proof to be false we believe that this ap-
proach goes in the right direction, because it indicates that there is a need
for an explanation of new feature in the behaviour of both chaotic and inte-
grable quantum systems. Our predictions which need to be verified are:

1. There are different classes of quantum integrable systems.

2. Systems described by GUE and GSE significantly differ from those
described by GOE.

Appendix

Below we present analytical formulas for statistical measures described
in Section 2:

fGOE(2)(s) =

{

πs
2 exp

(

−πs2

4

)

for s ≥ 0 ,

0 for s < 0 ,
(19)

fI(3)(s) =

{

exp (−s) for s ≥ 0 ,
0 for s < 0 ,

(20)

fGOE(3)(x) =
81

2284488π2

(

910
√

13π x − 315
√

13x3

+(1638x2 + 2704π) exp

(

−25x2

52π

)

+
√

13x(315x2 − 910π)erf

(

5x

2
√

13π

))

exp

(

−27x2

52π

)

for x ≥ 0 , (21)
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fGOE(3)(x) =
81

2284488π2

(

910
√

13πx − 315
√

13x3

−(390x2 − 2704π) exp

(

−441x2

52π

)

−
√

13x(315x2 − 910π)erf

(

21x

2
√

13π

))

exp

(

−27x2

52π

)

for x < 0, (22)

where:

erf (x) =
2√
π

x
∫

0

dt exp(−t2) , (23)

fI(3)(x) =

{

1
2 exp (−2 x

3 ) for x ≥ 0 ,
1
2 exp (2x) for x < 0 ,

(24)

fGOE(3)(y) =
81

4π2
y

(

6 y exp

(

−9 y2

π

)

+
(

9 y2 − 2π
)

exp

(

−27 y2

4π

)

erf

(

3 y

2
√

π

))

, (25)

fI(3)(y) = 4 y exp (−2 y), (26)

fGOE(3)(z) =
3

2π
exp (−9 z2

4π
), (27)

fI(3)(z) =
1

2
exp (−|z|) . (28)

We do not remind here formulas for probability distributions of spacing
for GOE(3) and I(3) because for the first case it is known that Wigner func-
tion is a very good approximation of spacing distribution even for N → ∞
and in the second case the Poisson distribution like for I(2) is obtained.
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