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Classical arguments predict that the quark and the antiquark of a pair
created during string fragmentation are both transversely polarized in the
direction of ẑ × q

⊥
, where ẑ is the direction of the pull exerted by the

string on the antiquark and q⊥ (−q⊥) is the transverse momentum of the
quark (antiquark). The existence of this effect at the quantum-mechanical
level is investigated by considering two analogous processes involving the
tunnel effect in a strong field: (1) dissociation of the positronium atom
(2) electron pair creation. In case (1) the positronium is taken in the 3P0

state to simulate the vacuum quantum numbers JPC = 0++. Using the
nonrelativistic WKB method, the final electron and positron are indeed
found to be transversely polarized along ẑ×p

⊥
. On the contrary, case (2),

treated with the Dirac equation, shows no correlation between transverse
polarization and transverse momentum both when the field is uniform and
when it depends on z and t. The pair is nevertheless produced in a triplet
spin state. The difference between these two results and their relevance to
transverse spin asymmetry in inclusive reactions is discussed.

PACS numbers: 12.38. Lg, 12.38. Qk

1. Introduction

The experimental observation of single-spin asymmetries in inclusive
hadron production at high energy [1] have been tentatively explained by vari-
ous models: Thomas precession [2], P-wave orbitals [3], Regge exchange [4,5],
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semi-classical string mechanism [6, 7]. The asymmetric part of the cross-
section is of the form A P⊥ · (ẑ × p̂⊥) where ẑ is the collision axis, p⊥ the
transverse momentum of the produced particle, P⊥ its transverse polariza-
tion (transversity) or that of one of the colliding baryons. The “hat” denotes
a unitary vector: p̂⊥ ≡ p⊥/|p⊥|. A similar effect correlating the transver-
sity of the leading quark of a jet with the transverse momentum of one of
the fastest particles was predicted by Collins [8]. This effect, if confirmed
experimentally, would serve as a transverse “quark polarimeter”. It was used
in Ref. [7] to explain single spin asymmetry in inclusive meson production.

In this paper we start from a popular string hadronization picture [9–11],
in which quark–antiquark pairs are produced from the string by a tunneling
mechanism analogous to the Schwinger mechanism for pair creation in a
strong homogeneous electric field [12–20]. This picture accounts rather well
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Fig. 1. Semi-classical string mechanism of quark polarization. The orbital angular

momentum of the q̄q pair is compensated by the spin of q and q̄, thereby causing the

correlation between spin and transverse momentum of the quark and the antiquark.

for the exponential cut–off in p⊥, the relative suppression of strange quarks
and the almost complete suppression of heavy quarks. Let us recall the
semi-classical arguments [6] for a transverse polarization of the quark and
the antiquark (see Fig. 1):

— the quark and the antiquark come from a pair fluctuation like those
which occur in ordinary vacuum. At zero separation, the pair has
zero total energy-momentum. In particular, quark and antiquark have
opposite transverse momentum q⊥ and q̄⊥. In the vacuum case, the
pair stays virtual and disappears after a time of the order of the quark
Compton wave length. In the string case, the linear mass density κ ≃
1 GeV/fm of the string is converted into energy of the pair, which
becomes real at a longitudinal separation d = 2E⊥/κ, where E⊥ =
(m2 + q2

⊥)1/2 is the quark (or antiquark) transverse energy.

— The orbital angular momentum

L = d ẑ × q̄⊥ , (1)
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is compensated, at least partly, by the spins of the quark and the
antiquark. Assuming equal polarization P ≡ 2 〈sq〉 = 2〈sq̄〉 for the
quark and the antiquark, we have therefore

P = −L f(L) , (2)

where f(L) is a reduction factor insuring that |P | is smaller than unity,
e.g., f(L) = (1 + L)−1.

To summarize, the polarizations of the quark and of the antiquark are of the
form

P q = P q̄ = −A(q⊥) ẑ × q̂⊥ , (3)

where
A(q⊥) = Lf(L) ≤ min{L, 1} (4)

is the analysing power of the mechanism and

L = 2κ−1 q⊥ (m2 + q2⊥)1/2 . (5)

The compensation between L and sq + sq̄ is further motivated by the phe-
nomenological success of the “3P0” model of quark pair creation in hadronic
decay [21]. This model assumes that the (q q̄) pair is created in the 3P0

spin state, therefore having the vacuum quantum numbers JPC = 0++ (by
contrast, a model in which the pair comes from one gluon gives JPC = 1−−).

The string, as well as the constant electric field, is not rotationally in-
variant and therefore the total angular momentum J = L + sq + sq̄ is not
conserved during tunneling. This is a weak point of the classical model
reviewed above. C- and P- quantum numbers are also not separately con-
served. Therefore it is desirable to check the existence of the transverse
polarization effect in a true quantum-mechanical model. Although too diffi-
cult at present in the string theory, this is quite possible for the problem of
pair creation in strong homogeneous field. To begin with (in Section 2) we
will consider the nonrelativistic process of the dissociation of a positronium
atom, which we assume to be in the 3P0 state. The relativistic case of pair
creation in a field ~E(t, z) parallel to the ẑ axis (independent of x and y but
not necessarily on t and z) will be considered in Section 3, using the Dirac
hole theory for the positron. The different results obtained in these two
cases will be discussed in Section 4.



2118 X. Artru, J. Czyżewski

2. Positronium dissociation

The nonrelativistic e+ e− system in a constant electric field is governed
by the Hamiltonian

H =
p2

+

2m
+

p2
−

2m
− α

|r+ − r−|
+ e ~E · (r− − r+)

=
p2

tot

4m
+

p2

m
− α

r
− Fz ≡ Kbarycentre +Kr + Vc − Fz . (6)

The motion of the barycentre can be separated from the relative motion
and from now on we will consider only the latter, governed by the three last
terms of Eq. (6). r = r+−r− and p = (p+−p−)/2 are the relative position
and momentum. We take F ≡ eEz > 0. The potential Vc − Fz is shown
in Fig. 2. Note that the Hamiltonian is spin-independent, therefore cannot
produce spin effects by itself. However, we will assume that the initial state
of the pair is a 3P0 positronium (corresponding to the vacuum quantum
numbers):

Φ(r) = f(r)
[

Y −1
1 (r̂) | + 1〉 − Y 0

1 (r̂) |0〉 + Y +1
1 (r̂) | − 1〉

]

, (7)

where the kets denote the three different triplet spin states,

| + 1〉 = | ↑↑〉 , |0〉 =
| ↑↓〉 + | ↓↑〉√

2
, | − 1〉 = | ↓↓〉 . (8)

In this way, the orbital motion and the spin are entangled. This state is a
bound eigenstate of Kr +Vc with energy −B. After turning on the external
electric field, the relative wave function will eventually migrate toward z =
+∞ by tunnel effect, which means that the positron runs toward z = +∞
and the electron runs toward z = −∞. The pair remains in the spin-triplet
subspace. We chose x̂ as the spin quantization axis and are interested in
the relative probabilities to obtain the different final spin states |Sx〉, with
Sx ≡ s+x + s−x , for a given final transverse momentum q⊥ = q ŷ. The
corresponding asymptotic state is an eigenstate of Kr − Fz, again with
energy −B, and its wave function is

Ψ(r) = ψ(r) |Sx〉 = eiqy g(z − zt) |Sx〉 , (9)

where g is the Airy function, solution of the one-dimensional Schrödinger
equation

[

p2
z

m
− F (z − zt)

]

g(z) = 0 (10)
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Fig. 2. Positronium dissociation in constant electric field. The top curve is the

superposition of the Coulomb potential and the external electric potential. The

classically allowed region for a given transverse momentum q is limited by the hor-

izontal dashed line. The bottom curves are the p wave function of the positronium,

Φ, and the wave function of the free solution, Ψ (restricted to the z axis). The

overlap of Φ and Ψ is responsible for the tunneling.

and zt = (B + q2/m)/F is the classical turning point (see Fig. 2). Here we
give a heuristic proof and an estimation 1 of the spin asymmetry:

— We assume that the tunneling length zt ∼ mα2/(16F ) is much larger
than the radius ∼ 8/(mα) of the bound state. Near the bound state,
we can use the WKB approximation for g:

g(z − zt) ∼ eλ(z−zt) (11)

with λ = (mB + q2)1/2.

— Near the origin, ψ(r) can be expanded in partial waves:

ψ(r) ≃ eip·r = 4π
∑

l,m

il jl(pr) (−1)m Y −m
l (p̂) Y m

l (r̂) (12)

1 A more rigourous treatment could be done using the method of Landau & Lifshitz
(Quantum Mechanics [22]), for hydrogen dissociation in a strong electric field.
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with p = qŷ − iλẑ, p = i(λ2 − q2)1/2, p̂ = p/p. We assume that
tunneling couples mainly the components of Φ and Ψ with the same
Y m

l (r̂), and the tunneling amplitude is proportional to the coefficient
of this harmonic (this is intuitive if we consider the inverse process
of trapping an initially free particle into the Coulomb potential well).
The l = 1 terms of ψ are proportional to

j1(pr) |p2|−1/2 [ −(py − ipz)Y
+1
1 (r̂) + (py + ipz)Y

−1
1 (r̂) ]

= j1(pr) (λ2 − q2)−1/2 [ (λ− q)Y +1
1 (r̂) + (λ+ q)Y −1

1 (r̂) ] . (13)

Comparing with Eq. (7) we find that the tunneling amplitudes squared are
in the ratio

|T (Sx = +1)|2 : |T (Sx = 0)|2 : |T (Sx = −1)|2 = |λ+ q|2 : 0 : |λ− q|2 .
(14)

Note the vanishing of T (Sx = 0). It happens because the second term of
Φ is odd in x and cannot tunnel to Ψ , which is even in x (orbital x-parity
is a symmetry of the problem). The polarization of the electron and the
positron are equal and given by

P =
|T (+1)|2 − |T (−1)|2
|T (+1)|2 + |T (−1)|2 x̂ = −2

√

mB + q2

mB + 2q2
ẑ × q⊥ . (15)

We see that the polarization of the created particle is of the form (3), (4) and
has the same sign as predicted by the classical string arguments. Classical
trajectories leading to the positronium dissociation shown in Fig. 3 explain
this fact intuitively.

q
y y

favoured case unfavoured case

xxL L
zt ztz z

q

Fig. 3. Classical trajectories of the positronium dissociation for the two cases

Lx = +1 and Lx = −1. The dashed lines are (classically forbidden) tunneling

trajectories.
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3. Pair creation in strong field

In a static constant electric field, electron–positron pairs are created
spontaneously in vacuum, the positron running in the field direction and
the electron in the opposite direction. In the Dirac hole theory, this process
is interpreted as tunneling of the electron from the Dirac sea in one half-
space to the upper continuum in the opposite half-space, without changing
its total energy, as shown in Fig. 4 [12]. We will study the more general

p

V

0

zz 1

V-m

V+m

Fig. 4. The Dirac sea distorted by constant electric field between 0 and z1. A

negative-energy electron on the left-hand side can reach the upper continuum of

the right-hand side by tunneling trough the forbidden band, becoming physical

electron. The hole created on the left-hand side is the physical positron. The

dashed line represent the energy of the tunneling wave function.

case of a time- and z-dependent field ~E(t, z) parallel to ẑ and consider Dirac
wave functions of definite transverse momentum parallel to the ŷ axis: p⊥ ≡
(px, py) = (0, q). Discarding the trivial y-dependence in exp(iqy), the Dirac
equation reads

[ i∂t + eA0 − αz(i∂z + eAz) − qαy −mβ ] ψ(t, z) = 0 . (16)

Calculations will be simpler using the light-cone coordinates

η =
t+ z

2
, ξ =

t− z

2
, (17)

∂η = ∂t + ∂z , ∂ξ = ∂t − ∂z , (18)

Aη = A0 +A3 = A0 −A3 , Aξ = A0 −A3 = A0 +A3 . (19)

Furthermore we choose the spinorial representations of the Dirac matrices

αi =

(

σi 0
0 −σi

)

, β =

(

0 I
I 0

)

, Σi =

(

σi 0
0 σi

)

, (20)
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where σi are the Pauli matrices. The Dirac equation becomes

[αη (i∂η + eAη) + αξ (i∂ξ + eAξ) − qαy −mβ ] ψ(η, ξ)

≡







i∂η + eAη iq −m 0
−iq i∂ξ + eAξ 0 −m
−m 0 i∂ξ + eAξ −iq
0 −m iq i∂η + eAη






ψ(η, ξ) = 0 . (21)

This equation is invariant under the transformation ψ1 ↔ ψ4, ψ2 ↔ ψ3,
which is performed by the matrix βΣx = γxγ5. This matrix commutes with
the Hamiltonian and has eigenvalues ±1. For a particle at rest, β Σx = 2sx.
For a particle with nonzero py and pz, it is the x-component of the transver-
sity operator. For the states under consideration, the βΣx transformation
is equivalent to the parity about the (y,z) plane,

Pyz = e−iπJx P = −iΣx × β × Pintrinsic × P orbital
yz . (22)

Since px = 0, P orbital
yz = 1 and β Σx is equivalent to Pyz (up to a phase

factor, depending on the choice of the intrinsic parity). The βΣx invariance
comes therefore from the symmetry of the problem about the (y,z) plane.

Taking the transversity eigenstates

ψ↑ =
1√
2







F
G
G
F






, ψ↓ =

1√
2







F
G
−G
−F






, (23)

we come to coupled differential equations

(i∂η + eAη) F = (±m− iq) G , (24)

(i∂ξ + eAξ) G = (±m+ iq) F , (25)

where ± is the sign of the transversity.
From these we get the second order differential equations

[ (i∂ξ + eAξ) (i∂η + eAη) −M2 ] F = 0 , (26)

[ (i∂η + eAη) (i∂ξ + eAξ) −M2 ] G = 0 , (27)

where M = (m2 + q2)1/2 is the “transverse energy” of the electron. Note
that Eqs (26) and (27) depend only on the transverse energy, not on the
transversity. We can infer that there is no correlation between transverse
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spin and transverse momentum, contrarily to the case of positronium disso-
ciation. Let us check this result more carefully. Denoting by Fm,q and Gm,q

the solution of Eqs (24), (25) and setting m+ iq = M eiα, we have

Fm,q = FM,0e
∓iα/2 , Gm,q = GM,0e

±iα/2 . (28)

These equations tell how the solution transforms under a “rotation” in the
(m,q) plane (which leaves M invariant). The current 4-vector (J0, J i) =
(ψ†ψ,ψ†αiψ) is given by

J0 = |F |2 + |G|2 , Jx = 0 , Jz = |F |2 − |G|2 , (29)

Jy = 2 Im (F ∗G) =
2q

M2
Re [F ∗ (i∂η + eAη)F ] ± m

M2
∂η |F |2 . (30)

The last form of Jy has been obtained using Eq. (24). The first part is
the “convection” term, the second part is the “magnetization” term. J0,
Jz and the convection part of Jy do not depend on the transversity. This
confirms the absence of transverse spin effect in the Schwinger mechanism
of pair creation. The magnetization term of Jy depends on transversity
but is located at the edges of the wave packet (we can replace ∂η |F |2 by
(∂0 J

z + ∂z J
0)/2, using current conservation) and is not observable by a

macroscopic e± detector.
To fix the idea, let us consider a homogeneous field ~E = E ẑ confined in

the region 0 < ξ < ξ1. This field corresponds to a capacitor moving with
light velocity. We use the null-plane gauge

Aξ = 0 , Aη =

{

0 if ξ < 0;
2 ξ E if 0 < ξ < ξ1;
2 ξ1 E if ξ1 < ξ.

(31)

At fixed light-cone momentum pη ≡ p0 +p3 ≡ p0−pz, we have the following
solutions:

G = e−ipηη−iM2 ξ/pη , F =
±m− iq

pη
G , (ξ < 0) , (32)

G = e−ipηη

(

2 κξ

pη
+ 1

)−iM2/2κ

, F =
±m− iq

pη + 2 κξ
G , (0 < ξ < ξ1) , (33)

G =

(

P ′
η

Pη
+ 1

)−iM2/2κ

exp

[

−ipηη − iM2 ξ − ξ1
pη + 2κξ1

]

, F =
±m− iq

pη + 2κξ1
G, (ξ1 < ξ).

(34)

κ = eE is the electric force and Pη = pη and P ′
η = pη+2κξ1 are the initial and

final “mechanical” (gauge invariant) light-cone momenta (Pµ ≡ pµ + eAµ).
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Electrons from the Dirac sea at ξ < 0 having light-cone momentum Pη in
the range [−2κξ1, 0] become physical electrons (P ′

η > 0) at

ξc ≡ −Pη

2κ
. (35)

The electron flux going through the hyperplane ξ = constant being propor-
tional to Jξ = (J0 − Jz)/2 = |G|2, the tunneling probability is

Jξ(η, ξ > ξc)

Jξ(η, ξ < ξc)
= e−π M2/κ . (36)

This result is clearly independent on spin.
Some remarks have to be made concerning the above calculation:

— The last result is obtained giving a small positive imaginary part to
Pη . This corresponds to the physical condition that the field does not
interact with the wave at t = −∞.

— In such a field, the created electron escape the field region (at ξ = ξ1)
but not the positron. This can be seen from their classical trajectories
in the field region shown in Fig. 5:

η = η0 ±
M

2κ
er , ξ = ξc ∓

M

2κ
e−r , y = y0 + q

r

κ
, (37)

where η0 and y0 are free parameters and r = ± (κ/M)×(proper time)
is the rapidity of the e±.

t

ξ=0 z

ξ=ξ
1

ξ=ξ
c

e- e+

Fig. 5. Classical trajectories of the electron and the positron described by Eq. (37)

created in the field Eq. (31) confined in the region bounded by the two solid diagonal

lines. The electron escapes from the field region while the positron remains in the

field forever.
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— Jη = |F |2 becomes infinite at ξ = ξc. The current looks like a “jet
stream”. It is due to the deflection of the incoming flux by the field
during infinite time.

4. Discussion

After obtaining the positive result with the positronium model, the ab-
sence of transverse polarization in the Schwinger mechanism was rather un-
expected. This absence does not happen due to standard discrete symme-
tries like C, P and T but due to invariance with respect to the particular
transformation (28).

In spite of the difference between the positronium dissociation and the
Schwinger mechanism, both models predict that the electron and the positron
have equal spin components s+x and s−x along the x̂ axis:

s+x s
−
x = +1

4 . (38)

This property is built-in in the 3P0 positronium model. For the Schwinger
mechanism, both s+x and s−x are equal to 1

2βΣx. Indeed, a positron at rest

has s+x = −1
2Σx, since it is a “hole”, and β = −1 because the corresponding

(unoccupied) state has negative energy. Eq. (38) imply that the pair is in a
triplet state also for the Schwinger mechanism.

The difference between the two models may be connected with their
different chiral properties, which appear in the m→ 0 limit: 3P0 positronium
dissociation is similar to the decay of a 0++ particle into two fermions, in
which the fermions necessarily have opposite chirality (equal helicity). On
the contrary, the Schwinger mechanism involves only vector interactions,
therefore e+ and e− must have the same chirality (opposite helicity). The
difference is particularly important at zero transverse momentum, where
conservation of angular momentum Jz requires s−z = −s+z . Positronium
dissociation is allowed for m = q⊥ = 0, whereas pair creation (with back-to-
back e+ and e−) is forbidden 2.

The absence of correlation between spin and transverse momentum in
the Schwinger mechanism does not preclude such correlations for qq̄ pairs
created during string breaking. There are many effects of string breaking

2 Eq. (36) seems to allow pair creation at m = q⊥ = 0. However, this is a too special
case where the field (31) occupies an infinite domain of the (z, t) plane. In fact, for
m = q⊥ = 0, the functions F and G decouple (see Eqs (26), (27) and the left- and
right-moving currents Jξ = |G|2 and Jη = |F |2 are separately conserved. If the field
domain is finite in the (z, t) plane, e+e− pairs are produced at m = q⊥ = 0, but with
e+ and e− going in the same direction. e+ and e− going in opposite direction belong
to independent pairs.
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not included in the Schwinger mechanism. First of all, the chromoelectric
field between the quark and the antiquark is totally screened after their
creation, unlike in the Schwinger process where the field extends everywhere
all the time 3. Secondly, the field of the QCD string is confined to a thin
tube. One way to simulate this fact in QED is to impose the MIT-bag
boundary conditions for the electron in the transverse coordinates [17, 18].
In our problem, we cannot use this method because we need a well-defined
transverse momentum. Important effects may also come from the “transverse
inertia” of the string, because part of it must follow the transverse motion
of the quark. Finally, the Schwinger mechanism does not include the final
state interactions which recombine the quarks from different pairs to form
hadrons and resonances. Resonances probably play a major role in single
spin asymmetries [5, 23, 24], because the latter come from the interference
between different spin amplitudes having different phases.

To summarize, the interplay of spin and transverse momentum in pair
creation is a subtle phenomenon and we cannot conclude from the simple
model presented above whether the correlation exists or not.
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